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Abstract

This letter describes the �rst observation of W boson pair production at a centre-of-mass energyp
s = 161:3 GeV in the OPAL detector at LEP. The analysis is sensitive to all expected W+W� decay

channels. A total of 28 events have been selected for an integrated luminosity of 9:89�0:06 pb�1. This
is consistent with the Standard Model expectation, including signal and background contributions.
The W pair production cross-section is measured to be �WW = 3:62+0:93

�0:82 � 0:16 pb. An analysis of
the predicted MW dependence of the accepted cross-section, taking into account interference in the
four-fermion production processes, yieldsMW = 80:40+0:44

�0:41
+0:09
�0:10�0:10 GeV, where the �rst and second

uncertainties are statistical and systematic, respectively, and the third arises from the beam energy
uncertainty.
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1 Introduction

In the initial phase of operation of LEP2, a centre-of-mass energy of
p
s ' 161 GeV has been attained

for the �rst time in e+e� collisions. This centre-of-mass energy lies just above the W pair production
threshold [1]. The cross-section for the process e+e�!W+W� increases rapidly with

p
s at centre-of-

mass energies close to the nominal threshold of
p
s = 2MW, where MW is the mass of the W boson.

However, the abrupt turn-on of the Born cross-section is distorted by the e�ects of the W width, initial
state radiation and other electroweak corrections [3, 4]. In this threshold region, the cross-section at
a given value of

p
s has a particularly strong dependence on the value of MW, and therefore it is

possible to extract MW from the data by measuring the cross-section and comparing with theoretical
predictions in the context of the Standard Model. Such measurements of the mass of the W boson are
complementary to those at pp colliders (currently MW = 80:33�0:15 GeV [1], [2]) and to those which
will be performed during later phases of LEP2 operation by reconstructing directly the decay products
of the W. The LEP2 W mass measurements at threshold and at higher energies have rather di�erent
systematic uncertainties and a comparable statistical power for a given integrated luminosity [4].

This letter describes selections to identify W+W� production in all expected decay topologies1

with the OPAL detector. Strict criteria are required to isolate the signal, as the expected cross-
sections for W+W� production and the dominant background from Z0=
 ! ff, where f is any charged
fermion, are on the order of 3 pb and 200 pb, respectively. In addition, backgrounds also arise from
other processes with four-fermion intermediate states which do not contain two resonating W bosons.
These four-fermion backgrounds fall into two classes: those which can interfere with the four-fermion
states from W+W� production, and those which cannot. The interfering four-fermion backgrounds
are particularly problematic because they can also depend on the W boson mass. This mass-dependent
four-fermion background is taken into account in the determination of the W mass described in this
letter. In addition, the cross-section of W pair production from the three doubly resonant W+W�

production graphs (\CC03 diagrams" [3]) is measured from the data. This latter measurement assumes
that the e�ects of interference in the accepted cross-section are small, which is expected to be a good
approximation at the current level of statistical precision.

2 Data and Simulated Event Samples

This analysis uses the data recorded during the 1996 LEP run at 161 GeV by the OPAL detector, which
is described fully elsewhere [5,6]. Charged tracks and electromagnetic calorimeter clusters are selected
as in [7], the gamma catcher and forward calorimeters close to the beam axis2 use the criteria given
in [8], and clusters in the hadronic calorimeter are required to have an energy greater than 0.25 GeV.
The accepted integrated luminosity, evaluated using forward Bhabha scattering events observed in
the silicon tungsten forward calorimeter, is 9:890� 0:042(stat:)� 0:040(syst:) pb�1. The luminosity
determination is slightly modi�ed relative to that in [9] due to the introduction of protective shields
in the forward regions.

In evaluating systematic uncertainties in the analyses described in this letter, extensive use is made
of data and simulated events at

p
s = 133 GeV, of the high statistics samples at

p
s = 91 GeV, and of

background enriched samples at
p
s = 161 GeV. A variety of Monte Carlo models are used to estimate

e�ciencies and backgrounds, and all events include a full simulation of the OPAL detector [10]. Two
approaches have been adopted, as summarised below.

