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ABSTRACT

For a modulated beam, Green's function is often
obtained by modulating Green's function for a uniform beam
with the varying intensity of the beam. For a beam with
high frequency modulation and low speed, this may not be
accurate., More general formulas are presented and applied
to electrostatic, wall-current, loop and stripline monitors,
The response of 4-sector, 4=~point and split-electrode posi-
tion monitors is calculated. Finally, a very general reci-
procity formula is presented,
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I. FIELD OF THE BEAM IN A CYLINDRICAL BEAM PIPE

We consider a beam, moving in a cylindrical beam pipe with
axis z (Fig. 1). Any curvature of the pipe in the z direction is neglected.
In the plane perpendicular to the =z axis, we use the curved orthogonal coordinates

u, w, with 1 x-iw = lz and distance defined as
u

e, dut+ e, dw?+ du?

figs 1 : The codrdinate system in the beam pipe.

The particles in the beam move, with speed V, in the =z direction. We suppose the
beam is infinitely thin and going through (uo,wo). We expand the charge of the beam
in a Fourier series and study the field of each of the components separately.

The component with wavelength X is given by :

8GL-UQ.S(QJ“3E)
.2, (1)

oz is the charge demnsity of the Fourier component. D

0gN,2) = Dy. m[ZXTI(v.t +z>\~z)]

N is the amplitude, in Coulomb

per meter, and 2nzk/l is a phase angle.
We make a Lorentz transform to the reference system (u,w,z*)

where the beam is at rest :

z*= ¥ (2-%, - V.E) - (2)
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(3

The transformed quantities are marked with an #*, e Suppose the wall perfectly

conducting, so that the moving wall is at a uniform potential. In the new reference

System, we have a pure electrostatic problem. The field ¢* 1ig determined with

Vgé*(u,wﬂ*): - p;f (X, 2) //Eo

(4)
We look for a solution of the form
F*. % D 2 )
O = Fu,w). Dy, cm(_,.z*l. (5)
J ¥ /
and, with (4)
* 2 Coran
Vf . T —/_2Jf\1 ¥ b (u-uo) S (w-25) (6)
’ I €..e.e,
If we can find a solution for (6), we know ¢*, Returning
to the reference system (u,w,z), where the beam pipe is at rest, we find :
* , * 3 *
tu.:‘_——Xl_éi_ ’ Ew:_h-&, 5 Ez"—”—ég}* (7)
duU dwr oK
The surface charge o, induced on the wall, is
T (5,2 = €,.E, (o) (@)

with En(n) the field component perpendicular to the wall and s

on the circumference.

the co-ordinate

If the frequency is high enough, so that E.M. fields cannot
penetrate the wall, we have

, Bw=%/.é B B, =0 (9)
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The current flowing on the inside of the wall (in the 2z direction) is then :

. B \/’ N /
la2)= Z2 = e E, 0 = V. 0(s,2) | (10)

with BS the magnetic field close to the wall.

I.1 Rectangular cross—-section

We work in rectangular co—ordinates x, y, z (Fig. 2)

PB(A‘XOryorz}\)

| B

figs 2 : Cross section of a rectangular beam pipe.

A solution of (6), valid for y,gyo is

. ‘x, %)z g &&[ﬁm(@-%oﬁ.b«gbbm(@r—kgﬂ ' M[m?r(xﬁa}] m[mw(xf'a)} (L)

=1 €. A. D"m-%@@r.fxm)‘ 2a 2a

wi {X = ﬁ z IM\ZI
h " \/(B’A> +\fza)
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And the surface charge, induced on the wall y = b ig :

| 2 (Xeta) -
%:_g(x,z)= -D,. Cos[%}t (V. +7,\~z)],h§1 Mpﬁiﬁ%ﬁ éfo]m[mfrz(zm](lz)

By exchanging A for Y,* We get the charge on the wall Yy =b and, by

exchanging (x, X a) for (y, yo, b}, we get the charge on the other two walls.

