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Abstract
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Non-locality of string theory (i.e. the presence of a tower of massive states) implies

that the low-energy effective action for massless modes is an infinite power series of all

orders in α′ [1]. In particular, this applies to the tree-level Lagrangian Leff for the gauge

vectors in the open bosonic or type I string theory. In the case of an abelian Chan-Paton

gauge group all terms in the action which depend on the field strength Fmn but not on its

derivatives sum up into the Born-Infeld (BI) Lagrangian [2,3,4,5,6,7]

LBI = c0
√

det(δmn + T−1Fmn) , T−1 = 2πα′ . (1)

Derivative corrections to this action were discussed in [8,9,10].

In the non-abelian case, the tree-level (disc) effective Lagrangian in the open string

theory can be represented as an expansion in powers of the field strength and its covariant

derivatives,

Leff = Tr
(
a0F

2 + a1FD
2F + a2F

4 + a3F
2D2F + ...

)
= L(F ) +O(DF ) , (2)

where L(F ) is the part not containing covariant derivatives of Fmn = ∂mAn − ∂nAm −

i[Am, An] (F is assumed to be a hermitian matrix with indices in the fundamental rep-

resentation of the gauge algebra). Previously, only the terms up to order F 4 in (2) were

completely determined [3,11] (there was also a discussion of F 5 terms in [10]). The question

we shall address below is about the structure of L in (2), i.e. of a non-abelian analogue of

the BI action (NBI action for short).

In contrast to the abelian case where the separation between derivative-independent

and derivative-dependent terms in Leff (F, ∂F ) is completely unambiguous, this is not true

in the non-abelian case. Since [Dm, Dn]Fkl = [Fmn, Fkl] some of the derivative terms may

be traded for some of non-derivative ones, and vice versa. We shall resolve this ambiguity

by assuming that all [F, F ] (‘commutator’) terms should be treated as a part of the DF -

dependent terms in Leff and thus should not be included into L(F ) in (2). The effective

Lagrangian will then be dominated by L(F ) under the circumstances when the covariant

derivatives of F are much smaller than the powers F .

Adopting such a definition of L(F ) or NBI Lagrangian, we shall prove below that, both

in the bosonic and the superstring theory, it is given by the following natural generalisation

of the Born-Infeld action (1)

L(F ) = LNBI = c0STr
√

det(δmn + T−1Fmn) . (3)

Here δmn implicitly includes a factor of the unit matrix in internal space, the determinant

is computed with respect to the mn indices only, and STr is the symmetrised trace in

the fundamental representation, STr(A1...An) ≡ 1
n!Tr(A1...An + all permutations). This

Lagrangian is thus equal to the same sum of even powers of Fmn as appearing in the
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expansion of BI Lagrangian (1), with each factor of field strength being replaced by a

hermitian matrix F and all possible orderings of the matrices included with equal weight.

The same invariant was previously conjectured to be a part of a non-abelian generalisation

of BI Lagrangian in [12], where, however, an additional term with STr replaced by the

antisymmetrised trace was also suggested to be present.1 The latter is given by the sum

of traces of odd powers of F which always contain a factor of [F, F ] (as follows from

Fmn = −Fnm) and thus should not be included into NBI Lagrangian according to the

definition given above.

Let us first compare the α′-expansion of (3) (c1 = π2α′2c0)

L′NBI = c0STr[
√

det(δmn + T−1Fmn)− I]

= c1STr
[
F 2
mn −

1
2 (2πα′)2

(
F 4 − 1

4 (F 2)2
)

+O(α′3)
]

= c1Tr
[
F 2
mn −

1
3(2πα′)2

(
FmnFrnFmlFrl + 1

2FmnFrnFrlFml (4)

− 1
4FmnFmnFrlFrl −

1
8FmnFrlFmnFrl

)
+O(α′4)

]
,

with the known perturbative results. The two leading orders in α′ in (4) indeed give the

full form of the non-abelian open superstring effective action to order O(α′3) (all α′2-terms

with covariant derivatives have field redefinition dependent coefficients [3]). The F 4 terms

were originally found in the STr-form in [11] and in the equivalent Tr-form in [3].