1Throughout this letter, a reference to W+ or its decay products implicitly includes the charge conjugate states.
2The coordinate system is such that the origin is at the geometric centre of the detector, ẑ is parallel to the e� beam

direction; r is the coordinate normal to ẑ, � is the polar angle with respect to ẑ and � is the azimuthal angle around ẑ.
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In the �rst approach, signal and background samples were generated separately. The main signal
sample was obtained with PYTHIA [11] and was generated at

p
s = 161 GeV using the current

world-average W boson mass of MW = 80:33 GeV [1]. The W+W� cross-section for this sample is
within 2% of that predicted by the GENTLE program [12]. The latter cross-section is 3.77 pb for
the centre-of-mass energy

p
s = 161:3 � 0:2 GeV [13]. As GENTLE is more complete, it is used to

calculate the signal cross-section which gives the expected number of W+W� events throughout this
letter. More details are given in Section 7. Estimates of the di�erent background processes are based
primarily on the PYTHIA, grc4f [14], KORALZ [15], BHWIDE [16], PHOJET [17], Vermaseren [18]
and NUNUGPV [19] generators. Other models [20{23] are used to give an estimate of the systematic
uncertainties.

In the second approach, all four-fermion �nal states are considered collectively. The separation be-
tween signal and background processes is complicated by the interference between the W+W� produc-
tion diagrams (class CC03 of [3]) and other four-fermion graphs. For example, the process Z0=
 ! qq
where a W� is radiated o� one of the quarks can interfere with W+W� ! qq`�` and W+W� ! qqqq
�nal states. The e�ect of interference is included by generating a sample of four-fermion �nal states
(including W+W�) using grc4f. Other backgrounds are included using the generators listed above.
Systematic uncertainties are assessed by comparing grc4f with EXCALIBUR [21] which also includes
the e�ect of interference. In addition, grc4f and EXCALIBUR were used to generate samples corre-
sponding to W+W� production alone.

3 W
+
W

�

! qqqq Event Selection

Approximately 46% of the W pairs produced are expected to decay in the qqqq channel, which is
characterised by four energetic, hadronic jets. The pair of jets associated with each W has a large
invariant mass, and as the W bosons are produced with relatively low momentum near threshold, the
jets often appear back-to-back in the detector. There is a large hadronic background from Z0=
 ! qq
events. Most of these are produced in association with energetic initial state photons, but non-radiative
Z0=
 ! qq events, especially those with hard gluon radiation producing four jets, are particularly
di�cult to distinguish from W+W� ! qqqq production.

Selected events must be identi�ed as hadronic �nal states [24], have at least six tracks and six
electromagnetic clusters, and more than 50 GeV of measured energy using tracks, electromagnetic
clusters and hadronic clusters. Tracks and calorimeter clusters are then combined into four jets using
the k? (\Durham") [25] jet-�nding algorithm, and the total momentum and energy of each of the jets
are corrected for double-counting of energy [26].

Events having an energetic initial state photon in the detector are removed by demanding the
energy of the most energetic electromagnetic cluster to be less than 0:71E
, where E
 is the expected
energy of an initial state photon produced in association with a real Z0 and seen in the detector
(E
 = 54:7 GeV at

p
s = 161 GeV). A well separated, four-jet topology is ensured by requiring events

to have a value of the jet resolution parameter for the three- to four-jet transition, y34 > 0:01. Events
are rejected if any jet contains no tracks, in order to remove poorly reconstructed jets and radiative
events which satisfy the E
 criterion above. The four-vectors of the jets are used in a kinematic �t,
which imposes conservation of energy and momentum and equality of the masses of the two jet pairs
forming the W candidates. At least one of the three possible assignments of jets to W candidates must
yield a �tted mass of more than 72 GeV, with a corresponding �t probability of at least 1%. These
requirements remove more than 99% of the Z0=
 ! qq background.

Distributions of the kinematic �t mass and y34 variables are shown in Figure 1 (a) and (b) for data
and Monte Carlo, after all other cuts. The number of candidate events selected and the corresponding
Monte Carlo expectations for signal and background events are given in Table 1. The background is
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dominated by Z0=
 ! qq events. The e�ciency for selecting W+W� ! qqqq events is estimated to
be (56:7� 0:5)%.

