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Abstract

Photonic events with large missing energy have been observed with the OPAL detector at LEP using two

search topologies. The �rst topology looks for events with signi�cant missing energy and at least one photon

in j cos �j < 0:7 with large scaled energy, x
 > 0:2. The second topology looks for events with an acoplanar

photon pair where both photons are in j cos �j < 0:7 and have energy exceeding 1.75 GeV. In the data sample

corresponding to an integrated luminosity of 10.0 pb�1, 11 events are selected for the �rst topology and a

cross-section of 1.6 � 0.5 pb is measured within the kinematic acceptance, consistent with that expected for

the Standard Model process e+e� ! ��
(
). No events are selected for the second topology giving a 95% CL

cross-section upper limit of 0.41 pb within the kinematic acceptance. Upper limits on the cross-section times

branching ratio for new particle production are also derived.
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1 Introduction

In this paper we describe a search for photonic events with large missing energy in e+e� collisions atp
s = 161 GeV. This high centre-of-mass energy provides the opportunity to search for new phenomena

in e+e� collisions at LEP. The analysed data sample corresponds to an integrated luminosity of
10.0 pb�1. The event selections are essentially identical to those used for topologies A and B of the
OPAL measurement of photonic events with missing energy performed at

p
s = 130 � 140 GeV [1].

Those results were also used to search for excited neutrinos with photonic decays at
p
s = 130 �

140 GeV [2].

Two di�erent event topologies, A and B, are designed to select events with one or two photons and
signi�cant transverse momentum imbalance thus signalling the presence of at least one neutrino-like
invisible particle which interacts only weakly with matter. The acceptance of each topology is de�ned
in terms of the photon energy, E
, scaled by the beam energy, (x
 � E
=Ebeam), and the photon polar
angle, �, de�ned with respect to the electron beam direction. The de�nitions of the topologies are as
follows :

Topology A: One or two photons accompanied by invisible particle(s) (e+e� ! 
(
)+ invisible
particle(s)). At least one photon with x
 > 0:2 and j cos �j < 0:7.

Topology B: Acoplanar photon pair (e+e� ! 

+ invisible particle(s)). Two photons each with
energy exceeding 1.75 GeV and j cos �j < 0:7.

Topology A is sensitive to the production of one or two photons and missing energy, which within
the Standard Model is expected from the e+e� ! ��
(
) process. Measurements of single photon
production have been made in e+e� collisions at the Z0 and at lower energies [3{5]. First results
from centre-of-mass energies signi�cantly above the Z0 mass have also been reported [1, 6]. The
expected visible energies are su�ciently large at the present centre-of-mass energies that doubly ra-
diative neutrino production can lead to two photons being detected and therefore the experimental
topology includes such cases. Topology A is also sensitive to several types of new physics in e+e�

collisions (see e.g. [3, 7] and references therein). One type of new physics is e+e� ! XY where X
decays to Y
 and Y is an invisible particle such as a neutrino or possibly a new particle that escapes
detection. One example of this type of process is production of excited neutrinos, where in this case
X is an excited neutrino and Y is a standard neutrino. Another example is production of neutralinos
in supersymmetric theories, where in this case X is a heavier neutralino, for example ~�02, and Y is the
lightest neutralino, ~�01, which is stable and escapes detection. The branching fraction for the radiative
decay, ~�02 ! ~�01
, may be small, but in some cases can be dominant [8]. Another type of new physics
that could be seen in this search topology is the production of invisible particles made visible simply
through initial state radiation.

Search topology B is designed for neutral events with an acoplanar photon pair and signi�cant
missing energy. This topology is sensitive to the production of two particles, one decaying invisibly
and the other decaying into two photons. It is also sensitive to pair production of new neutral particles
each of which undergoes radiative decay to an invisible particle, i.e. e+e� ! XX, X! Y
. Speci�cally
regarding the latter possibility, the topology has acceptance for pair production of excited neutrinos
(X = ��, Y = �), and also for neutralino pair production (X = ~�02, Y = ~�01) for cases where particle X
can decay radiatively. The latter scenario, with a substantial photonic branching ratio, is advocated
in [9]. Also of interest are models with light gravitinos, ~G, with X = ~�01, Y = ~G, where the photonic
branching ratio is naturally large. Such a signature has been discussed in [10] and more recently
in [11,12]; cross-sections of order 1 pb are predicted at

p
s = 161 GeV for M~�0

1

� 50 GeV.

