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ABSTRAGCT

We employ the technique of the analytically
continued grand canonical pressure partition
function to show that under physically mean—
ingful boundary conditions (non-existence of
external confining vessels, i.e., no fixed
volumes) the energy density and similar inten=
give quantities have, in a statistical boot~
strap model of extended hadrons (Van der Waals
type volume corrections), indeed the singula—
rity claimed in previous papers. Earlier
results obtained with an entirely different
technique (which had been criticized) are re-
covered and shown to be correct. The technique
used here 1is wuseful in all cases where the
volume is not imposed from the outside but
results from the internal dynamics of tThe
gsystem as 1is generally the case in high
energy physics and astrophysics.
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INTRODUCTION

Hadrons have finite sizes and consist internally of quarks, antiquarks
and glucns, though none of these constituents has ever been observed as a free

particle; they seem to be confined to the inside of hadrons.

Consider a hadron gas at temperature T. At low T it behaves moTe
or less as an ideal gas, if T increases to the order of g 100 MeV, pion
crestion sets in and if T is increased further, heavier rescnances and
baryon-antibaryon pairs are produced. When T becomes gufficiently large,
particle production becomes so strong that the energy-density of the Neagh
reaches the value of the internal energy density of its constituents; in
other words, the hadrons (having finite volume) begin to overlap and
finally might form one single hadron. At that stage we have nc¢ longer to
do with a hadron gas, but with an interacting quark—gluon gass; increasing
the temperature further would lead to a free guark-gluon gas confined to &
macroscopic "hadron” 1)

The questicn arises : 1ig this transition from = hadron gas to a quark-
gluon gas a smooth transiticn (like ionization) or a phase transition 7 There
are two approaches to this problem, experimental and theoretical. Experimen—
tal facts suggest & phase transition : mean transverse momenta of particles
produced in high energy hadron collisions may be interpreted in terms of a
temperature which, with increasing collision energy, xapidly reaches a limit
of the order of 160 MeV 2) (the exact value is difficult to determine because
many secondary effects arising from the space-time history of a collision
disturb the ideal picture of a phase transition at a certain critical tempe-

rature); limiting temperatures indicate phase transitions.

The theoretical approach is suffering from lack of a theory; we only
have models. There is a choice of models describving the hadron side and
another choice of models for the quark—gluon side, but no arnalytical model
which contains both 3). 4 single, closed and consistent analytical mcdel
unifying both aspects would be ideal., If we had one which would describe
nadron as well as quark-gluon systems, we could use it to find theoretical
support for either a phase transition or for a smooth transition. A phase
transition would be indicated by a singularity (pole, branch point) in the
grand canonical partition function at some real temperature, while a smooth

transition would reguire the absence of singularities on the real T axis.



-2~

In this situation the general habit is to take some hadron-gas (or
nuclear matter) model and some quark—-gluon model and try to fit them together.
This procedure leads then %o two different partition funections, one for low
T (hadron side) and one for high 7T (quarkugluon side). If the two pres—
sure curves thus obtained cross at some temperature, it is often c¢laimed that
thereby a phase iransition has been established and locsted. This is un-
Justified as one easily sees from a counter-example : a dilute hydrogen gas
nmight, according to this philosophy, be described at low T as an ideal gas
of N molecules H2 and at high ‘temperature as an ideal gas of 2N protons
plus 2N electrons. The pressure curves do cross — but we know that in
this system there is nc phase transition; instead a smooth shift of the

chemical equilibrium between molecules, atoms, ions znd electrons takes place
when the temperature changes.

Only the explicit exhibition of a singularity (in at least one of the
two models to be fitted together) proves that the model under consideration

has a phase transition (in the vicinity of the singularity).

The statistical bootstrap model of hadronic matter in its most recent
form has been claimed to have a singular curve in the u=T diagram, along
which the energy density is constant and equal tc the bag—energy density
(i.e., the energy density of the hadronic clusters constituing the gas)
while the pressure vanishes there 4). Taking this singularity as indicating
a phase transition t¢ a gquark-gluon phase 5 seems most natural; the more
50 as the descriﬁtion of the other side, in terms of a free quark—gluon gas

with perturbative corrections 6)

s leads tc vanishing pressure and to the usual
bag-energy density in the same p~T region where the hadron critical curve

lies.