The systematic uncertainty of 0.5% on the selection e�ciency is estimated by comparing simulated
W+W� events from a variety of models [11, 20{22], and by varying the fragmentation parameters
within PYTHIA. The fractional systematic uncertainty of 11.3% on the accepted background cross-
section is estimated by comparing di�erent Monte Carlo models [11,22,23], high statistics LEP1 data
with that simulated by JETSET [11], and by varying the fragmentation modelling within PYTHIA. A
consistent background estimate is obtained from the relatively small

p
s = 133 GeV data sample. The

systematic uncertainties of both selection e�ciency and accepted background cross-section include a
component from �nite Monte Carlo statistics.

4 W
+
W

�

! qqe�e and W
+
W

�

! qq��� Event Selection

Approximately 29% of W pairs produced are expected to decay in the qqe�e and qq��� channels,
which contain an energetic charged lepton (e or �), two or more hadronic jets and missing momentum
because of the unobserved neutrino. There is a substantial Z0=
 ! qq background in which a hadron
or an initial state photon is misidenti�ed as a lepton. Four-fermion processes such as Z0e+e�, We�e
and o�-shell Z0Z0 production can lead to two hadronic jets and one identi�ed lepton being observed
in the detector, and thus constitute another source of background.

Purely leptonic �nal states are removed by requiring at least six tracks and at least eight electro-
magnetic calorimeter clusters per event. A muon candidate is a track which has associated hits in the
muon chambers or the hadron calorimeter, and has only a small energy deposit in the electromagnetic
calorimeter. Electrons are identi�ed by requiring a tight match between the measured � coordinate of
a track and electromagnetic cluster, by removing tracks consistent with photon conversions, and by
requiring the ionisation energy loss, dE=dx, and the ratio of the electromagnetic cluster energy, E, to
the track momentum, p, to be consistent with the expectation for an electron. Rejecting candidates
with signi�cant associated hadronic activity beyond the electromagnetic calorimeter further enhances
the purity of the qqe�e sample.

As the lepton candidate should be energetic, muons are required to have momentum p > 20 GeV,
and electrons to have energy E > 25 GeV. In the region j cos �j > 0:90, residual photon conversion
background is reduced by insisting that electron candidates also satisfy p > 25 GeV. The lepton
candidate must be isolated, i.e. I � PE +

P jpj < 2:5 GeV, where the sum includes all tracks and
clusters within a 200 mrad cone around the lepton track, excluding the cluster associated with the
track. To remove events containing Z0 ! `

+
`
� decays, lepton candidates are rejected if their invariant

mass together with any other track is within 10 GeV of the Z0 mass. The total visible energy and
momentum of the event, (Evis; ~pvis), are evaluated using the algorithm of [26] for the hadronic system,
and adding the four-momentum of the lepton candidate.

W+W� ! qq`�` events have a high momentum neutrino, and therefore have missing momentum
and a reduced visible energy. Radiative Z0=
 background events and singly resonant gauge boson
events tend to have missing momentum along the beam direction, whereas the signal events normally
have an unbalanced momentum in the r�� plane. The following criteria exploit these characteristics,
and also allow for the higher background in the qqe�e channel. Events are required to have a jet
resolution scale in the k? scheme for the two- to three-jet transition, y23 > 0:005, evaluated using tracks
and unassociated electromagnetic clusters. The energy of the most energetic, isolated electromagnetic
cluster must be less than 0:75E
. Events are required to have a scaled missing momentum, Rmiss =
j~pmissj=

p
s > 0:07, where ~pmiss = �~pvis. The scaled visible energy, Rvis = Evis=

p
s, must lie in the

interval 0:30 < Rvis < 1:00 (0.95) where the lepton candidate is a muon (electron). The polar angle
�miss of the missing momentum vector must be in the region given by j cos �missj < 0:95. The r � �
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components of the momentum vector ~pvis are used to calculate the total transverse momentum in the
event,

P
pT , which must be greater than 12 (16) GeV when the lepton candidate is a muon (electron).