I.2 Circular cross-section

We work in cylindric co-ordinates r, ¥, z (Fig. 3).

fig. 3 : Cross section of a circular beam pipe,

A solution of (6), valid for ry ro, is

o0 (AR
= = BT T A R

with g = 2IR /y) y N=2 for m=0 and N =1 for mp» 1, The radial electrie

field is, again for r),»ro :



E (0,4,2) = D, [‘Eﬂ‘ NAES Z)] Z J@_E.} [ ) m\% R) o } Cmﬁn(cp-%ﬂ (14)

Mm=0¢ w MR I, %

The charge induced on the wall is :

[
olgz)= -0, coﬁ{w(\/mzx Z}} 2 TT;\Q 1\%&)- m[m(gﬁ—%ﬂ (15)

Er’ as given by (14) is not easy to calculate. Close to the wall we can use the

approximate value :

(o a Y E(Y) y) _ 2R-t
E,(2) & E,(R) - h; L_,-ﬁ@ ) = 2_]2___. £,(R) (16)

I.3 Longitudinal field

We can find the longitudinal electric field with (7). Here
we will derive Ez from the transverse component En. Along the path 1,2,3,4,1

of Fig. 4, we have, with Az small :

fig. 4 : Field at the wall of the beam pipe.
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and, with Bs(n) given by (9)

h
/ —
- Pﬂ N %/_Z%}J En (1) dn (17)

g

In general, En is of the form :

™

w1 = Dy Fn,s). cmHI(\; E+%,- kﬂ (18)

We then find, for Ez

Eyin) = D;\.;W G(n,s). Mn TZWW: FZ, - zﬂ (19)

A
with : Gﬂ(n,s):/ Fin,s). dn | (20)

o

IT. COUPLING BETWEEN FIELD AND MONTITOR

For an electrode, cut out of the wall, the charge induced
is, of course, the integral of o(s,z) over the surface of the elejtrode. For a
wall current monitor, the current flowing, through an impedance over a transverse
gap, is the integral of i(s,z) over the length of the gap, if we prevent the

current from flowing around the gap. We will now discuss two less obvious couplings.-

II.1 Stripline coupling

A stripline with impedance 2 is mounted, in the 2z direc-

tion, on the wall of the beam pipe (Fig. 5). This coupling has been calculated by

1)

Kerns and Large (who also used Eq. 21) . The present treatment is somewhat simpler

and more general,
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fig. 5 : Stripline coupling.

We use the exp(jwt) convention. The open-circuit voltage

v, is given 2) by

V= o L / E,.d. dw (21)
LUy

v 1s the inside of the beam pipe. fg is the electric field due to the beam but

with the stripline removed. J is the current density over the line when the line

is driven, at the open end, with a test current Il.
The line is terminated, at =z = &, 1in its characteristic

impedance. We suppose the strip is thin and at a uniform height h above the wall

of the beam pipe (if the wall is curved, the strip is curved also). For Z = 50 or 75

Ohm, the strip is several times wider than h and the current is concentrated on

the underside of the strip. We’can replace J by a line current 1(3), going through

the middle of the underside of the strip and through the center of the supporting

posts. This test current is

I,=1 , I(3=¢ wz%\'ﬁl.\/

We suppose the components of the electric field known and of the form (18) and (19)

g%{i(%r%)
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For the calculation of (21), we make the following approximations
W
Yn -E %
\
F).dn ¥ GlA) . e

A&C\€+2% ﬂ)

cW ﬂ : ﬂﬂ%
tie T, +j LA
1 - lé"‘ € g == %4 J, >

After some simple calculations, we find :

\/Oz.ZCY.D)\.G(%) AmR’ 8-"6?%-)21,\]6&%\ (22)

o= Bl E- ¥ E )

| S——

For V = -¢, Vo is almost zero, For V = ¢, the response is maximum for
% = )/4. Due to several approximations, the accuracy of (22) will probably not be
better than 5%, Usually, however, the absolute response is not so important.

What is important, for position measurement, is that V0 is proportional to G(h),.

11.2 Loop coupling

The loop is mounted on the wall of the beam pipe (Fig. 6).

PB o T
v
. ¢ o
- i (5)
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Tige 6 : Loop coupling.



We use the same method as for the stripline. Now, we suppose J to be uniformly
distributed over the surface of the wire, for each value of 3 (this is not
exactly true : the current has a tendency to concentrate on the underside of the
wire but, for h»d, the approximation is good). We can replace J by 1(3)
through the center of the wire. i(3) 1is now a standing wave and we have, appro-

ximately :
2N ) W3
((3) = cod(wt). cm(_ca)

L+2h) = cotlwt). cm[%{thﬁﬂ

The integral (21) reduces to a linme integral over the center of the wire, With
En and Ez of the form (18) and (19) and the same approximations as before,

for the integrals of F(n), but now with the cos function, we find

_\ Dy G A ‘ZTY s 2 |
b=z cm/\[%). (}24_29% M LTV E + % } - B, Coﬁ[.;\— e+ ZQ} (23)

/ Fo py
A= m[g—@wﬁ)J L. cm{l;ﬁj
B s () sin () - T s [(0e 3]

Usually, B 1is much smaller than A. Only G(h) varies with the beam positiom
and v, is again proportiomal to G(h). With h and 2 much smaller than A,
(23) reduces, of course, to Faraday's law.