- The singular curve of the
statigtical beotstrap mo-
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The model of Ref. 4) is a statistical bootstrap model with baryon number
censervation and proper volumes of the constituent hadrons and hadron clusterss;
these proper volumes grow proportional to the cluster mass. As the gstrong
interaction ig in this model represented by all possible particle reactions
(hadron chemistry) the number of particles is not conserved and, in calcula-
ting the partition function, summed over from € to ®. The mass spectrum
(listing all possible hadrons and clusters) turns out to be exponentially
increasing with the cluster mass; it is this exponential increase which

generates the singularity via an integration over masses up tc ®.

7)

bagis of the following argument : if particle volumes grow proportionally

In a recent paper, the results of Ref. 4} were criticized on the
with mass, the mass integration is necessarily cut off when the sum of all
particle volumes reaches the externally given volume V, Likewise the sum
over particle numbers is cut off. Thus, trivially, no singularity can occur.

What is not trivial is that, as the authors show, the thermodynamic limit

Yiwo Ll Z(p,V) ()

V— V

exists for all B3 hence even in this limit still no singularity exists in
spite of the expcnential spectrum and in spite of the fact that now integra-
tiong and sums do g0 %6 w . This procf does not, however, apply to the
situation under which the singularity was found. In Ref. 4) the limit was
not done in the usual way [Eq. (15]: first calculate fnZ for fixed V,

then let V-—w . Instead the Mavailable volume™ A=V-ZV., where v, s

the proper volume of the ith particle, was used as a volume parameter and
kept constant; thus V==A+EV1, 80 that, when sums over pariicle numbers

and integrals over masses were done, V was pushed to . Then expecta—
tion values (V(ﬁ,ﬂ,h)), (E(B,A,R)), etc., could be calculated and densities
be defined by <(E(B,8,1)2/{V(8,4,0)} etc., which indeed showed a singularity.
Since therefore the existence of a singularity depends on the limiting pro-

cedure, it seems important tc clear this up.

A simple example shows that there is nothing like a universal
Uoorrect limiting procedure™ but that different limiting procedures corres—
pond to different physical situations : imagine a high pressure container
of volume V filled completely with water at room temperature and atmos—
pheric pressure and then hermetically closed. One may heat it up to any tem-
perature and the water will not beil; putting o many such boxes together
and removing interior walls {(vo®) will change nothing. If, on the other

hand, one closes the vessel by a movable piston, one sees the water boll i1f
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bressure and temperature fall in a certain interval. In this last case
the water pushes the volume to ever larger values similarly to the & ‘uation

congidered in Ref. 4)o

We believe that at temperatures and densities where hadron matter
changes into quark-gluon matter, no fixed volumes should be used in theore~
tical considerations, since boxes do not exist at this regime. Forces keeping
a system together (the tendency to cluster is an internal such force, gravi-
tation might be considered as an external one) control pressure and densities

rather than the volume.

The method of the Mavailable volume A" wusged in Ref. 4) seems there-
fore to be adapted to reality. Nevertheless, one may argus that even such a
A cannot be controlled ang therefore should not be used as an external

variable.

In this paper the results of Ref. 4) will be rederived in a different
way which does not make use of a volume-like variable. The technical tool

is the grand canonical pressure partition function.

Our units are h=c=k=1, mass unit MeV; metric (1,~1,-1,—1).

Notatior as in Ref. 4),

2. THE GRAND CANONICAL PRESSURE PARTITION FUNCTION

2.1 Introduction

Given the grand canonical partition function Z(S,V,A), where f=1/7,
V a fixed external volume and l==exp(u/T) a fugacity ensuring the conserva—
tion of some charge—type quantum number Qj the grand canonical pressure

partition function 1N(B,E,n) is defined 8,

W(F)lif'?\): = TdVe-?lZ(E&,V,?s) (2)

where € 1is a new, intensive parameter related to the volume in a similar way
as B 1is related to the energy and u 4o some conserved quantity. The
larger §, +the stronger is the exponential volume suppression in the integral

(2). Thus £ is a measure for the pressure and hence the neame of this par-

tition function.