Distributions of
P

pT and of the momenta of the selected lepton candidates are given in Figure 1 (c)
and (d). The number of candidate events selected and the corresponding Monte Carlo expectations for
signal and background events are given in Table 1. The selection e�ciencies for the cuts listed above
have been reduced by 2{3% to account for di�erences between Monte Carlo and data, determined
using samples of \mixed" events, and by � 1% for modelling of �nal state radiation. These samples
of mixed events are constructed from qq and `

+
`
� events at

p
s = 91 GeV, in data and Monte Carlo,

to emulate true W+W� ! qq`�` processes. The e�ciencies for the qqe�e and qq��� selections are
(71:4 � 2:6)% and (76:9 � 2:5)%, respectively. These e�ciencies include (5:9 � 0:5)% of the qq���
channel that are selected by this analysis. The background is dominated by Z0=
 ! qq and four-
fermion processes, where the latter is estimated as the di�erence between the accepted cross-sections
for full four-fermion and W+W� Monte Carlo samples.

The systematic uncertainty of approximately 2.5% on the selection e�ciency in each channel
includes contributions from comparisons of data and Monte Carlo using the samples of mixed events
and of W+W� events simulated using di�erent models [11,14,20,21]. The systematic uncertainties on
the small accepted background cross-sections are estimated by comparing the grc4f and EXCALIBUR
predictions of the four-fermion background. The corresponding uncertainties from Z0=
 ! qq are
obtained by comparing the predictions of di�erent models [11, 22, 23], and high statistics LEP1 data
with that simulated by JETSET. A consistent background estimate is obtained from the

p
s = 133GeV

data sample, as in Section 3. The systematic uncertainties of both signal e�ciency and accepted
background cross-section include a component from �nite Monte Carlo statistics, particularly for the
four-fermion processes.

5 W
+
W

�

! qq��� Event Selection

Approximately 14% of W pairs produced are expected to decay in this partially leptonic mode, char-
acterised by two or more hadronic jets, one � decay jet and missing momentum associated with two
or more neutrinos. The background is dominated by Z0=
 ! qq events, where the third jet in the
event is often due to either an initial state photon observed in the detector, or gluon emission. This
analysis is also designed to select those W+W� ! qqe�e and W+W� ! qq��� events which do not
pass the strict lepton identi�cation requirements described in Section 4.

Events must be identi�ed as hadronic [24], consist of at least six tracks and eight electromagnetic
clusters, and should not be selected as W+W� ! qqqq, qqe�e or qq���. Three jets are formed in the
event using the k? algorithm and, in contrast to the qq��� and qqe�e selections where a high energy
charged lepton has been identi�ed, the total energy and momentum of the entire event are corrected
as in [26]. Events are required to satisfy the following: j cos�missj < 0:85, Rmiss > 0:1, 0:3 < Rvis < 0:9
and y23 > 0:005, where the variables are as described in Section 4. In this case, as no lepton is
explicitly identi�ed, some of the criteria are slightly more restrictive. Requiring that all jets have at
least one associated charged track removes events in which an energetic photon is reconstructed as a
jet.

The pair of jets with the largest opening angle is assumed to be the qq pair from the hadronic W
decay, leaving the remaining jet as the � candidate. Monte Carlo studies of W+W� ! qq��� events
indicate that this assignment is correct in 75% of events. It fails when the � is not well separated
from one of the quark jets, or the W+W� pair is su�ciently o�-shell that the decay products of the
hadronically decaying W are no longer the most back-to-back pair of jets in the event. The jet assigned
as the � candidate is required to have either one or three tracks within 10� of the jet axis. It must
also have less than 1.5 GeV of isolation energy, I , between 10� and 20� from the jet axis.
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Distributions of j cos�missj and Rvis are given in Figure 2 (a) and (b). The number of candidate
events selected and the corresponding Monte Carlo expectations for signal and background events
are given in Table 1. Considering all W+W� events passing the qq��� selection as signal gives an
e�ciency relative to the number of events expected from W+W� ! qq��� of (42:5 � 2:6)%. This
e�ciency has been increased as a consequence of the modelling corrections in the qqe�e and qq���
channels discussed in Section 4. The dominant systematic e�ect in the background estimate is due
to the simulation of the isolation I . It includes a correction of (+15 � 9)% evaluated by comparing
high statistics Z0 data and Monte Carlo. The mixture of W-pair decay modes in the selected events is
expected to be qqe�e: qq���: qq��� : qqqq � 1:1:8:0.05. If the requirement of exclusivity with the other
W+W� event selections is removed, this selection attains an e�ciency (relative to all W+W� ! qq`�`
decays) of about 40%, selecting approximately equal proportions of all W+W� ! qq`�` decays.