As for the bosonic theory, there (4) does not represent the full effective Lagrangian to

α′3-order: the bosonic Leff contains α′F 3 term [1] and the coefficients of the F 4 invariants

are somewhat different from the ones in (4) [3]. However, it is easy to see that both F 3

and the excess of F 4 terms are the ‘commutator’ terms, i.e. they can be represented as

Tr( 4
3 iα
′Fmn[Fml, Fnl] + 2α′2Tr(FmnF rl[Fmn, Frl]) and thus, according to our definition,

belong to the covariant derivative part of Leff and not to the NBI part. Similar remark

applies to the F 5 terms [10]2 and, in general, to all terms of odd power in F .

Let us now give the general argument demonstrating that the covariant derivative

independent part of the open string effective action is indeed given by the NBI action (3).

The starting point is the expression for the generating functional for the vector amplitudes

on the disc. In the bosonic case [2,3]

Z(A) =< TrP exp[i

∫
dϕ ẋmAm(x)] > (5)

1 Some other ad hoc generalisations of BI action to non-abelian case where considered in [13]

but because of their different trace structure they cannot appear in the tree-level open string

effective action.
2 The F 5-terms have the coefficients proportional to ζ(3) [10] and should rather not appear in

any simple NBI action.
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=

∫
dDx0 < TrP exp[i

∫
dϕ ξ̇mAm(x0 + ξ)] > ,

where x = x0 +ξ(ϕ), 0 < ϕ ≤ 2π and the averaging is done with the free string propagator

restricted to the boundary of the disc (ε→ +0 is a world-sheet UV regularisation)

< ... >=

∫
[dξ] e−

1
2T
∫
ξG−1ξ

... , G(ϕ, ϕ′) =
1

π

∞∑
n=1

e−nε

n
cosn(ϕ− ϕ′) . (6)

As explained in [5,8], the low-energy effective action is given by the renormalised value of

(5), computed by expanding in powers of α′, Seff (A) = Z(A(ε), ε).3

Using the radial gauge ξmAm(x0 + ξ) = 0, Am(x0) = 0 (see, e.g., [15]) we get the

following expansion in terms of symmetrised products of covariant derivatives of F at x0,∫
dϕ ξ̇mAm(x0 + ξ) =

∫
dϕ ξ̇m

[
1
2ξ
nFnm + 1

3ξ
nξlDlFnm + 1

8ξ
nξlξsD(sDl)Fnm + ...

]
. (7)

Separating in this way the dependence of Z on covariant derivatives we get

Z(A) =

∫
dDx0

[
L(F ) +O(D(k...Dl)F )

]
, (8)

L(F ) =< TrP exp
[

1
2 iFnm

∫
dϕ ξ̇mξn

]
> . (9)

The path integral in (9) is effectively non-gaussian4 because of the normal ordering of the

Fnm(x0)(ξ̇mξn)(ϕ) factors which is non-trivial if the matrices Fmn do not commute. It

may still be possible to compute it explicitly. In the abelian case the path ordering is

trivial and one finds

L(F ) = c0
[
det(δmn + T−1Fmn)

]ν
, (10)

ν = −π

∫ 2π

0

Ġ2 = −
( ∞∑
n=1

e−2εn
)
ε→0

= − 1
2ε + 1

2 , (11)

3 The logarithmic renormalisation of the ‘coupling’ Am corresponds to a subtraction of the

massless poles in the amplitudes [14,3,5] (the field redefinition ambiguity in the effective action

corresponds to the renormalisation scheme ambiguity in this framework [3]). In addition, one is to

subtract (or absorb into the renormalisation of the tachyon coupling) the leading linear divergence.

