Chapter 24
On a Possible Phase Transition Between
Hadron Matter and Quark-Gluon Matter: 1981

Rolf Hagedorn

Abstract We employ the technique of the analytically continued grand canonical
pressure partition function to show that, under physically meaningful boundary
conditions (non-existence of external confining vessels, i.e., no fixed volumes),
the energy density and similar intensive quantities do indeed have, in a statistical
bootstrap model of extended hadrons (van der Waals type volume corrections), the
singularity claimed in previous papers. Earlier results obtained with an entirely
different technique (which had been criticized) are recovered and shown to be
correct. The technique used here is useful in all cases where the volume is not
imposed from the outside but results from the internal dynamics of the system, as is
generally the case in high energy physics and astrophysics.

24.1 Introduction

Hadrons have finite sizes and consist internally of quarks, antiquarks, and gluons,
though none of these constituents has ever been observed as a free particle. They
seem to be confined to the inside of hadrons.

Consider a hadron gas at temperature 7. At low 7, it behaves more or less as an
ideal gas, if T increases to the order of < 100 MeV, pion creation sets in and if T
is increased further, heavier resonances and baryon—antibaryon pairs are produced.
When T becomes sufficiently large, particle production becomes so strong that the
energy density of the ‘gas’ reaches the value of the internal energy density of its
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constituents. In other words, the hadrons (having finite volume) begin to overlap and
finally might form one single hadron. At that stage we have no longer to do with
a hadron gas, but with an interacting quark-gluon gas. Increasing the temperature
further would lead to a free quark-gluon gas confined to a macroscopic hadron [1].

The following question arises: is this transition from a hadron gas to a quark-
gluon gas a smooth transition (like ionization) or a phase transition? There are
two approaches to this problem: experimental and theoretical. Experimental facts
suggest a phase transition: mean transverse momenta of particles produced in high
energy hadron collisions may be interpreted in terms of a temperature which, with
increasing collision energy, rapidly reaches a limit of the order of 160 MeV [2] (the
exact value is difficult to determine because many secondary effects arising from
the spacetime history of a collision disturb the ideal picture of a phase transition at
a certain critical temperature). Limiting temperatures indicate phase transitions.

The theoretical approach is suffering from lack of a theory. We only have models.
There is a choice of models describing the hadron side and another choice of models
for the quark-gluon side, but no analytical model which contains both [3]. A single,
closed and consistent analytical model unifying both aspects would be ideal. If we
had one which described hadronic as well as quark-gluon systems, we could use it
to find theoretical support for either a phase transition or for a smooth transition. A
phase transition would be indicated by a singularity (pole, branch point) in the grand
canonical partition function at some real temperature, while a smooth transition
would require the absence of singularities on the real T axis.

In this situation, the general habit is to take some hadron gas (or nuclear matter)
model and some quark-gluon model and try to fit them together. This procedure
leads then to two different partition functions, one for low T (hadron side) and one
for high T (quark-gluon side). If the two pressure curves thus obtained cross at some
temperature, it is often claimed that a phase transition has thereby been established
and located. This is unjustified, as one easily sees from a counterexample: a dilute
hydrogen gas might, according to this philosophy, be described as an ideal gas of
2N protons plus 2N electrons. The pressure curves do cross, but we know that,
in this system, there is no phase transition; instead a smooth shift of the chemical
equilibrium between molecules, atoms, ions, and electrons takes place when the
temperature changes.

Only the explicit exhibition of a singularity (in at least one of the two models to
be fitted together) proves that the model under consideration has a phase transition
(in the vicinity of the singularity).

The statistical bootstrap model of hadronic matter in its most recent form has
been claimed to have a singular curve in the u, T diagram, along which the energy
density is constant and equal to the bag energy density, i.e., the energy density of the
hadronic clusters constituting the gas, while the pressure vanishes there [4]. Taking
this singularity as indicating a phase transition to a quark-gluon phase [5] seems
most natural; the more so as the description of the other side, in terms of a free
quark-gluon gas with perturbative corrections [6], leads to vanishing pressure and
to the usual bag energy density in the same u, T region where the hadron critical
curve lies.
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The model of [4] is a statistical bootstrap model with baryon number conser-
vation and proper volumes of the constituent hadrons and hadron clusters. These
proper volumes grow in proportion to the cluster mass. As the strong interaction
is in this model represented by all possible particle reactions (hadron chemistry),
the number of particles is not conserved and, in calculating the partition function,
summed from O to infinity. The mass spectrum (listing all possible hadrons and
clusters) turns out to be exponentially increasing with the cluster mass. It is this
exponential increase which generates the singularity via an integration over masses
up to infinity.