The systematic uncertainty of 2.6% on the selection e�ciency is estimated by comparing data
and Monte Carlo samples of mixed events, as in Section 4, and by comparing di�erent Monte Carlo
models [11, 14, 20{22]. The systematic uncertainties on the accepted background cross-section are
estimated by comparing the predictions of di�erent models [11,22,23], high statistics LEP1 data with
that simulated by JETSET, data and Monte Carlo at

p
s = 133 GeV and background enriched samples

at
p
s = 161 GeV. Systematic uncertainties on the four-fermion background are estimated using grc4f

and EXCALIBUR. The systematic uncertainties of both selection e�ciency and accepted background
cross-section include a component from �nite Monte Carlo statistics.

6 W
+
W

�

! `
+
�``

0
�

�`0 Event Selection

Approximately 11% of W pairs produced may be observed as an acoplanar pair of charged leptons
with missing momentum. This analysis is sensitive to the six possible classes of observed leptons,
e+e�, �+��, �+��, e���, e���, ����, expected to be produced in the ratio 1:1:1:2:2:2. The main
backgrounds are leptonic decays in e+e� ! Z0Z0, e+e� ! Z0e+e� and e+e� ! We�e processes,
and e+e� ! �

+
�
�. The experimental signature depends on the number of stable leptons in the

�nal state and the amount of background depends on whether or not the leptons are of the same

avour. Therefore several selections, each designed to select a particular di-lepton class, are described.
Electrons and muons are identi�ed as in Section 4.

Cone jets3 [27] are formed in low multiplicity events [28] having between two and six tracks, and
fewer than 13 charged tracks plus electromagnetic clusters. Two- and three-jet events are selected: two
jets are required to contain tracks, and at least one of these jets should also include an electromagnetic
cluster. At most one other jet without any tracks is accepted to allow for photon radiation. Vetoes
are made against events which are consistent with Z0=
 ! `

+
`
� or with having a hard initial state

photon in the detector, events which have muons close to the beam axis, or jets with the same charge.

Two-jet events must be consistent with a di-lepton having signi�cant missing energy and transverse
momentum. One jet must have j cos �j < 0:96 and the other j cos�j < 0:90, their opening angle must
be less than 170�, all tracks in the event must be associated with a jet, and events without identi�ed
electrons or muons must have electromagnetic clusters present in both jets. Acoplanarity, �acop, is
de�ned as 180� minus the di-jet opening angle in the r � � plane. Events with �acop > 60� must
have j cos �missj < 0:90. For events with �acop < 60�, the component of the transverse momentum
perpendicular to the event thrust axis4, amiss

t , and the direction of the associated missing momentum,
�
miss
a , are required to satisfy a

miss
t =Ebeam > 0:025 and j cos �miss

a j < 0:99. Here Ebeam is the beam
energy, �miss

a = tan�1(amiss
t =p

miss
z ) and �pmiss

z is the longitudinal missing momentum [29].

3The cone jet parameters used are a minimum energy of 2.5 GeV and cone half angle of 20�.
4This reduces the sensitivity to neutrinos from tau decays or poorly measured particles.
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Events are �nally selected if they satisfy all criteria in any of the categories de�ned in Table 2.
Events may be selected by up to three independent selections. Category A is optimised for e+e�, �+��

and e��� events and is independent of lepton identi�cation, category B is based on signi�cant missing
transverse energy and requires at least one identi�ed e or �, and category C is based on identi�cation
of the di-lepton classes. C is further subdivided into four exclusive categories: C1 requires two e or
two �, C2 requires there to be no e or � identi�ed, C3 requires one e and one �, while C4 requires one
jet to be identi�ed as e or � and the other not to be identi�ed.