The acceptance of topology B overlaps partly with that of topology A but in this case the kinematic
acceptance extends well below the x
 > 0:2 requirement of topology A, thus allowing acceptance for
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events with very low visible energy. However, a more restricted angular acceptance for the second
photon is imposed to reduce the generally forward-peaked backgrounds. Both topologies are sensitive
to doubly radiative neutrino production, e+e� ! ��

. This process is considered as part of the
radiative correction of the inclusive single photon measurement in topology A, while for topology
B, it represents the essentially irreducible Standard Model background to a search for new physics
processes.

This paper will brie
y describe the detector, the data sample and the Monte Carlo samples used.
Then the event selection for each topology will be described, followed by the results and comparison to
expected Standard Model contributions. Implications of these results on the possibility of new physics
processes of the type e+e� ! XX or XY, X ! Y
 will be discussed. This analysis is particularly
sensitive for the case MY � 0 which is relevant to excited neutrino (X = ��, Y = �) production and
to light gravitino (X = ~�01, Y = ~G) hypotheses.

2 Detector, Data Sample and Monte Carlo Samples

The OPAL detector is described in detail elsewhere [13]. The measurements presented here are mainly
based on the observation of clusters of energy deposited in the lead-glass electromagnetic calorimeters.
These calorimeters together with the gamma-catcher calorimeter and forward detector provide a fully
hermetic electromagnetic calorimeter down to polar angles of 60 mrad. The tracking system, consisting
of a silicon microvertex detector, a vertex drift chamber and a large volume jet drift chamber, is
used to select events consistent with zero charged particle multiplicity. Backgrounds from cosmic-ray
interactions are removed using time-of-
ight (TOF) information and the hadron calorimeter and muon
detectors.

The data used in this analysis were recorded at an e+e� centre-of-mass energy of 161:3� 0:2 GeV,
with an integrated luminosity of 10.0 pb�1. The statistical error on the integrated luminosity is 0.4%
and the systematic error is estimated to be 0.4%. The luminosity is determined from small angle
Bhabha scattering events in the silicon-tungsten luminosity calorimeter. The Monte Carlo samples
described below were all generated with a centre-of-mass energy of 161.0 GeV. The small di�erence
in centre-of-mass energy between the Monte Carlo and data does not a�ect any results in this paper.

For the expected Standard Model signal process of e+e� ! ��
(
), the Monte Carlo generator
NUNUGPV [14] was used. For the expected Standard Model background processes, we used a number
of di�erent generators: RADCOR [15] for e+e� ! 

(
); BHWIDE [16] and TEEGG [17] for e+e� !
e+e�(
); KORALZ [18] for e+e� ! �+��(
) and e+e� ! �+��(
); and the Vermaseren program [19]
for leptonic �nal states from two-photon collisions.

To simulate possible new physics processes of the type e+e� ! XY and e+e� ! XX where X
decays to Y
 and Y escapes detection, the SUSYGEN [20] Monte Carlo generator was used. We
produced neutralino pair events of the type e+e� ! ~�02 ~�

0
1 and e+e� ! ~�02 ~�

0
2, where ~�02 ! ~�01
.

Using the relatively 
at angular distribution observed in the production of these generated events,
the estimated e�ciencies are generalised to the generic processes (replacing ~�02 with X and ~�01 with
Y), assuming an isotropic angular distribution for XY and XX production and for X decay. For this
paper we used samples of XY production with MX from 80 to 160 GeV and with MY = 0. For XX
production we analysed samples with MX from 45 to 80 GeV and MY from 0 to MX � 5 GeV. The
e�ciencies for XX and XY production for the case MY = 0 are found to be identical within statistical
errors to the e�ciencies obtained using the OPAL excited neutrino Monte Carlo generator described
in [21].

All the above Monte Carlo samples were processed through the OPAL detector simulation [22].
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3 Event Selection Description

3.1 Topology A: Events with one or two photons and invisible particle(s)

Events are selected as having one or two photon candidates if they satisfy the following criteria based
on previous OPAL analyses of photonic events with missing energy [1, 3, 23]:

� Charged track veto. Events are required to have no tracks with 20 or more jet chamber hits
assigned to them, reconstructed in the central detector.