In a recent paper [7], the results of [4] were criticized on the basis of the
following argument: if particle volumes grow in proportion to the mass, the mass
integration is necessarily cut off when the sum of all particle volumes reaches the
externally given volume V. Likewise the sum over particle numbers is cut off. Thus,
trivially, no singularity can occur. What is not trivial is that, as the authors show, the
thermodynamic limit

o1
Jim v InZ(B,V) (24.1)

exists for all 8. Hence, even in this limit, still no singularity exists in spite of the
exponential spectrum and in spite of the fact that now integrations and sums do
go to infinity. This proof does not, however, apply to the situation under which the
singularity was found. In [4], the limit was not taken in the usual way, viz., as in
Eq. (24.1): first calculate In Z for fixed V, then let V. — oo. Instead, the ‘available
volume’ A = V=3 V;, where V; is the proper volume of the i th particle, was used
as a volume parameter and kept constant. Thus V = A 4 )" V;, so that, when sums
over particle numbers and integrals over masses were done, V was pushed to infinity.
Then expectation values (V(8, A, 1)), (E(B, A, 1)), etc., could be calculated and
densities could be defined by (E(8, A, A))/(V(B, A, 1)), etc., which did indeed
show a singularity. Since therefore the existence of a singularity depends on the
limiting procedure, it seems important to clear this up.

A simple example shows that there is nothing like a universally ‘correct’ limiting
procedure, but that different limiting procedures correspond to different physical sit-
uations. Imagine a high pressure container of volume V filled completely with water
at room temperature and atmospheric pressure and then hermetically closed. One
may heat it up to any temperature and the water will not boil; putting infinitely many
such boxes together and removing interior walls (V — oo) will change nothing. If,
on the other hand, one closes the vessel by a movable piston, one sees the water
boil if pressure and temperature fall in a certain interval. In this last case, the water
pushes the volume to ever larger values similarly to the situation considered in [4].

We believe that at temperatures and densities where hadron matter changes into
quark-gluon matter, no fixed volumes should be used in theoretical considerations,
since boxes do not exist in this regime. Forces keeping a system together (the
tendency to cluster is just such an internal force, while gravity might be considered
as an external one) control pressure and densities rather than volume.
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The method of the ‘available volume’ A used in [4] seems therefore to be adapted
to reality. Nevertheless, one may argue that even such a A cannot be controlled and
therefore should not be used as an external variable.

In this paper, the results of [4] will be rederived in a different way which does
not make use of a volume-like variable. The technical tool is the grand canonical
pressure partition function.

Our units are # = ¢ = k = 1, mass unit MeV, metric (1,—1,—1, —1). Notation
is as in [4].

24.2 The Grand Canonical Pressure Partition Function

Introduction

Given the grand canonical partition function Z(8, V, 1), where g = 1/T, V a fixed
external volume, and A = exp(u/T) a fugacity ensuring the conservation of some
charge-type quantum number Q, the grand canonical pressure partition function
I1(B, &, A) is defined by [8]

IT(B,EA) = /0 - dve=tVZ(B, V. 1), (24.2)

where £ is a new, intensive parameter related to the volume in a similar way as f is
related to the energy and u to some conserved quantity. The larger £, the stronger is
the exponential volume suppression in the integral of Eq. (24.2). Thus £ is a measure
for the pressure and hence the name of this partition function.

Rewriting Eq. (24.2),

O(B.€ 1) = /Ooo dve—V[E—an(ﬂsV,A)/V] ’ (24.3)

we can read off for which values of & the integral converges, provided that the
thermodynamic limit

Vli)n;o‘l/an(ﬂ, V, 1)
exists:
£E>&(B,A) = VILH;O [an(,B, v, /\)/V] = BP(B,A), (24.4)

where P is the pressure.
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We define a function g(8, V, A) as the difference between InZ/V and its limit:

gB.V, 1) =&(B.A) — %an(,B, V,A). (24.5)

It can be shown under very general conditions [8, item (d)] that, if the thermo-
dynamic limit exists, this limit commutes with the differential operators d/df and
d/dA. We assume these conditions to be fulfilled. Thus,

Vlim g(B,V, )
. 0g

. 0dg
Vlggo ﬁ(ﬂ, V., 1)

I1(B, &, 1) has a singularity at £ (8, A). Its nature (pole, branch point) depends on
g(B,V, ). In principle, it is possible to continue the analytic function I7(8, &, 1),
defined by the integral representation in Eq. (24.2) for Re§ > &, into the whole
complex plane beyond the convergence domain of the integral. Therefore it might
well be possible that quantities derived from I7(8, £, 1) have a physical meaning for
& values where the integral representation of I7(8, £, 1) does not exist.