The impedance of the loop depends on %, h and d. A
3)

few values, valid for small dimensions of the loop, are given in For more

precision, it is better to measure the impedance on the finished monitor.

II1I. INTENSITY MONITORS

For intensity measurements of the beam, we can either detect
the D.C. component {in fact usually varying in time) or the fundamental Fourier
component, When the beam is tightly bunched by the accelerating R.F. field, this
fundamental compoment is almost independent of the exact shape and width of the
bunches. Measurement of the fundamental component can be an advantage for elimi-
nating the effect of stray particles and noise and also for obtaining a higher
sensitivity or for a better response to low frequency modulation. When we want to

look at the shape of the bunches, we are also interested in the higher harmonics.
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ITT.1 Rectangular electrostatic monitor

For an electrode, mounted flush with the wall, with
length L centered on z = 0 and rectangular cross-section 2a x 2b (Fig. 2), the
charge g, dinduced by the Fourier component of the beam with wavelength i, is
the integral of ¢ over the surface of the electrode. With (12) and similar

formulas for the other three sides, we find :

e 1 /\
q= -D,. m[fzg(v.m,\)}._“%%&’_. (0, x0 , y,) (24)
00 , ‘ N N
ne S L ,M[mw(ma‘)}cmmgo) N ,Mrwr(w@ﬂ.oﬁ(f%m )
Tomet,3, T 2a C&(“m@} L 290 JCngma>
g = |22 ¢ (mTc)? By = 20V 4 [
=&+ B ! =B+ 5

n is a correction factor, close to 1 if YA is large with respect to 2a and

2b (and always 1 for a beam close to the wall). For a centered beam :

: st ; : /MTT’\ T -
{00 = 2 bl L] | (25)
m=1,3... T Ld;l(o(m@\} ij\,(gma\_\

II1.2 Circular electrostatic monitor

We consider now an electrode with a circular Cross section
of radius R (Fig. 3). The electrode is again of length L, centered on z = O.

The charge g, induced on the electrode is, with ¢ given by (15)

e )
- Dy e (reen] 2L Ligtd
| ) /A L(g)

The high frequency response is limited by the length L of the electrode., It is

also limited by the Bessel factor. The Bessel factor, for a centered beam, is

down to 0.7 (-3dB) for g 1.2 or vx T 5R, !E
We now calculate the response to a diffuse beam. We limit

ourselves to a centered beam with radius r. and charge density Pgp constant over .

1
the cross-section (Fig. 7). We have then

p.& — D)\

con [ 2m (Vo + 7 _z] v
Tr-lt,]?- [A( + PN ) 1
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fig., 7 : Diffuse beam.

The charge, induced on the electrode, is them, by integration of (26) over the

cross—section of the beam :

g= -1, M[ZE(V.E+Z/\\J. m(ﬂ/x)_ i 211(%21/?2) (27)
A ’W/)\ Io(%\l %’t»t /‘R

We will illustrate this with the example of the 30 MeV
output of a 200 MHz proton linac. We measure the intensity with a circular pick-
up with R = 30 mm. The parameters are : B = 0.314, vy = 1,05, X = 472 mm,

YA/R = 16.6, g = 0.380, The correction factor for a centered pencil beam is then

7y = 1/7Tol) = 0.965

For a diffuse beam with r1 = 20 mm this is :

o 071 6%51/Q) _
Vo= V1. %tt«/R = 0.973

For a pencil beam, 10 mm off center, this is :

Ny= 1, Lo{gt./R) = 0.969

.
H
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Precise measurements are still possible if we correct for n This occurs auto-
matically when we calibrate the monitor against a more absolute one. The response
to higher harmonics is limited, however, and measurement of the bunch form is not

pessible,

ITI.3 Elliptical electrostatic monitor

The solution of (6) for the elliptical cross—section, leads
to Mathieu functions which are difficult to calculate. A good approximation for the
response can be obtained by comparing the results for the square and the circular
monitor. For different values of g and a beam not too close to the wall, (24)
and (26) give almost the same result if we take a = 0.92R. VWe can extend this
result to elliptical monitors : the response of the elliptical monitor should be
very similar to that of a rectangular monitor with a and b 0.92 times the half-

axes of the ellipse.