Rewriting Eq. (2) :
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we can read off for which values of & the integral converges, provided

(%)

that the thermodynamical limit lim %ZHZ(B,V,K) exists :

§7 5,60 = ‘!;/;“;*ﬂ [oﬂu Z((S,V,%)/V] = BP(pA) @

We define a function g(B,V;h) 28 the difference between fnZ%/V

and its 1imit :

4B, U ) = §, () - W Z(pVN)/V .

ad)

limit exists, this limit commutes with the differential operators b/bﬁ and

d/dh, We assume these conditions to be fulfilled, thus

Tt can be shown under very general conditions that if the thermodynamic

&O %(PIVI‘A)

w0
i 94 (BV)
fiw 2% (BV)

Vo0

0 {6)

{l

n(g,g,A) has a singularity at §_(8,A); its nature (pole, vranch-point)
depends on g(B,V,A)n In principle it is possible to continue the analytic
function n(a,g,x), definéd by the integral representation (2) for Reg >'§o’
into the whole complex plane beyond the convergence domain of the integral.
Therefore it might well be possible that quantities derived from H(B,g,h)
have a physical meaning for £ values where the integral representation of
n(B,£,x) does not exist.

That this is indeed the case and that the gingularity at go is
absent in meaningful physical quantities will now be shown. It implies that

the singulsrity at §O hag nothing to do with a phase transition [in contra—

distinction to singularities of Z(8,V,A}].
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It is convenient to define a new function whose limit ig H(E,E,A)

_ -tV
l,een) = fave™ z gy

W _valp,
gdvev(g ?o 3(5\47‘) ()
¢

&“;o Tl; (Pr%?‘) = —”—(P,f.,x)

We now calculate the energy density. Pirst we define the expectation

value of the total energy :

-§V
dve ° Z( m)(E( VA D
CEyBgN)Y: = 1,1”2? J i i (8)
_fv
Jdv 2. (Bv)

where (B(B,V,r\)) = -2 enZ(B,V,A)/DP was used. Similarly we define the

expectation value of the volume :

w ~€§V
ATy Ve VZ (B

vw(mmp: oL TN o (9)
Tl‘w’bg Swd\l e.gu,z ((5.":“

the energy density is then

o b SEWBEMS .
a(@,g,?\) =TT RV (10)

Similarly, if Q is the quantum number conserved by A, the quantum number

density a(8,E,\) is




LG (BEN >
= dun
%(ham)' Wﬁ¢><vw(P&’w)>

(11)
oL
(@ (BEMZ =~

In this formalism the usual thermodynamic limit is replaced by the limit

W—-w.

We now use the explicit form given by the last member of Eqg. (7) 4o

calculate e(B,8,\) :

: alw [,
E(@&:'f\):ﬁ‘i@ fa—(bw/fa_gw]

(12)

Since EO is independent QE_IV, we have
¥ _v(§-§)-Y 0
£,(60) 4 S dvgd av
E(P'%'l)q'—fa o! ’%)1’ ; ﬁg (13)

@(?) W2« Swe‘”@'io)"vg Vv 4V

)

We now recall Ba. (4), g, = BP. Hence, if the second texrm of (13)

were absent, we would recover the usual thermodynamic limit definition
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£=-0(pP)/OP = - P [@Q&Z(p,v, MV ]

Next we observe that for £ >—§0 the integrals in (13) converge in the limit
so that, unless g(B,V,k) = 0, the second term is a non-vanishing function
O(B,g,h). Indeed g > go implies exponential suppression of large volumes.
Therefore this function 0(5,§,1) represents the corrsctions to the energy

density coming from finite volume effects.

If finite volume effects are neglected already in defining Z(B,V,x),
then g=0. In that case [ =1/(§~§O) has & simple pole at £, which
cancels out in G(B,g,A) and the second term of Eq. (13) is absent. PFurther—
morey both e(B,g,A) and q(B,E,x) are trivial analytic funetions of E 3
namely constants in the whole £ plane. This rarticularly simple case is a
good illustration of what happens. While (B} and (V> both have a pole
at §O and become negative at £ < §O, the energy density does not care :
the pole cancels and with i+t the whole € cependence; the € calculated
from {13) is just the usual one obtained from —b/bﬁ[}nZ/@ﬂ.