That this is indeed the case and that the singularity at &, is absent in meaningful
physical quantities will now be shown. It implies that the singularity at & has
nothing to do with a phase transition, in contradistinction to singularities of
Z(B,V,A).

It is convenient to define a new function whose limit is I7(8, &, 1):

w
My (B, & M) = /0 dve=VZ(B, V. 1)

w
:/ dVe—V(é—Eo)—Vg(ﬂ,V,k)7 (24.7)
0

Wh—I>noo HW(IBsEsA) = H(ﬂ,é,k) .

We now calculate the energy density. First we define the expectation value of the
total energy:

w
dve™VZ(B, V,M)(E(B.£, 1))
(Ew(B.&. 1)) = _ 1 o _ /0 , (24.8)

My 9 W
w 9 / dveYZ(B,V, 1)
0
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where (E(B8,&,1)) = —0InZ(B,V,A)/0B was used. Similarly, we define the
expectation value of the volume:

w
/ dve=Yvz(B.V, 1)

1 oIl
(Vi(B.£.2)) == —— 8.§W =t (24.9)
v / dve™YZ(B.V, 1)
0
The energy density is then
E(B.£.2) = lim (Ew(B.. 1) (24.10)

W—o00 (VW(ﬂv gv A)) ‘

Similarly, if Q is the quantum number conserved by A, the quantum number density

q(B.§. 1) is

M (QW(,B, g,)m - _anﬂ . (24.11)

q(B,&, 1) := lim oo

W—o0 (VW(:Bv gv A')) ’

In this formalism, the usual thermodynamic limit is replaced by the limit W — oo.
We now use the explicit form given by the last member of Eq. (24.7) to calculate

&(B.§.A):

. 0My/0p
& A) =1 _—
(B.E. Q) . 3T [0
Ty /W (350 38) —V(E—E)—
W _ v _22)e 0=Veqy | (24.12)
B 0 B op
Ol / Y eVt
=— | veVeEvegy
& 0

Since & is independent of V, we have

/ Y Vs 08 4y
A 98
_aéogﬂv M L im0 - b_ (24.13)
B W0 / e VE—f0)—Veyqy

0

EB.5.A) =

We now recall Eq. (24.4), viz., § = BP. Hence, if the second term of Eq. (24.13)
were absent, we would recover the usual thermodynamic limit definition

a(BP) d[.. InzB,V,A)
S BB

B %

C="Tp T T
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Next we observe that, for § > &, the integrals in Eq. (24.13) converge in the limit so
that, unless g(8, V, A) = 0, the second term is a non-vanishing function C(8, &, 1).
Indeed, £ > & implies exponential suppression of large volumes. Therefore this
function C(B, &, A) represents the corrections to the energy density coming from
finite volume effects.

If finite volume effects are neglected already in defining Z(8, V, 1), then g = 0.
In that case IT = 1/(§ — &) has a simple pole at & which cancels out in &(8, £, 1)
and the second term of Eq.(24.13) is absent. Furthermore, both &(8,&,4) and
q(B, &, 1) are trivial analytic functions of &, namely, constants in the whole £ plane.
This particularly simple case is a good illustration of what happens. While (E) and
(V) both have a pole at & and become negative at § < &, the energy density does
not care: the pole cancels and with it the whole ¢ dependence. The & calculated
from Eq. (24.13) is just the usual one obtained from —d[In Z/V]/dB.