� Angular acceptance and minimum energy. An event is considered to contain a photon
candidate if the primary electromagnetic cluster (that with the highest deposited energy in the
barrel and endcap calorimeters) is in the region j cos � j < 0:7 and has a scaled energy, x
 , that
exceeds 0.2. Events are considered to have more than one photon if additional electromagnetic
clusters are found in the barrel or endcap calorimeter (j cos�j < 0:984) having deposited energy
exceeding 300 MeV. Acceptance for events with two photons is desirable in order to increase the
e�ciency for doubly radiative neutrino production, and so reduce the sensitivity to the modelling
of that process.

� Cluster extent. The primary electromagnetic cluster combined with any clusters contiguous
with it must not extend more than 250 mrad (equivalent to more than six lead-glass blocks) in
the polar or azimuthal directions. It must also consist of at least two blocks.

� Coil conversion seen in TOF system. The primary electromagnetic cluster must be matched
within 50 mrad in azimuthal angle by a good quality TOF counter signal produced by the photon
converting in the coil in front of the TOF. The measured arrival time of the photon at the TOF
must be within 20 ns of the expected time for a photon originating from the interaction point.

� Forward calorimeter veto. The total energy deposited in each forward calorimeter must be
less than 2 GeV.

� Gamma-catcher veto. The most energetic gamma-catcher cluster must have an energy of less
than 5 GeV. The forward calorimeter veto and gamma-catcher veto serve to ensure that photon
candidate events are not accompanied by any event activity in the forward regions.

� Muon veto. Events are rejected if there are any muon track segments reconstructed in the barrel
or endcap muon chambers, or in the barrel, endcap or pole-tip hadron calorimeters. Events are
also rejected if three or more of the outer 8 layers of the barrel hadron calorimeter have strips hit
in any 45� azimuthal road. The muon veto is used primarily to remove cosmic ray background.

Background from e+e� ! 

(
) is rejected if any of the following criteria are satis�ed for events
with a second cluster:

� The total energy of the two clusters exceeds 90% of the centre-of-mass energy.

� The acoplanarity angle of the two clusters1, �acop, is less than 2:5�.

� The missing momentum vector calculated from the two clusters satis�es j cos �missj > 0:9.

� A third electromagnetic cluster is detected with deposited energy exceeding 300 MeV.

1De�ned as 180� minus the opening angle in the transverse plane.
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3.2 Topology B: Events with an acoplanar photon pair and invisible particle(s)

The event selection for this topology is also based on the previous OPAL analyses described in refer-
ences [24] and [1]. The selection criteria for topology B are identical for those of topology A except
for the following two requirements:

� Angular acceptance and minimum energy. Candidate events are required to contain two
electromagnetic clusters in the calorimeter, both having deposited energy exceeding 1.5 GeV and
detected in the region j cos �j < 0:7. Following [3], the experimental requirement on deposited
energy exceeding 1.5 GeV corresponds to an e�ective minimum photon energy of 1.75 GeV. The
cluster with the higher energy must pass the cluster extent criteria of topology A.

� Coil conversion seen in TOF system. At least one electromagnetic cluster must be matched
within 50 mrad in azimuthal angle by a good quality TOF counter signal. The measured arrival
time of the photon at the TOF must be within 20 ns of the expected time for a photon originating
from the interaction point.

The restricted angular acceptance for the two photons in topology B not only discriminates against
forward-peaked background, it also ensures precise measurement of the photon energies and helps
ensure that time-of-
ight information is available to check that the photons are consistent with orig-
inating from the interaction point. Background events, coming principally from e+e� ! 

(
), are
rejected if any of the same four veto conditions described in topology A are satis�ed.

4 Results

4.1 Topology A

After applying the selection criteria of topology A to the data sample, 11 events are selected. From
the Monte Carlo we expect a Standard Model signal from e+e� ! ��
(
) of 16:1 � 0:3 events.
The selection e�ciency for this Standard Model process is (69 � 1) % for generated events within
the kinematic acceptance (i.e. at least one photon with x
 > 0:2 and j cos �j < 0:7). Most of the
ine�ciency arises when a photon either converts in the tracking volume, or does not convert until it
enters the lead glass calorimeter. In the former case, such events are vetoed by the presence of charged
tracks and in the latter case it is unlikely that a TOF hit will be associated with the electromagnetic
cluster.