This is equivalent to a subtraction of the SL(2,R) Möbius group volume factor. Power divergences

are absent in the superstring case where the super-Möbius volume is finite [8].
4 It may be re-written as a standard 1-dimensional path integral by introducing the auxiliary

fields to represent the path-ordered exponent as, e.g., in [16,8].
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so that ν = 1
2 after the subraction of the Möbius volume divergence [5] (which is done effec-

tively when using the ζ-function prescription [2]). As a result, one finds the BI expression

(1).

Since we defined the DF -independent part L(F ) of the effective Lagrangian as not

containing terms with commutators of F , to determine it we may treat the matrices Fmn in

(9) as commuting, or, equivalently, symmetrise over all of their orderings in each monomial

Fn. Then the path ordering becomes trivial just as in the case of the abelian gauge group,

so that instead of (8) we get

Z(A) =

∫
dDx0

[
L(F ) +O(Dk...DlF )

]
, (12)

and

L(F ) → L(F ) =< STrP exp[ 1
2 iFnm

∫
dϕ ξ̇mξn] > (13)

= STr < exp[ 1
2 iFnm

∫ 2π

0

dϕ ξ̇mξn] >= c0STr
[
det(δmn + T−1Fmn)

]ν
.

Since νren = 1
2 , we finish with the NBI Lagrangian (3).

This discussion is readily generalised to the superstring case, where the gauge-invariant

expression for the generating functional is given by the following manifestly 1-d supersym-

metric expression [8]

Z(A) =< TrP̂ exp[i

∫
dϕ̂ Dx̂mAm(x̂)] > . (14)

Here x̂m = xm(ϕ) + θψm(ϕ), dϕ̂ = dϕdθ, D = ∂
∂θ
− θ ∂

∂ϕ
and the supersymmetric path

ordering P̂ is defined by replacing the usual Θ-functions by the supersymmetric ones,

Θ̂(ϕ̂i, ϕ̂j) = Θ(ϕ̂ij) = Θ(ϕ̂i − ϕ̂j) + θiθjδ(ϕi − ϕj), ϕ̂ij ≡ ϕi − ϕj + θiθj , so that DΘ̂

is equal to the supersymmetric δ-function δ(ϕ̂ij) = (θj − θi)δ(ϕi − ϕj). The generating

functional (14) automatically includes the contact terms necessary [17] for maintaining

gauge invariance. Re-written in terms of the standard path ordering, it takes the form [8]

Z(A) =< TrP exp
(
i

∫
dϕ
[
ẋmAm(x)− 1

2ψ
mψnFmn(x)

])
> , (15)

with the [Am, An] term in Fmn appearing due to the presence of the contact θiθjδ(ϕi−ϕj)

terms in the supersymmetric theta-functions in (14). The definition of < ... > is analogous

to (6) with ξG−1ξ → ξG−1ξ+ψK−1ψ, where K is the restriction of the fermionic Green’s

function to the boundary of the disc,

K(ϕ, ϕ′) =
1

π

∞∑
r=

1
2

e−rε sin r(ϕ− ϕ′) .
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As a result, the superstring generalisation of (8),(9) has L(F ) given by

L(F ) =< TrP exp
[

1
2 iFnm

∫
dϕ (ξ̇mξn + ψmψn)

]
> . (16)

Dropping the ‘commutator’ terms to define L(F ), i.e. symmetrising the trace, we get, as

in (13),(10),

L(F ) → L(F ) = STr < exp
[

1
2 iFnm

∫ 2π

0

dϕ (ξ̇mξn + ψmψn)
]
> (17)

= c0STr
[
det(δmn + T−1Fmn)

]ν
,

where now

ν = −π

∫ 2π

0

(Ġ2 −K2) = (−
∞∑
n=1

e−2εn +
∞∑
r=

1
2

e−2εr)ε→0 = 1
2 . (18)

Thus we again obtain the NBI Lagrangian (3), here in completely unambiguous way as

the linear divergence in ν present in bosonic case cancels out [7] (which is a manifestation

of the finiteness of the volume of the super-Möbius group [8]).