In the more general case where finite volume effects are not neglected, i.e.,
g(B,V, 1) # Q, the correction term in Eq. (24.13) is present for & > &. It vanishes,
however, identically for £ < &, due to our assumption that limy_, o, dg/df = O [see
Eq. (24.6)]. The simple proof is by de I'Hopital’s rule. Thus, if finite volume effects
are included in the definition of Z(8,V, 1), we recover the usual thermodynamic
limit results for &(B, &, 1) for all £ < & [there &(B,&, 1) becomes independent
of £], while for § > &, finite volume corrections appear explicitly. All this is
physically obvious: for § < &, large volumes have an exponentially increasing
weight in the integration, whence the main contributions come from ‘infinite’
volumes where finite volume effects are absent by definition. Once this happens,
it does not matter how fast the exponential weight increases. Therefore, & (8, A)
is independent of & for & < &). Again, &(B,£,A) defined by Eq.(24.13) is a
meaningful physical quantity which may be evaluated at any &, while the individual
integrals in Eq. (24.13) go to infinity in the limit W — oco.

This introduction thus results in two useful conclusions:

e Whatever the singularity of I7(8, £, 1) at & may be, it has no significance for
quantities like &(B, &, 1) and ¢(B, &, 1). While (&(B,£&,1)) and (V(B, &, 1)) do
have a singularity at & and may become meaningless for £ < &, the singularity
(pole, branch point, cut) cancels in calculating the above densities, which may be
evaluated at any £.

* If one wishes to obtain explicit finite volume corrections, one must evaluate
densities at £ > &. If, on the other hand, one evaluates at § < &, it is irrelevant
whether or not finite volume terms, or more precisely, surface terms, have been
included in the definition of Z(8, V, 1): they are suppressed by the exponentially
increasing weight of large volumes.

The real power of the pressure partition function formalism is this: it may happen
that IT(B, &, A) can be calculated explicitly as an analytic function of &, while the
direct analytic calculation of Z(B, V, A) is impossible. In that case, we can obtain
exact results from I7(8, &, 1) which we could not obtain from Z(8, V, A). This is
precisely what happens in our problem of the van der Waals statistical bootstrap
model.
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In applying the technique introduced here to our explicit problem, the situation
will be slightly different from the above, already fairly general case. However,
our main conclusion that &(8,&, 1) and ¢(B,£&,A) can be continued beyond the
singularity & remains valid. As this will be seen explicitly, we kept this additional
complication out of our discussion above.

How Shall We Use I1(B,&,1)?

Having decided that the usual thermodynamic limit—which requires, at least in
a gedanken experiment, the existence of rigid boxes with a fixed volume—does
not correspond to the situation where hadron matter goes over to quark matter, we
shall not evaluate IT(B,&, 1) at £ (B, A), but rather consider £ as an independent
thermodynamic variable on the same footing as f and A.

As the only relevant quantities to be calculated are densities which, as we
have seen, ignore the existence of the singularity at &, we adopt the following
philosophy. If we can obtain an analytic expression for I7(8, &, 1), then we proceed
to calculate from it expressions for the interesting densities which then are also
analytic functions (not containing the singularity at &y). We consider these functions
as analytic continuations of the functions defined via the integral representation of
Eq. (24.2) beyond the region of convergence of the latter. We then evaluate these
functions at a & value appropriate to the physical situation.

Before we turn to the application to our specific problem, we have to generalize
Eq. (24.2) relativistically, since it will be used with a relativistic formulation of
Z(B,V, ). In this formulation, V is a timelike four-vector, so & must also be written
as a timelike four-vector. Hence the generalization of Eq. (24.2) is

dv, &

VEuEH

where Z(B, V, A) is already a Lorentz invariant. The integration in Eq. (24.14) goes
over the forward cone V° > 0. Going to the rest frame of £ leads back to Eq. (24.2).

I(B.& 1) = e V" Z(B, V. 1), (24.14)

24.3 The Hadron Gas

Introduction

The grand canonical partition function of the strongly interacting hadron gas
described by statistical bootstrap is written [4]

e’} N

1 2(V —dp)upt _

ZB. V.= IW/H[(Q%L_T 2 Ne Pl dtp . (24.15)
N=0 i=1



24 On a Possible Phase Transition: Hadron Matter and Quark-Gluon Matter: 1981 279

Here V* is the external volume (to be integrated away), &7pt is &/ = 1/4% times
the sum of all four-momenta Y p!’, with 42 being the bag energy density [9],
7(p?, A) is the hadron cluster mass spectrum with baryon number conservation as
follows from the bootstrap equation, and B* is the inverse temperature four-vector.
The whole expression is written as a Lorentz invariant, following Touschek [10].