Here and throughout the paper the quoted errors on e�ciencies include estimates of the systematic
errors which are small compared to the statistical errors on the measurements. The expected e+e� !
��
(
) contribution can be divided into 13:5 � 0:3 single photon events and 2:6 � 0:1 two photon
events (see Table 1). In the data all 11 events are single photon events. The expected contributions
from all Standard Model background processes are estimated to be negligible (less than 0.1 events
expected). Beam-related, cosmic ray and instrumental background contributions are also negligible.
With 11 observed events and correcting for the selection e�ciency, we obtain a cross-section for
e+e� ! ��
(
) within the kinematic acceptance of topology A of 1.6 � 0.5 pb, consistent with the
Standard Model prediction of 2.3 pb. This measured cross-section, along with the same measurements
by OPAL at

p
s=130 GeV and 136 GeV are plotted in Fig. 1. The curve shows the predicted Standard

Model cross-section.

The scaled energy distribution of the most energetic photon for events found in the data is plotted
along with the expected Standard Model signal e+e� ! ��
(
) and background contributions in
Fig. 2a. In the �gure, the threshold for the x
 cut has been lowered to 0.025 (about 2 GeV) to
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show the expected background contributions at low photon energy. There is good agreement between
data and Monte Carlo predictions both for the background dominated low x
 region and in the
x
 > 0:2 signal region. That the 11 selected events in the data are consistent with the expectation
for e+e� ! ��
(
) can also be seen in the distribution of the mass recoiling against the photon (or
two-photon system) as shown in Fig. 2b. One expects a peak in the recoil mass at MZ, since the ��
predominantly comes from the decay of a Z0.

We now apply a cut on the recoil mass of Mrec < 75 GeV and require only one photon. These
cuts remove most of the Standard Model e+e� ! ��
(
) events, providing a nearly background-free
kinematic region to look for possible new physics processes. The number of events from e+e� ! ��
(
)
expected from the Monte Carlo is reduced from 16.1 to 0.09 after the �rst cut and further reduced to
0:04 after the second. No events survive the �rst cut in the data. We can derive a 95% CL upper limit
of 0.44 pb for single photon production within this kinematic region. This limit uses the expected
polar angle and energy distributions for the process e+e� ! ��
(
) but is not very sensitive to the
shape of these distributions. The systematic error is incorporated into all limits quoted in this paper
using the method described in [25].

After applying the topology A selection with the additional two cuts described above, we obtain
the e�ciency for selecting events from the process e+e� ! XY;X! Y
 (MY � 0), which varies from
14% for MX = 80 GeV to 56% for MX = 160 GeV as shown in Table 2. Based on these e�ciencies
and on no observed events in the data, we can set an upper limit on the cross-section times photonic
branching ratio, �XY� BR(X ! Y
), as a function of MX, as shown in Fig. 3a. This limit applies
to the supersymmetry process of ~�02 ~�

0
1 production where ~�01 is massless and also to the case of single

production of excited neutrinos (e+e� ! ���; �� ! �
). Further excited neutrino results obtained
using these data as well as other excited lepton results from OPAL can be found in [21].

4.2 Topology B

After applying the selection criteria of topology B to the data, no events remain, consistent with the
expectation for the Standard Model process e+e� ! ��

 of 0:93�0:08 events. The expected number
of events from other processes and instrumental backgrounds is negligible. The selection e�ciency for
this process is (74� 3) % for those events generated within the kinematic acceptance of topology B
(i.e., both photons having E
 > 1:75 GeV and j cos�j < 0:7). Therefore we set an upper limit on the
cross-section within this kinematic acceptance for acoplanar photon pair production of 0.41 pb at 95%
CL. This limit uses the expected polar angle and energy distributions for the process e+e� ! ��

 but
is not very sensitive to the shape of these distributions. The expected cross-section for e+e� ! ��



is 0.12 pb.