In the more general case where finite volume effects are not neglected
[é(B,V,A);é@], the correction term in Eq. (13) is present for £ >‘§0. It
vanishes, however, identically for £ < go due tc our assumption %g%)bg/bﬁ =
= 0 [Eq. (GEJ. The simple proof is by de 1*Hopital's rule. Thus, if in
the definition of Z(B,V,A} finite volume effects are included, we recover
the usual thermodynamic limit resulis for e(B,g,A) for all § < §O [}here
e(B,g,l) becomes independent of é], while for € > §O finite volume
corrections appear explicitly. All this is physically obvious : for E <« go
large volumes have an exponentially increasing weight in the integration;
hence the main contributions come from "infinite™ volumes where finite volume
effects are absent by definition. Ornece this happens, it does not matter how
fast the exponential welght incresases; therefore e(B,A) is independent of
E for E < £, Again, e(B,E,0) defined by Eq. (13) is a meaningful
physical quantity which may be evaluated at any €, while the individual

integrals in Bg. (13) go t0 @ in the limit Wo .
This introduction results +hen in two useful conclusions :

—= whatever the singularity of H(B,g,k) at §O may be, it has no
significance for quantities like e(B,E,A) and q(B,E,\). While
(E{B,E,A)> and (V(B,E,A)) do have a singularity at £ and may
become meaningless for § < §O, the singularity (pole, branch point,
cut) cancels in calculating the above densities, which may be

evaluated at any £;
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-~ if one wishes to obtain explicit finite volume corrections, one
must evaluate densities at E = go. If, on the other hand, one
gvaluates at § < go, it ig irrelevant whether or not finite
volume terms - more precisely, surface terms — have been in-
cluded in the definition of Z(B,V,A) : they are suppressed by

the exponentially increasing weight of large volumes.

The real power of the pressure partition function formalism is tﬁis :

it may happen that H(B,g,R) can be calculated explicitly as an énalytic
function of &, while the direct analytic calculation of Z(B,V,x) is
impossible. In that case we can obtain exact results from H(ﬁ,g,l) which
we could not obtain from Z(E,V,A). This is precisely what happens in our

problem of the Van der Waals statistical bootstrap medel.

In applying the technique introduced here to our explicit problem,
the situation will be slightly different from the above, already fairly
general case. However, our main conclusion that e(8,E,1) and q(B,g,A)
can be continued beyond the singularity go remains valid. As this will
be seen explicitly, we kept this additicnal complication out of our above

digcussion.

2,2 How shall we use H(B.E.k)

Having decided that the usual thermodynamic limit, which requires —
at least in a gedanken-experiment — the existence of rigid boxes with a
fixed volume, does not correspond to the situation where hadron matter goes
over to quark matter, we shall not evaluate H(Bygyl) at Eo(ﬁ,l) but
rather consider £ as an independent thermodynamic variable on the same

focoting as B and Ao

As the only relevant quantities to be calculated are densities which,
as we have seen, ignore the existence of the singularity at EO, we adopt

the following philoscophy :

if we can obtain an analytic expression for H(B,g,h), then we
proceed %o calculate from it expressions for the interesting
densities which then also are analytic functions (not containing
the singularity at go). We consider these functions as analytic
continuations of the functions defined via the integral repre-
gentation (2) beyond the region of convergence of the latter.

We then evaluate these functions at a § value appropriate to

the physical situation.
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Before we turn to the application to our specific problem, we have to gen—~
eralize Eq. (2)-relativistically, since it will be used with g relativistie
formulation of Z(B,V,A). In this formulation V ig =& timelike foi. vector
and hence £ must be written alsc as & timelike four vector. Hence the

generaligation of Eq. (2) is

a
'IT(F,&,?\) = M Q- §I‘V 7 ((S,V:?\) (12)

Ve g

where Z(ﬁ,V,l) is already a Lorentz invariant. The integration (14) goes

over the forward cone V° = 0. Going to the rest frame of E leads back to
Be. (2).

THE HADRON GAS

3.1 Introduction

The grand canonical partition function of the stron ly interacting

hadron gas described by statistical bootstrap is written 4

Z(P,Vﬂ‘) =;§;’oﬁ".gi‘ { &Wf}‘kf([’:,m) e F’f" Pl: d*ﬁ)c | (15)

Here V* is the external volume (%o be integrated away), Apt is A=1/(4B)
times the sum of all four momenta Epg with 4B being the bag energy
density 92 T(pz,l) is the hadron cluster mass spectrum with baryon number
conservation as following from the bootstrap equation and B“ is the inverse
temperature four vectdr; the whole is written as a Lorentz invariant follow-—
ing Touschek 10).