Attractive forces are represented by the mass spectrum, repulsive forces by the
van der Waals type correction to the volume: from the total volume, the proper
volumes of all particles are subtracted':

N N
VE—dpht =V — Y Pl ==V (24.16)

i=1 i=1

which is the covariant generalization of what would be V — & ) m; in a non-
relativistic formulation. That /p!" is the proper four-volume of the ith particle is
a byproduct obtained in formulating the bootstrap equation [11]. It agrees (in the
particle’s rest frame) with the nuclear physics, where the volume is proportional to
the mass, and with the bag model [9]. For further information, see [4] and references
therein.

The subscript 4 on the square bracket in Eq. (24.15) indicates that each single
bracket is to be > 0. This is guaranteed if

P >0, (V—a/p)=0, 24.17)
p>0,(V—ap)P=>0.

The first two are trivial requirements since we are dealing with physical particles.
The last two ensure positivity. Implicitly, they define the limits of the sum over N
and of the integrations over p;.

It is this van der Waals correction in Eq. (24.16) which prevents the integrations
in Eq. (24.15) from factorizing into N independent integrals and which, moreover,
makes the boundary of the sum and the integrals so complicated that it seems
hopeless to calculate Z(B, V, A) without using drastic approximations. Introducing
the pressure partition function I7(B, &, 1) is not only suggested by the physical
situation (no boxes), but it also solves the technical problem just mentioned.

Digression: The Pointlike Hadron Gas

For later use, we need to consider the pointlike case. If no volume correction is
applied in Eq. (24.15), the integrations factorize. Moreover the sum and integrals

IThe factor of 4 multiplying the proper volumes of the constituents in the usual van der Waals
correction is omitted, since it is specific to a gas of identical hard spheres, while here the clusters
are deformable and of different sizes.
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are unrestricted. We introduce under the integrals the identity

t(p? M) = / So(p? — mP)t(m?, X)dm? . (24.18)

The N identical integrals, evaluated in the common rest frame of the volume [V# =
(V,0,0,0)] and of the thermometer [8* = (1/T,0,0,0)], can then be summed up
over N and yield an exponential function, so that

1 o0 2
S InZu(B.V. ) = / r(mz,k)e_ﬁvpz+mzdmzl;—7£ , (24.19)
0

where Z; is the ‘point particle partition function’. Note that the expression in
Eq.(24.19) is independent of the volume V. The remaining integral is, in the
Statistical Bootstrap Model, simply related to the ‘bootstrap function’ ¢ (8, 1)
[4,11]:

2 9B A)
HQm)? 98

1
T InZu(B.V.2) = = f(B. 1), (24.20)

where f(B,A) is a shorthand notation for later use. The function ¢(B, 1) is
analytically and numerically well known [12] and easy to compute. Thus f(8, 1)
may be considered as a known function.

The function ¢ (8, A) has, for given A, a square root singularity at some 8*(1),
namely [4, 12]

(B2 — In2- h)VB —B*(X) . (24.21)

The curve 8* (1) would thus be a singular curve of the point particle model. We shall
see that it will also be a singular curve of the model with nonzero particle volumes.
From Egs. (24.20) and (24.21), we infer

1
InZy(B,A) — ~—F—x= —> 0. (24.22)

=5 B P
Consequently, we obtain for the energy density

InZ
1omzy 1 (24.23)

gpt(ﬂ7k) = _V aﬂ B—p* ﬁ — ﬁ*3

for the baryon number density

1. 0InZ 1
R e ek @120
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and for the pressure

1 1
—InZy —> ~———— . (24.25)

PR(B.A) = gy Iz o~ e

The Real Hadron Gas

The pressure partition function of the real hadron gas is given by the defini-
tion (24.14) with Z(B, V, 1) taken from Eq. (24.15):

dv,§t ¢ yu 2(V — op)up! o
.52 =/\/EZW o ZN!/H[ (271)12 = ] t(p}. Ve i dtp;

(24.26)
We make the change of variables
(V—ap)t = x". (24.27)
Positivity then requires [see Eq. (24.17)]
XX >0, PL>0. (24.28)

With this substitution and with the identity in Eq. (24.18), we obtain

.51 = e Z / H R
v \/s su NUJ L @n)? 0 py
(24.29)
where pt = 3" pﬁ‘ has been used. Now the positivity condition is automatically

satisfied by integrating over the forward light cone of x. The explicit p dependence
due to the volume correction in Eq. (24.15) has disappeared from the volume factors
xupﬁ‘ and is shifted as Eﬂpﬁ‘ to the exponent where it factorizes. Thus the integrals
over the p; are again all identical and unrestricted, as if we had a pointlike gas.