Three-jet events must have fewer than �ve tracks, be aplanar, have at least one identi�ed e or �,
satisfy j cos �missj < 0:90, have a transverse momentum greater than 0:2Ebeam, and be kinematically
inconsistent with a ��
 �nal state [30]. The total energy of the jet with no charged tracks and the
closer of the other jets must exceed 0:35Ebeam.

The distributions of �acop vs. xT and xT before applying the kinematic cuts of Table 2 are shown
in Figure 2 (c) and (d), respectively. The quantity xT is the transverse momentum of the event scaled
by the beam energy. The number of candidate events selected (one �+���

�
�� and one �+��e

�
�e) and

the corresponding Monte Carlo expectations for signal and background events are given in Table 1.
The overall e�ciency for selecting W+W� ! `

+
�``

0�
�`0 events is (65:4� 2:0)%. The e�ciency and

background estimates have been corrected by a multiplicative factor of 0:959� 0:015 to account for
e�ects in the data not modelled in the Monte Carlo, such as detector occupancy due to o�-momentum
beam particles. A correction of �0:9% for modelling of �nal state radiation has also been included.

The systematic uncertainty of 2% on the selection e�ciency is estimated by comparing W+W�

events simulated by various Monte Carlo models [11,14,20,21] and contains a component from the cor-
rection for modelling of �nal state radiation. The systematic uncertainty on the accepted background
cross-section is obtained by comparing di�erent Monte Carlo models. Systematic uncertainties on
both signal e�ciency and accepted background cross-section include contributions from the correction
for e�ects not modelled in the Monte Carlo and from �nite Monte Carlo statistics.

7 Results

A proper treatment of the interfering four-fermion processes is desirable in extracting the W mass and
production cross-section from the observed event yields. This is included explicitly in the measurement
of the W mass described in Section 7.2 below, making use of the predictions of the grc4f program
to account for these e�ects. This technique also inherently takes account of the W-mass dependence
of the experimental selection cuts. In making the measurement, Standard Model expectations for
four-fermion processes and branching ratios are assumed.

Since the four-fermion interference e�ects and mass dependence of the acceptance are expected to
be small at the current level of precision, an alternative approach is also used to extract the W-pair
(\CC03") production cross-section from the data directly, neglecting the W-mass dependent e�ects
and absorbing the interference into a mass-independent background. This division into CC03 signal
events and background terms is shown in Table 1, for a representative W mass of 80:33 GeV [1] and a
beam energy of 80:65 GeV. The data are consistent with the Monte Carlo expectation. The dominant
systematic uncertainties in the expected number of signal events are due to the current errors of
�0.15 GeV [1] in MW and �0.10 GeV in Ebeam [13] (8.5% and 5.9%, respectively). A W+W�

cross-section of 3.77 pb from GENTLE was used, with an error of �0:08 pb which accommodates
the predictions of grc4f, PYTHIA and KORALW. Uncertainties in the selection e�ciencies, accepted
background cross-sections and luminosity have been described in Sections 2{6.
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7.1 W+W� production cross-section

The W+W� cross-section is measured using the information from the �ve separate channels. For each
channel i, the probability of obtaining the number of observed events is calculated as a function of the
W+W� cross-section, �WW, using Poisson statistics and assuming Standard Model branching ratios.
The likelihood L is formed from the product of the Poisson probabilities Pi of observing Ni events for
a Monte Carlo prediction of �i(�WW) events:

L =
Y

i

Pi(Ni; �i(�WW)) =
Y

i

�i(�WW)Nie
��i(�WW)

Ni!
: (1)

The maximum likelihood value yields the measurement of the CC03 cross-section, of

�WW = 3:62+0:93
�0:82� 0:16 pb;

where the �rst uncertainty is statistical and the second systematic. From the maximum value of
the likelihood curve, the level of consistency between the observed and expected number of events
is 21%. The systematic uncertainty is evaluated by means of repeated Monte Carlo trials. For each
trial the expected number of events in each channel is smeared according to its Gaussian uncertainty,
and the corresponding cross-section value re-evaluated. The r.m.s. of this distribution was taken as
the systematic uncertainty. This procedure takes into account the correlated luminosity uncertainties
and small correlated systematic uncertainties between the qq`�` channels. The above result is in
agreement with that obtained by taking the total number of observed events, subtracting the total
expected background cross-section and dividing by the overall selection e�ciency of (60:6 � 0:7)%,
which gives �WW = 3:83+0:95�0:84 pb.