Attractive forces are represented by the mass spectrum, repulsive
forces by the Van der Waals type correction to the volume : from the total

*
volume the proper volumes of all particles are subtracted :

*) The factor 4 multiplying the proper volumes of the constituents
in the usual Van der Waals correction is omitted, since it is spe-~
cific to a gas of identical hard spheres, while here the clusters
are deformable and of different sizes.

PRAMEE LI P IR NN PO A PRI N B fane WA R W e I e e
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SR
AP'“ V AZP ‘-'*“V"ZV; (16)

=} =

which is the covariant generalization of what non-relativistically would be
V—AZmi. That Apg ig the proper four=volume of the itk 1$%rticle ig a
by=product obtained in formulating the bootstrap equation 5 1t agrees
(in the particle's rest frame) with nuclear physics where the volume is
proportional te the mass and with the bag model 9). For further information

see Ref., 4) and references given there.

The subscript + on the curly bracket in Eq. (15) indicates that each

single bracket is to be > 0., This is guaranteed if
2 2
b.=0 (v-4p)
0 (/]
pe >0 (v-Ap) 2

The first itwo are trivial requirements since we deal with physical particless

(17)

the lasgt two ensure positivity. Implieitly they define the limits of the sum

over N and of the integrations over Py

It is this Van der Waals correction (16) which prevents the integra-
tions in BEq. (15) from factorizing into ¥§ independent integrals and which,
moreover, makes the boundary of the sum and the integrals so complicated that
it seems hopeless to calculate Z(B,V,K) without using drastic approximations.
Introducing the pressure partition function H(B,g,x) is not only suggested
by the physical situation (ho boxes) but it also solves the technical problems

Jjust mentioned.

.2 Digresgion : the pointlike hadron gasg

For later use we need consider the pointlike case. If, in Eg. (15),
no velume correction is applied, the integrations facterize; moreover, sum

and integrals are unrestricted. We introduce under the integrals the identity

T(Pf,’?\) = JJD (P‘z,urf)—g(m’fl')\) Mf' ‘ (18)
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The N identical integrals, evaluated in the common rest frame of the
= 1
volume Ef”‘:(V,0,0,0ﬂ and of the thermcmeier L§u=(T,O,O,Oﬂ, can then

be summed up over N and yield an exponential function so that

Vo
542, () - [re) CP il

where Zpt ig the "point particle partition function™. Note that the
expression (19) is independent of the volume V. The remaining integral is,

in the statisiical bootstrap model, simply related to the "vootstrap function™

e,y 4511

2 Q@AY
7l 2 (BYN) = - ey %@iu =HEA) e

where f(B,k) is a shorthand notation for later use. The function ¢(B,A}
is analytically and numerically well known 12 and easy to compute. Thus

f(E,A) may be considered as a known function.

The funection ¢(B,A) has, for given 1\, a square root singularity at

4),12)

some B*(A) [éee Fig. on poéJ, namely

$(p) =P 2 - jv(%)l/p—p*m (21)

The cuzrve B*(A) would thus be a singular curve of the point particle model.
We shall see that it will also be a singular curve of the model with particle

volumes # O, From (20) and {21) we infer :

M
A

EP‘(P'”“'\%@@E @_’@, ”/1/(3 (5 | (25)

(b&‘z o/ 1 - *3 24

Ve (pA) = § A T T P (V6 (24)

and for the pressure

B L L T e E R T R T R R T B R L T B B O S O S P PP
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- b2, —s 1 X
B4 = gy bZp =, Ve

° The real hadron gas

The pressure partition function of the real hadron gas is given by

the definition (14) with 2(8,V,A) taken from Eg. (15) :

p ,
TEan- Sp e

e A
Sia (F {2040 <iny o TE g

E.’ (&5)3

N=0

-

s = |

We change variables :
(V—AP)}“=: X/‘
pogitivity then reguires [éee (TTE
M LN
)%X 20 ;, X 20

With this substitution and with the identity (18) we obtain

7{-((5,'%,7‘) = g—éﬁ“—é— e— gﬂ X

(25)

(26)

(27)

(28)

(29)
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where puzsfmg has been used. Now the positivity condition is automatically
satisfied by integrating over the forward light cone of x. The explicit P
dependence due %o the volume correctiocn in Eq. (15) has disappeared from the
volume factors x pg and is shifted as gupg to the exponent where it
factorizes. Thus the integrals over the p; are agaln all identical an@

unrestricted as if we had a pointlike £3S.