We assume the temperature to be measured in the rest frame of the expectation
value of the volume (V*), whence 8 | &. As I1(B,&, 1) is a Lorentz scalar, we
evaluate in the common rest frame of § and §.

One of the N identical integrals in Eq. (24.29) is then®

3
/ 2000° —XP) prertyy P i AP (24.30)
(2m)3 24/p* + m?

2From now on, we write f := /B, f" and & := /€ M.
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where x - p vanishes upon angular integration, so that, with x := x°, the integral
reduces to [see Eqs. (24.19) and (24.20)]

2
d
x / t(m?, A)e—wwpr“mzdmz% = xf(B+E,N). (24.31)

Thus Eq. (24.29) becomes
o0 1 o0
e.er)=>y N /0 e SN ax[f(B + £, M)]" . (24.32)
N=0"""

The x integration yields N!/£¥ !, so that finally,

1
[E—Ff(B+E. )]

where (8 + £47, 1) is the point particle expression of Eq. (24.19) taken at f + §.<7.
As mentioned earlier, f(x,y) is a perfectly known function, both numerically and
analytically. Thus, within the framework of the Statistical Bootstrap Model with
extended particles, we have obtained a simple analytical expression for I7(8, &, 1)
defined in the whole £ plane [the difference from the case discussed in Sect. 24.2 is
that £ appears in f(8 + £47, A)].

I(B,§, 1) = (24.33)

Interpretation
The Usual Thermodynamic Limit with Fixed V — oo

From Eq. (24.4), we know that the singular point & (8, A) of I1(8, &, 1) is equal to
BP(B, A) with the usual thermodynamic limit prescription

1
,BP(V) = go = lim ‘—/ an(,Ba Va A') ’
V=00 (24.34)

£(B, L) = root of equation & = f(B + &, A) .

Finding this root is a simple numerical exercise, which we shall not execute here
since we are not interested in this pressure, which is irrelevant for our physical
problem.

We can now give a simple proof (without using any approximations) of the state-
ment [7] that, in the usual thermodynamic limit procedure, the singularity at f*(1)
cannot be reached by any B > 0, or in other words, that limy_, o InZ(8, V, 1)/V has
no singularity on the real T axis. We must show only that (8, A) has no singularity.
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Equation (24.34) states that
£, 1) =f(B+ FE(B. 1), 1) . (24.35)

The singularity f(x,A) ~ [x — ,3*(/\)]_1/ ? [see Eq.(24.22)] cannot be reached.
Assume that indeed x = 8 + «7&(B,A) — B*(A). Then by Eq. (24.35), & — oo
and B + /& — oo, contradicting the assumption. This holds for all 8 > 0. Hence
limy_oo InZ(B,V,A)/V is analytic along the whole T axis, together with all its
derivatives.

Having already decided that in our problem the usual thermodynamic limit does
not correspond to reality, we do not pursue this line further.

Hot Hadron Matter: No Fixed Volume

According to our philosophy stated in Sect.24.2, we now evaluate I1(8, &, 1) and
its derivatives at fixed 8, £, A. Applying the definitions of Sect.24.2 to Eq. (24.33),
we immediately find

_(E) B+ HEN
EB.EA) = V) " TF S B AER) (24.36)
_ ) B+ FE D)
VSN = S Tr g B e (24.37)
where, bearing in mind Eq. (24.20),
0 . o
Ep(B + FE 1) = —Wf(ﬂ Ao e (24.38)
9
v+ AE L) = Aﬁf(ﬁ + AE D). (24.39)

The energy density and baryon number density no longer contain the pole at &.
They are analytic functions of 8, £, A for all real values

1<A<oo, B+&d>p*0). (24.40)

As £ is now an independent variable [and no longer related to 8 and A by an equation
like (24.35)], the singularity B + £/ = B*(A) can be reached. There &} and vy
go to infinity [see Eqgs. (24.23) and (24.24)] and thus & (8, &, A)cic = 1/.97, while
V(B & Merit # 0, 00.