7.2 Determination of the W boson mass

The W mass dependence of the four-fermion cross-section accepted by the selections described in this
letter is determined using the grc4f generator. Events are simulated at seven di�erent values of MW

for all processes which give the same four-fermion states as W+W� production, i.e. qqqq, qq`�` and
`
+
�``

0�
�`0 . The accepted cross-sections of non-interfering background processes, which have negligible

W mass dependence, are evaluated at a single MW using grc4f and other generators [11, 12, 14{23].
For each W+W� decay channel, i, the accepted cross-section is predicted as a function ofMW�Ebeam

and parametrised by a second order polynomial, �acci (MW�Ebeam), using these Monte Carlo samples.
The Monte Carlo predictions and parametrisations are shown in Figure 3(a).

To determine the value of MW and its statistical uncertainty, a likelihood analogous to Equation 1
is constructed. The Monte Carlo prediction is now a direct function of MW � Ebeam, and is given
by �i(MW � Ebeam) = luminosity� �

acc
i (MW � Ebeam). A maximum likelihood �t is performed to

extract MW, taking into account the correlations between the qq`�` channels and assuming Standard
Model branching ratios. The systematic uncertainty on the derived MW is again obtained by means of
repeated Monte Carlo trials, smearing the expected number of events in each decay channel by their
corresponding uncertainties, and taking into account the correlations. The likelihood, and the MW

values from the trials, are shown in Figure 3(b) and (c), respectively. The W boson mass determined
in this way is

MW = 80:40+0:44�0:41
+0:09
�0:10 � 0:10 GeV;

where the �rst and second uncertainties are statistical and systematic, respectively, and the third
arises from the current estimate of the beam energy uncertainty [13].

A value ofMW can also be determined from the CC03 cross-section measurement described above.
The semi-analytic program GENTLE is used to derive the dependence of �WW on MW. The W+W�
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cross-section and MW measured in the CC03 framework are shown in Figure 4, together with the
GENTLE prediction for

p
s = 161:3 GeV. The measurement obtained is MW = 80:40� 0:43� 0:09�

0:10 GeV; where the �rst error is statistical and the second is systematic, including all uncertainties
in the cross-section measurement and an additional component to allow for di�erences in the �WW

cross-section predicted by di�erent programs. The third error arises from the current estimate of the
beam energy uncertainty. In deriving this MW, it has been assumed that the experimental acceptance
does not vary signi�cantly within this range of MW values. This measurement of MW agrees with the
value determined in the full four-fermion analysis, as illustrated in Figure 4.

8 Conclusions

This letter has described the �rst observation of W boson pair production at centre-of-mass energiesp
s = 161:3 GeV in the OPAL detector at LEP. The analysis is sensitive to all expected W+W� decay

channels. A total of 28 events have been observed for an integrated luminosity of 9:89� 0:06 pb�1.
This is consistent with the Standard Model expectation of 22:6� 2:4 signal events, assuming MW =
80:33 GeV [1], and 5:0� 0:6 background events, where only the W+W� four-fermion diagrams have
been considered as signal.

The observed number of events can be used to evaluate the W+W� (CC03) production cross-
section, giving

�WW = 3:62+0:93�0:82� 0:16 pb;

where the uncertainties are statistical and systematic, respectively. In evaluating this cross-section,
it is assumed that the four-fermion cross-section can be subdivided into W+W� and non-W+W�

contributions.