We assume the temperature to be neasured in the rest Fframe of the
expectation value of the volume (Vp>, hence B|]§. Ag H(B,%,A) is a

Lorentz scalar, we evaluate in the common rest frame of B and £,

*)

One of the N identical integrals in Eg. (29) is then

K(K,P XP) ((3+A?)W 2 4° 30
U.rr)3 Tt ) thu R_E__W (50)

where XIJ vanlshes upon angular integration, go that the integral reduces

to (with x:=x°)

x.gr(mi‘,)) c (F+A§)WMZ Pp

1&u 2

= x- LBtA, ) 5 [ (9,120)]

(31)

Thus Eq. (29) becomes

Tis) - 2’1 ! Tet [peeea ] oo

N .
The x integration yields NI/E'' so that finally

(BEN) = 1/ [&- tlptf, )] (59

where f(E+§A,A) is the point particle expression (19) taken at B+EA. As
menticned earlier, f(x,y) is a perfectly known function, numerically and
analytically. Thus we have - within the statistical bootstrap model with
extended particles — obtained a simple analytical expression for n(s,g,x)
defined in the whole £ plane [%he difference from the case discussed in
Section 2.1 is that § appears in f(B+§A,AI].

*) We write from now on B: =VBME“ and §: =V§u§“.

Ly LU

L L LTl R g T R I T e R T T R T —
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3.4 Interpretation

Zehol The usual thermodvnamlc limit with fixed V—*m

From Eq. {4) we know that the singular point gO(B,A) of T(B,5,1)

ig equal to ﬁP(ﬁ,A) with the usual thermodynamic limit prescription
w1 7
(5'Pm o = Vot V BV

(34)

£L(a0) = o it £= EAED)

¥inding this root is a simple numerical exercise, which we shall not execute

here since we are not interested inm this — for our physical problem - irre—

levant pressure.

We can now give a simple proof (without using any approximations) of

the statement 7) that in the uguzl thermodynamic limit procedure the singula-—

rity at B*(A) cannot be reached by any B > 03 1in other words, that
%3%>LnZ(B,V,A)/V has no singularity on the real T axis. We must show only
that go(s,x) has no singularity. Bquation (34) states

§o (F,?\) = F((S+ go(qu)'A)?\ ) (35)

1
The singularity f(x,k) ~ CX—B*(A)) 2 [;ee Eg. (22i] cannot te reached.
Assume that indeed x::E+A§O(ﬁ,1) - B*(x), then by (35) go~»m and
5+A§0—*a) against the assumption. This holds for all B > C. Hence
%3%)EnZ(B,V,A)/V is analytic along the whole T axis, together with all

its derivatives.

Having already decided that in our problem the usual thermodynamic

1imit dces not correspond to reality, we do not pursue this line further.

Afccording %o cur philosophy stated in Section 2.2, we now evaluate
n(8,e,x) and its derivatives at fixed B,E,r. Applying the definitions of
Section 2.7 t0 BEq. (33) we immediately find

Ept (BrAE D) )
a(@ ?'m) <V7 [+ AE#((&A&R) 7
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4> v (BrAg )
\J((Sf?;()) {v> [+ Aﬁré(,(a‘m‘g:m)

(37)

where Eremember (20)]
epe (B4 ) = ~ap LB | 4 2
ot F’ / ’D@ ! (3 =(3+AF

\?P& ((MAF,'))-: ')\%\ ﬂ(@*“f;q) (39)

The energy density and baryon number density no longer contain the pole

at go'

1£& N <=2

(5+£A > (3*(?\)

As & 1s now an independent variable [and ne longer related to B and 2

They are analytic functions of B,E,A for zll real values

(40)

by an equaticn like (BSD the singularity ﬁ+§A=B*(U can be reached.
There ept and \)p‘t goe to [__.;,;ee Bas. (23) and (24)] and thus s(E,é,l\)

= 1/A while V(B,g,x)crit;éO,CD-

Ag any £ > 0 corresponds to an external force trying to compress the
system [see Eq. (2)], we consider E=0 +to be the appropriate value for a
system which determines its own volume @ynamically. Thus for the hadron gas

without external forces

cet (6
= (471)
ten) 1+ Aty () 4

VPI, ((51')‘)
1+ Aipe (fn?\) (42)

L}

V(g™ )

which are the results already derived in Ref. 4) with the Mavailable volume"

technique.