The results of this topology are also interpreted in the context of pair production of particle X and
subsequent decay X! Y
. For the general case of arbitrary values of MY, the e�ciency of the analysis
over the full angular acceptance exceeds 26% for MX > 40 GeV and MY < MX � 5 GeV. For these
ranges of MX and MY, the result leads to a cross-section upper limit of 1.2 pb at 95% CL over the full
acceptance. For the speci�c case of MY � 0, relevant to excited neutrinos and light gravitinos, we try
to reduce further the expected background. In Fig. 4a we plot the energy of the less energetic photon
(E2) against the energy of the more energetic photon (E1) for the Standard Model e+e� ! ��



Monte Carlo events. The distribution shows that a large fraction of the expected events contain one
very energetic photon and one soft photon, and that the sum of the photon energies is likely to be
close to 55 GeV (0:34

p
s) which is the energy expected for production of a real Z0 accompanied by

a low mass di-photon system. The line represents E1 + E2 = 0:4
p
s and we choose the region above

this line as the search region for new physics signals because it is kinematically unlikely that events
arising from real Z0 production populate this region. One expects 0:04 � 0:02 events in this region
from the Standard Model process e+e� ! ��

.
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Figure 4(b)-(d) shows the expected E2 versus E1 distributions for XX production with MX of 55,
70 and 80 GeV, respectively, and MY = 0 GeV. The de�ned search region has a high acceptance for
this signal, especially close to the kinematic limit, while reducing the Standard Model expectation by
more than an order of magnitude. The e�ciencies for XX production and expected Standard Model
backgrounds are listed in Table 3 for both the standard selection and after including the energy sum
requirement. Based on the latter e�ciencies within the full acceptance (typically 25%) and given
no observed events in the data, we set 95% CL upper limits on the cross-section for XX production
multiplied by the photonic decay branching ratio squared, �XX�BR2(X! Y
), for massless Y. These
limits are shown in Fig. 3b. For MX = 50 GeV, this limit on �XX � BR2(X! Y
) is 1.5 pb and for
MX = 75 GeV it is 1.0 pb. For example, this can be compared with the case of a light gravitino as
described in [12], for which a cross-section of about 1 pb is expected for M~�0

1

= 50 GeV.

As described above, the e�ciencies over the full angular range have been calculated with isotropic
angular distributions for production and decay of X. We have examined the validity of this assumption
based on the angular distributions calculated for photino pair production in [10]. For models proposed
in [11], the production angular distributions are more central and so this assumption is conservative.
For an extreme case, namely a 1 + cos2 � production angular distribution, appropriate to t-channel
exchange of a very heavy particle [10], the relative e�ciency reduction would be at most 15%. We have
evaluated the e�ciency with zero decay length for X; e�ciencies are una�ected if the decay length is
much less than the inner radius of the barrel electromagnetic calorimeter (2.5 m).

5 Conclusions

We have searched for photonic events with large missing energy in two di�erent and complementary
topologies from data taken at

p
s = 161 GeV. The search is sensitive to several types of new physics

in e+e� collisions producing invisible particles that escape detection.

In the topology A selection which requires events to have at least one photon with x
 > 0:2 and
j cos �j < 0:7, 11 events are observed in the data compared to an expected contribution from the
Standard Model process e+e� ! ��
(
) of 16:1 � 0:3 events. This corresponds to a cross-section
for e+e� ! ��
(
) of 1.6 � 0.5 pb within the kinematic acceptance of topology A, consistent with
the Standard Model prediction of 2.3 pb. By considering only events with a single photon and with
a recoil mass below 75 GeV, based on no observed events, we determine a 95% CL upper limit for
the cross-section of 0.44 pb. In addition we set an upper limit on the cross-section times photonic
branching ratio for the process e+e� ! XY;X ! Y
;MY � 0 as a function of MX. This limit is
of particular interest for the case of new physics processes producing single photons such as for the
supersymmetry process e+e� ! ~�02 ~�

0
1 ! ~�01 ~�

0
1
 and for single production of excited neutrinos [21].