I1II.4 Wall current monitor

In a wall current intensity monitor, the wall is cut at
2 = 0. The total current i that would normally flow over the inside of the wall,
. . . . .. 4
1s deviated over an external circuit where 1t 1s measured (Avery et Al, )). For

a circular cross-section, with radius R :

' m
L o— jc.( R.Y. U’(‘P,%\’Co)%r ‘ZQ' O[ gﬂ

and, with o given by (15)

[ = -V.D,. coé,[%}\l’ (V.t +ZQ} E%?%M (28)

All the formulas obtained for the electrostatic monitor are valid, 1if we replace

sin{(nL/A)/(n/X) by V.

FOUR SECTOR MEASUREMENTS

We limit ourselves to circular cross-sections (Fig. 8). The
calculations will be made for a wall current monitor (at z = 0) but they are also
valid, with small changes, for an electrostatic electrode, cut into four pieces.

We measure separately the currents i. to i

1 4° through

the four sectors. The sum signal is given by (28) :
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fig, 8 ; Two configurations for a four sector monitor.

S L vl tisdiy = H. &L%ﬁ(v_/\i)
Io %I

H= -V.Dy. CDG{%T(V t+iZ,\\W

The difference signals, for the cases A and B, are :

00 ( /
by iy by & ImeR)
o0

r ’ . . ) \
Ao = (Cyr i) = {0+ (3) = 4H 9 &/R]
eliia)- (e 48 5 Lt

Cod (mg,). (@ETI) (29)

1
F,
g
3
=
5

!f%gr} (30)

/

For g <1.2 <{or YA»5R), we can approximate I3 and higher by the first term of

their series expansion. We find :

_ 7R Lo |nguR . g
e 22 40 R I A ot bl gl o

pooR As_ R To@) TR ey 1w 5ol
e ia(%zo/m[x@ ote)- g o) g o] e

Px is a2 good measure for xo =T cos (wo) when r £ 0.5R and YA»3R. Measure-

ment of the yo co-ordinate leads, of course, to the same formulas.
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V. FOUR POINT MEASUREMENTS

We limit ourselves again to the circular cross-section.

by by

////’ETE\\\\ —\\\\\\
S | Cor=R ,47//~ 1 J=R
. . E . .
/ r '1 r
_ ,/6 1) 4 X
|

X

T T v et

\ oro,%) . (ot

\ o 3 4/
~ 4 \ L

fige 9 ¢ Two configurations for a four point monitor.

We will study the éonfiguration of Fig. 9

» first for four small electrodes, each
with surface T, cut out of the wall., We

Suppose, approximatively, that the
charge density o

is constant over the surface of the electrodes and equal to

0 1in the center. The sum, SA’ of the charges on the four electrodes, for

configuration A, is then » with (15)

Sy = Qu+0,+0,+q, = QH‘E. caﬂm%)Im@tw@)
A= Gat et gytq, e, HWRIm(%\,

(33)

H= - D,.T. m%ﬁ (VE +z,xﬂ

For the difference term, we find :

Ay = qfc]s:ﬁEH.Z cod {m g, . Inlg%/R) (34)
T m=1,3...

I m(%)

and, for vyA25R and rOSO.SR, we can measure the position with :

11(%@/12)’ 7)) Y3
Rea = Réﬂ#‘ - R_1:% )CO{S(%M—(Q)M(B%)**(—L) | - (35)
A To(ote/R ’
._ {WJFZC%. cod (b ) + ..
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For the configuration B, we have :

By AR, %, ¢0) = ’SA(QJTO)%-{’%)

Be= (91%9,) - (92 93)

V.1 Four loops or striplines

The open-circuit voltage, for a loop or stripline, at

position wl, is

R
Vy = BG(R) = — H / E, (7,00, d
Dr. o (BN (it + z,-2) gy
with H given by (22) for the stripline and (23) for the loop. With (16) and
(14), we can find an approximate value for Vo. An accurate calculation of a few
limiting cases shows, however, that a better approximation can be obtained with

a slightly different formula :

e *
Vy= - H, h 2 Coﬁbﬂ(%—%)] M) (37)
€T (R - 054 m-o N I.)
with R* = R-0.15h. The sum, SA’ of the four voltages, for case A, 1is then :
Sle) - —bi kT ) Imla%/RY 8
P e TR ash) woaue.. ) N Tm() ”

We have again SB(wO)=SA(wO+ﬂ/4). The position of the beam is again given by

(35) or (36), where we substitute R* for R.