To summarise, the NBI action (3) is thus a good approximation to the effective action

when all products of covariant derivatives of F are small. Since [D,D]F = [F, F ] that

also means that the ‘commutator’ terms are assumed to be small, i.e. the field strength

is approximately abelian.5 There may be physically interesting cases in which such an

approximation is a useful one.

There is a possible alternative expansion of Leff in which one assumes that all sym-

metrised covariant derivatives are small. This does not imply smallness of commutators of

F . In this case, as follows from the discussion above (see (8)), the effective Lagrangian is

approximated by L(F ) in (16) (for which, unfortunately, we do not know a closed expres-

sion).

It should be noted again that it is L(F ) = LNBI and not L(F ) that reproduces the full

expression for the superstring effective action at the order α′2 (4). This suggests that LNBI
is the relevant object to consider as a DF -independent part of Leff . Another indication

of this is provided by the existence of the D = 10 space-time supersymmetric extension

of the Lagrangian TrF 2 + cSTr[F 4 − 1
4(F 2)2] with the symmetrised trace [19]. It should

be possible to find a supersymmetric version of the full non-abelian Born-Infeld action (3)

5 There is also another choice for a translationally invariant non-abelian gauge field: Am =

const [18]. It would be interesting to compute the value of the effective action, i.e. the partition

function (14),(15) in this case.
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generalising the action found in the abelian case in [20]. One indirect approach could be to

repeat the above analysis using the light-cone Green-Schwarz formalism with the fermionic

partner of Am included in the world-sheet action (cf. [21,3,22]).

Let us now comment on a possible application of NBI action (3) to the description of

D-branes [23,24]. The form of (bosonic, parity-even, part of) the D-brane effective action

[25] is essentially determined (via T-duality) by the abelian D = 10 open superstring

effective action (see [26,27]). In the ‘small acceleration’ approximation it is thus given by

the BI action for the D = 10 vector potential Am = (As, Aa = TXa) reduced to p + 1

dimensions. In the static gauge on a flat background

Ip = Tp

∫
dp+1x

√
−det(ηmn + T−1Fmn) (19)

= Tp

∫
dp+1x

√
−det(ηrs + ∂rXa∂sXa + T−1Frs) .

In the ‘non-relativistic’ approximation, i.e. to the leading quadratic order, this action is

the same as the dimensional reduction of the D = 10 U(1) Maxwell action for Am [28].

As argued in [28], for a system of N parallel D-branes the fields (As, Xa) become U(N)

matrices and the Maxwell action is generalised to the D = 10 Yang-Mills action reduced

to p + 1 dimensions. This action should, in general, be corrected by higher-order terms

which, as in the abelian case, should be determined by the dimensional reduction of the

open string effective action.6 It is natural to expect that the most important part of these

corrections is represented by the NBI action (3), i.e. by the following generalisation of (19)

Ip = T ′p

∫
dp+1x STr

√
−det(ηmn + T−1Fmn) (20)

= T ′p

∫
dp+1x STr

[√
−det(ηrs +DrXa(δab + T [Xa, Xb])−1DsXb + T−1Frs)

×
√

det(δab + T [Xa, Xb])
]
.

Here STr applies to the products of components of the field strength Fmn, i.e. Fab =

T 2[Xa, Xb] , Fra = TDrXa = T (∂rXa − i[Ar, Xa]) and Frs(A). Expanding in powers of

[Xa, Xb] (e.g., assuming that the D-branes are not too close) we find (cf. [24])

Ip = T ′p

∫
dp+1x STr

[√
−det(ηrs +DrXaDsXa + T−1Frs) + 1

4T
2([Xa, Xb])

2 + ...
]
. (21)

6 For a discussion of D-brane equations in the non-abelian case (using the conformal invariance

approach as in [25]) see [29]. One may also generalise to the non-abelian case the equivalent but

more straightforward partition function approach of [27].
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Like the abelian BI action (19) with all higher-order Fn terms included which grasps some

important features of D-brane dynamics (e.g., a relation between the existence of limiting

velocity and maximal field strength [26]) the NBI action (20) may also find some useful

applications, provided one understands the regions of applicability of different expansions

used.
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