b (LR R LR RTTEEE L LI LR A L VT TG R L T U R TR T AT Tt R TR PR IL R L ]

erit
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In astrophysical applications § c¢an be used to take gravitational
pressure into account., This has the effect of replacing the singular curve
B*(A) by a singular surface B*(k,g). The limiting values of € and v
on this eritical surface can then be calculated; for ¢ 1t is again 1/A =

= const as seen from Eq. (36)o

A small conceptual problem arises with the pressure. We have stated
often encugh that the usual definition (34) is useless here. We therefore
must define the pressure as in kinetic gas theory : there it is the result
of the stochastic cannonade of the wall of the vessel by the gase particles.
The pressure is found to be proporiional to the average normal component of
the momenta of the particles hitting the wall. Here, where we do not have
material walls, we may define the pressure as being proportional to the ave-
rage normal momentum component of particles passing through an imaginary
surface from left to right. Then, going through the usual text-book deriva-

tion, we find that

@P -:-(N 7/<V > (43)

where all %he dynamics is hidden in (N), +the average number of clusters and

{V), the volume chosen by the system. One should not expect here a Van der
Waals type of equaticn, because there XN and V are fixed external parameters
so that the ideal gas equation has to be corrected; here this is not necessary.
In the seccnd paper of Ref. 4), Eq. (43) was indeed derived in the M"available

volume" formalism. Here we take it as the definition of the pressure.

Tt remains to calculate (N(B,E,\)?. We multiply, in Eq. (32), £ by
a fugacity m and obtain, instead of Eq. (33),

—’T(F*‘?r?\:m’): = 4/[%"‘“'_{;((5*'%1%)] (44)

4 BENY)
<N((§,"§I'ﬂ> = -“— (041 "= (45)

Thus, with ng)
Ny B8 ) _ BRe(pR)
> 4+rv]A£Pe(P+A§,?~) oo l+Agu (B2)

(46)
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Eence with (43)

P ()
It Aife, ((5,7\ )

(a7)

P(@>)=

which is the same as in Ref. 4).

From Rgs. {(23) and (25) we see that Gpt diverges more strongly than

Ppt on the critical curve. Thus P(B,k)crit==0. This is not surprising
since on the critical curve our "gas" has coalesced into one single M"particle"
of infinite volume, which does not move., 1In a complete model unifying the
hadron side and the quark side, the pressure should not g0 to zero. In our
case, where two different models have to be fitted together at the singular-
ity, the pressure on the quark-gluon side rises steeply; the usual Maxwell
construction gives then a region of constant vapour pregsure along an iso-

therm 6d).

4., CONCLUSTIONS

It has been shown how the thermodynamic limit procedure must be adapted
to the real physical situation. Different procedures may give different
results : the one may exhibit a singularity while the other doeg not; yet
both are correct - they simply apply to different Physical boundary condi-~
tions. In the particular problem of the transition from hadron to quark
gluon matter, the usual grand canoniecal partition function does not lead to
a singularity. We consider it (in the context of extended particles and a
Van der Waals type volume correction) as badly suited to describe our problem,
because it assumes that a rigid volume containing the system can exist; at
the transition from Hadron matter to quark matter this assumption is princi-
pally wrong. In an earlier attempt 4) to do better, we introduced the
"available volume™ as 3 new, independent variable in place of the volume.

The result was that the thus modified grand canonical partition function
had a singularity indicating a phase transition. In the present paper we
have confirmed the results of Refs. 4) using the grand canonical pressure
partition function which seems to be tailored to our specific problem. It
can be stated that in the statistical bootstrap model with extended hadrons
(volume proportional to mess) a phase transition does occur as claimed

4) and that the objectiocns raised in Re?. 7) - though correct in

earlier
themselves — do not apply to physical reality in the temperature and density

regime considered here.

DI DO L TRELT B L B L R T T L T T T R TR R L p e R R R Tt T AR R A LR R R RULEL LD T ST AT LR ST TR T T T PR T N TP R TI
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Furthermore, we do not accept the conclusions of a recent paper 13),
namely that it is important which singularity of n(s,g,x) is reached first,
the (trivial) one at §0(B,R) or some other one at B*(K) originating from
Z(B,V,A); these conclusions disregard the disappearance of the singularity
at go from densities. Eﬁe do not claim, however, that there might not be

cases to which the analysis presented in Ref. 13) is relevant;]
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