The topology B selection which requires events to have two photons, each with energy exceeding
1.75 GeV and j cos �j < 0:7, �nds no events passing all cuts. This is consistent with the prediction
for the Standard Model process e+e� ! ��

 of 0.93 � 0.08 events. We set an upper limit on the
cross-section for acoplanar photon pair production within the kinematic acceptance of topology B of
0.41 pb at 95% CL. We also set a 95% CL upper limit on the cross-section times photonic branching
ratio squared of 1.2 pb for the process e+e� ! XX;X! Y
 for MX > 40 GeV and MY < MX�5 GeV.
This limit is of interest for the case of pair produced new particles which decay to undetectable massive
particles and photons. By requiring a minimum total energy for the two photons, the already small
e+e� ! ��

 contribution is made negligible and we derive a 95% CL upper limit for the cross-section
times branching ratio squared for XX production as a function of MX where MY � 0. This limit is
of particular interest for new physics processes producing acoplanar photon pairs and undetectable
massless particles, for example, pair produced neutralinos, where the neutralino decays into a photon
and a light gravitino, or pair produced excited neutrinos [21].
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Process 1 photon 1 or 2 photons 1 photon and 1 or 2 photons

Mrec < 75 GeV and Mrec < 75 GeV

Data 11 11 0 0

e+e� ! ��
(
) 13:5� 0:3 16:1� 0:3 0:04� 0:02 0:09� 0:02

Table 1: Topology A selection: Number of events observed in the data and expected number of events
from the process e+e� ! ��
(
) for an integrated luminosity of 10.0 pb�1.

E�ciency in % for E�ciency in % for topology A with

MX (GeV) topology A selection 1 photon and Mrec < 75 GeV

80 42� 2 14� 1

110 40� 2 20� 1

130 42� 2 33� 1

150 53� 2 50� 2

160 56� 2 56� 2

Table 2: Topology A selection e�ciency as a function of mass for the process e+e� ! XY, X ! Y
,
and MY � 0.

Process standard selection standard selection and

E1 + E2 > 0:4
p
s

e�c. in % no. of events e�c. in % no. of events

Data 0 0

e+e� ! ��

 74� 3 0:93� 0:08 0:04� 0:02

MX = 45 GeV 32� 1 20� 1

MX = 55 GeV 33� 1 22� 1

MX = 70 GeV 31� 1 24� 1

MX = 75 GeV 35� 2 31� 1

MX = 80 GeV 33� 1 33� 1

Table 3: Topology B selection: E�ciencies and expected number of events for an integrated luminosity
of 10.0 pb�1. The e�ciency for e+e� ! ��

 is de�ned relative to the kinematic region mentioned in
the text. The last �ve rows of the table give the e�ciency for selecting events of the type e+e� !XX,
X!Y
 and MY � 0, for varying MX.
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Figure 1: The measured cross-section for e+e� ! 
(
) + invisible particle(s) versus centre-of-mass
energy. The data points with error bars are OPAL measurements from this paper and from the analysis
at centre-of-mass energies of 130 and 136 GeV. The curve is the Standard Model prediction for the
process e+e� ! ��
(
).
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Figure 2: a) The x
 distribution for the most energetic photon in events selected by topology A
without the x
 cut in order to show the expected background contributions at low x
 . The data are
the points with error bars, the solid line is the expected contribution from e+e� ! ��
(
) and the
broken lines are the additional contribution from other Standard Model backgrounds. The Monte
Carlo contributions are normalised to the 10.0 pb�1 of the data. b) The recoil mass distribution
for selected events in topology A. The points with error bars are the data and the histogram is the
expectation from the e+e� ! ��
(
) Monte Carlo normalised to the 10.0 pb�1 of the data.
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Figure 3: a) The 95% CL upper limit on the cross-section times the photonic branching ratio for the
process e+e� !XY, X!Y
 with MY � 0, versus MX. This limit uses the topology A selection for one
photon only and Mrec < 75 GeV. b) The 95% CL upper limit on the cross-section times the photonic
branching ratio squared for the process e+e� !XX, X!Y
 with MY � 0, versus MX. This limit uses
the topology B selection with the E1 +E2 > 0:4

p
s cut.
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Figure 4: The energies of the lower versus the higher energy photon for events passing the topology
B selection. No data events are selected for this topology. a) e+e� ! ��
(
) Monte Carlo events
corresponding to a luminosity of 1.5 fb�1. b-d) Events of the type e+e� !XX, X!Y
 with MY � 0.
The events shown correspond to 1000 events generated for each of three mass values for X: b) MX = 55
GeV, c) MX = 70 GeV, d) MX = 80 GeV.
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