As any £ > 0 corresponds to an external force trying to compress the system
[see Eq.(24.2)], we consider £ = 0 to be the appropriate value for a system which
determines its own volume dynamically. Thus for the hadron gas without external
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forces
o Eu(BA)
EB,A) = TF ) (24.41)
v(B.A) = (. 2) (24.42)

1+ AE(B.A) ]

which are the results already derived in [4] with the ‘available volume’ technique.

In astrophysical applications, £ can be used to take gravitational pressure into
account. This has the effect of replacing the singular curve $*(A) by a singular
surface B*(A, £). The limiting values of & and v on this critical surface can then be
calculated. For &, it is again 1/.2/ = const., as seen from Eq. (24.36).

A small conceptual problem arises with the pressure. We have stated often
enough that the usual definition (24.34) is useless here. We must therefore define
the pressure as in kinetic gas theory: there it is the result of the stochastic cannonade
of the wall of the vessel by the gas particles. The pressure is found to be proportional
to the average normal component of the momenta of the particles hitting the wall.
Here, where we do not have material walls, we may define the pressure as being
proportional to the average normal momentum component of particles passing
through an imaginary surface from left to right. Then, going through the usual
textbook derivation, we find that

BP = % . (24.43)

where all the dynamics is hidden in (N), the average number of clusters, and (V),
the volume chosen by the system. One should not expect here a van der Waals type
of equation, because there N and V are fixed external parameters, so that the ideal
gas equation has to be corrected. Here this is not necessary. In the second paper of
[4], Eq. (24.43) was indeed derived in the ‘available volume’ formalism. Here we
take it as the definition of the pressure.

It remains to calculate (N(B, &, 1)). In Eq. (24.32), we multiply f by a fugacity n
and obtain, instead of Eq. (24.33),

1
(B.& A.n) = P (24.44)
Obviously,
an ’ 717
(N(ﬂ,é,k))z%w 1 (24.45)
.
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Thus, with Eq. (24.20),

W) _ B+ FEN) __BPu(BA) (24.46)
(V) 1+ nA6u(B+ FEN) |emgmr L+ A E(BA) '

Hence, with Eq. (24.43),

Pp(B. 1)

PBA) =17 AE(BA)

(24.47)

which is the same as in [4].

From Eqs. (24.23) and (24.25), we see that &} diverges more strongly than P on
the critical curve. Thus P(8, A)cic = 0. This is not surprising, since on the critical
curve our ‘gas’ has coalesced into one single ‘particle’ of infinite volume which
does not move. In a complete model unifying the hadron side and the quark side,
the pressure should not go to zero. In our case, where two different models have to be
fitted together at the singularity, the pressure on the quark-gluon side rises steeply.
The usual Maxwell construction then gives a region of constant vapour pressure
along an isotherm [6, item (d)].

24.4 Conclusions

It has been shown how the thermodynamic limit procedure must be adapted to the
real physical situation. Different procedures may give different results: one may
exhibit a singularity while the other does not, and yet both are correct—they simply
apply to different physical boundary conditions. In the particular problem of the
transition from hadron to quark-gluon matter, the usual grand canonical partition
function does not lead to a singularity. We consider it (in the context of extended
particles and a van der Waals type volume correction) as badly suited to describe our
problem, because it assumes that a rigid volume containing the system can exist. At
the transition from hadron matter to quark matter, this assumption is principally
wrong. In an earlier attempt to do better [4], we introduced the ‘available volume’
as a new, independent variable in place of the volume. The result was that the thus
modified grand canonical partition function had a singularity indicating a phase
transition. In the present paper, we have confirmed the results of [4] using the grand
canonical pressure partition function, which seems to be tailored to our specific
problem. It can be stated that, in the Statistical Bootstrap Model with extended
hadrons (volume proportional to mass), a phase transition does occur as claimed
earlier [4] and that the objections raised in [7], though correct in themselves, do not
apply to physical reality in the temperature and density regime considered here.
Furthermore, we do not accept the conclusions of a recent paper [13], namely
that it is important which singularity of IT(8, &, 1) is reached first, the (trivial) one
at £&y(B, A) or some other at f*(A) originating from Z(f, V, A). These conclusions



286 R. Hagedorn

disregard the disappearance of the singularity at & from densities. (We do not claim,
however, that there might not be cases to which the analysis presented in [13] is
relevant.)
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