SPLIT ELECTRODE PICK-UP

By far the most popular position monitor is the split elec-—
trode pick-up, of which Fig., 10 gives an example. We measure Px=(Sl-Sz)/(Sl+Sz),
where S, and S, are signals, linearily related to the charges 9 and a4,

1 2
induced on the electrodes by the beam. It was proved by Sherwood 3) that, for



fig.10 : Top view of a split-electrode monitor,

electrodes cut out of the wall by pianés parallel to_tﬁe“ y axis, PX is linearizy
related to the co-ordinate X, of the beam and independent of Y, This is valid
for a cyllndrlcal beam pipe of any cross-section and a beam, unlform in the z
direction, over a length, large with respect to the electrode dimensions. We shall
study here what happens when the beam is varying rapidly in the =z direction.

The electrodes are separated by a gap. The charge, which
would have gallen on the gap, is divided equally over the two electrodes and, for
the purpose of calculating the induced charge, we can think of the electrodes as

extending to the middle of the gap.

VI.1 Differential equation for q

The Fourier component of the beam is given by (1), with

t and w replaced by x and y. (6) can now be written as

LeaF (el ) = = §(x-x). © (y-y.)

2 2

L= v H(Z;zr,)
'y I A

The operator dc » together with the border conditidn F* = 0, defines a self-

adjoint problem. We have then, because of reciprocity

oL, €, F*(x,é;lxo,(jo)= wS(I—xO).B(%-%O) (39)

dy = \7;:]%0 - (%\I)Z (40)

and, because of (5), we have :

Lo € é*(x,%,z*\xo,go,zf‘): S (x- X,). 6(‘3 cé)

<2Tr *i (41)

W o
¥ YA
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Each instant t, we can calculate qE, induced on the (moving) electrode (we

suppose the electrode to be at ground potential)
* H
e = ~€o/ 3 b*(x,glzﬂxo,%oﬂf)] d.S (42)
o o _

with 8% the transformed surface of the electrode., We let d:

operate on both
sides of (42). DCO

can be brought under the integral sign and, with (41) we find :

(43)

Lo g, -

Qs 88 well as the co-ordinates x and y, are invariant under the Lorentz

transformation. We conclude that (43) is also valid in the reference system where

the beam pipe is stationary.

If we wish that g is only a function of X and not of
y,» Wwe find as the solution of (43)

+ 2T, /YA ~2rxe /YA

qE': A e +~ Be (44)

4

figell : Shape of the electrode for linear response.,

The response will be linear only when YA is much larger than the transverse di-

mensions of the beam pipe. We now look for a border condition which matches (44),

In Fig. 11, the electrode is defined by the cuts zl(x) and zz(x). When the beam

approaches the wall, we have the border condition :
ZZ(l’o)
Gew (xo) = _/ o5 (X, 2) dlox . d a(z
Z4(%)

__ A D [21‘r / _ZﬁZZJ n (27 Zo-Z
= - S Cod _k,(\/.u-z)\ =t M(T_%_I) (46)

(45)

+ L d
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(46) can be a border condition for (44) if

Ri(x) + Z2,(x) = 22,

% 2 \ PO

with Z s C and X arbitrary comstants. This allows us to calculate zl(x) and

ZZ(X)' We will not pursue this further because the cuts are usually linear and the

question is then : what are the deviations from the linear response ?

VI.2 Electrode response for straight cuts

We will restrict ourselves to the "standard" configuration

of Fig. 12 but the discussion can be easily adapted to other configurations. The
border condition (46) is now, for electrode A :

Faw (xg) = ~ 2 Ds m[&g(\au Zy - %L‘tﬂﬂ M(ZW,L‘ Xota)

£l (47)
e 2a X 2 2a ]

We can write this as :

'D ‘ .
Qo = — >\ﬁr ) @[g;r(\_t +7,\\;]‘ Juc o) + M[%\LF(\/,UZQ} Qs T} (48)
G = m(m_,m\.. ,M(TI_L, Eo o)
: A 2a A 2a
Tws = (L | xO"”’”)

DY 2a
With (48) as border comdition and differential equation (43), we find qA(xo,yo)
for all beam positions :

9o (x40 =

: u%@g coa[%\ﬁ(\/.tJer].qc(zo,gohM[%\E(V.ht@)}gs(xo,gg} (49)

with q  and q_ the solutions of (43) with border conditions q and q .
c s we ws
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]
d1=0 dl d|.|
Z:i‘EA Eg
e - z
Z(x) - 2o(x)7 A~ 4 —
— N
d, d, d,
| L .
fig, 12: "Standard" elgctrode configuration for a split- :
electrode monitor.
We will measure the position with
Qa- Q
Fi(xo,tjc\,-: AT BB (50)
G+ Qg
ith h i :
wilt QA the amplitude of 4y 4
{ N D / 2 Yoo 2 . \‘r
Q\A\IOI%G\, = ’n’ > \'/" CfTC \xo;tjo/‘ -+ qS (Io, joj (51)

To obtain q, and q we write (43) as a difference equation :

44 +92-290 ,  93+34-29 /211’)2 Go =0 (52)

Ax? ay® I

We compute, with a relaxation methed, consecutive values of q0 out of the
surrounding values ql to qa. Ax and A4y are the steps of the grid.

For the rectangular cross-section there are no problems,
The circle can be approximated by an octagon with all the corners on grid points.
With Ax # Ay this becomes an ellipse. A coarse grid is sufficient.

»

VI.3 Errxors for the rectangular cross-section

We will pursue the calculation further for the rectan-
gular cross—section 2a x 2b, When we measure with (50), three points are always
exactly calibrated : the two end points, where Px(ia,yo)= ta and the center
where PX(O,yo) = 0 because of symmetry. With the beam close Fo the wall we
find also, with (47) and (50)



!

P, £ 6) = c@f%(l%_\} tg\r_;

. 1¢>. a (53)

>\
2

To get an idea about Px(xd’yo)’ we will compute the scale factor

(54)

From (53), we get :
B0, 28)= (L /2. -\:a%m‘zx?

*
P;(0,0) was computed on a grid of 7x7 internal points, for several values of
Yy and A. The results are summarised in Table 1. We see that the difference

in scale factor, between the wall and the center, is largest for X small

and y = 1,

/ X/ L
3 b 5 7 10
Py (0,b) - 0.91 | 0,95 0.97 | 0.98 0499
P, (0,0) 1 1,03 1.04 1,03 1.02 1.01
a=2b=L 2 0496 0498 0,99 0499 1.00
5 Ce93 0.96 0.98 0499 0499
P, (0,0) 1 1,20 | 1,12 1,08 | 1.0% 1,02
2a=2b=L 2 1,03 1.02 1,01 1,00 1.00
5 0,98 099 0.99 1.00 1,00
P, (0,0) 1 1.46 | 1.27 1.18 | 1.09 1.0k
2a=b=1| ?. 1.12 IQO? 100"“ 1.02 1001
1402 1.01 1.00 | 1.00 1,00

table 1: Seale factor D y for the position measurement, at
the center and near the wall, for rectangular cross

sections and different values of J and \ .,
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VIi.4 Diffuse beanm

When we measure the position of a diffuse beam with a
linear position monitor, we measure the center of charge of the charge distribu-
tion. This is still approximatively true when the deviations from linearity
are not too large over the region covered by the beam. This remark is, of course,

valid for all the position monitors considered here.

RECIPROCITY

In some cases, the action of the beam on the monitor is

difficult to calculate. Sometimes, the inverse problem turns out to be easier.

Z)

Therefore, we will apply the general reciprocity formulas of Rumsey to beam

monitors. These formulas are valid, at any single frequency, for any passive
linear system, even those containing anisotropic materials, but with the excep-

tion of gyrotropic media. We find, using the exp(jwt) convention :

115 e
Voo — T Jg (:;,%,Z). E, aX,Lg,Z).c’[x,of%.o{z (55)

JB is the beam current density. E, ig¢ the field in the monitor, without beam,

due to a current source I1 applied at the output. Vo is the open—circuit

voltage, at the output, due to the beam but with 11 removed. The integral is

over the region where E, is important.

1

Instead of a test current Il’ we can apply a veltage
source Vl, at the output. The short-circuit current Io’ at the output, due
to the beam but with Vl removed, is then (I and V are positive in the same
direction) :

IO:% ﬁB.E,\.C/{x‘o{%.o{fZ (56
4

These formulas could be of use for calculating microwave

monitors (e.g. Ref. 6) and also for magnetic monitors (e.g. Refs. 7, 8). For

magnetic monitors, E. = -jwh

1 with Kl the magnetic potential.

1
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