From an analysis of the expected W boson mass dependence of the number of selected events,
taking into account interference in the four-fermion �nal states, the measurement

MW = 80:40+0:44
�0:41

+0:09
�0:10 � 0:10 GeV

is obtained, where the �rst and second uncertainties are statistical and systematic, respectively, and
the third arises from the beam energy uncertainty [13]. Further studies may modify the beam energy
and reduce its uncertainty, which would change the measured MW value by the same amount in the
same direction. It has been veri�ed that this assumption is correct to within 4%. This MW is in good
agreement with the world-average measurement of MW = 80:33� 0:15 GeV [1].
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Selection Expected signal Expected background Observed

W+W� ! qqqq 9:6� 1:0 3:44� 0:39 14
W+W� ! qqe�e 3:89� 0:44 0:18� 0:27 3
W+W� ! qq��� 4:19� 0:46 0:27� 0:15 2
W+W� ! qq��� 2:32� 0:28 0:96� 0:34 7

W+W� ! `
+
�``

0�
�`0 2:58� 0:28 0:19+0:12

�0:04 2

Combined 22:6� 2:4 5:0� 0:6 28

Table 1: Observed number of candidate events in each W+W� decay channel for an integrated lumi-
nosity of 9:89�0:06 pb�1 at 161:3�0:2 GeV, together with expected numbers of signal and background,
taking MW = 80:33� 0:15 GeV. The predicted numbers for signal include systematic uncertainties
from the e�ciency, luminosity, beam energy and MW uncertainties, while the background estimate
includes selection and luminosity uncertainties.

Observable Category

A B C1 C2 C3 C4

Lepton identi�cation None > 1 e or � ee or �� no e or � 1 e and 1 � 1 e or 1 �
required not both

�acop(degrees) > 7:5 > 20:0 > 7:5 > 15:0 > 5:0 > 7:5
xT > 0:08 > 0:20 > 0:08 > 0:08 { > 0:08
x1 > 0:75� x2 { > 0:35 > 0:20 > 0:35 > 0:35
x2 > 0:325 { > 0:10 > 0:10 > 0:05 > 0:05
m``(GeV) { > 10:0 > 10:0 > 10:0 { {
jmrecoil�MZ0 j (GeV) { > 3�Z > 3�Z { { {

Table 2: Di-jet analysis kinematic cut values for the W+W� ! `
+
�``

0�
�`0 selection, where: �acop is

the di-jet acoplanarity angle, xT is the transverse momentum of the event scaled by the beam energy,
x1(2) is the energy of the more (less) energetic jet scaled by the beam energy, m`` is the di-lepton
mass, and mrecoil its recoil mass. The Z0 mass and width are taken to be MZ0 = 91:19 GeV and
�Z = 2:5 GeV respectively.
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Figure 1: Illustration of the selection quantities described in Sections 3 and 4 with Monte Carlo
signal and background events: (a) the kinematic �t mass and (b) log y34 for the W+W� ! qqqq
channel; (c)

P
pT and (d) lepton momentum for the W+W� ! qqe�e, qq��� channels. The pairing

of jets to W candidates chosen for plot (a) is the one with the largest kinematic �t mass with a �t
probability greater than 1%. Cuts are indicated with a vertical line and an arrow pointing in the
direction of selected events. Each distribution is shown after all selection requirements have been
applied to the other distributions. The hatched histogram shows the expected distribution of the
combined background and the open histogram is the sum of the expected signal and the combined
background. The data are indicated by points.
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Figure 2: Illustration of the selection quantities described in Sections 5 and 6 with Monte Carlo signal
and background events: (a) j cos�missj after multiplicity cuts only, and (b) Rvis after all other cuts in
the W+W� ! qq��� channel. The symbols are as de�ned in Figure 1. In (a) the W+W� contribution
is superimposed as a solid line and scaled up by a factor of 30. Plot (c) illustrates �acop vs. xT for
selected di-jet events in the W+W� ! `

+
�``

0�
�`0 channel prior to applying the kinematic criteria.

The large points are events in the data, the small points represent simulated W pair events. The two
events accepted after all cuts are shown as stars. Plot (d) shows the projection of the xT distribution,
with symbols as de�ned in Figure 1.
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Figure 3: The accepted cross-sections in each W+W� decay channel as a function of MW�Ebeam are
illustrated in (a), using the event generators described in the text. In each case, this is parametrised
by a second order polynomial. The likelihood function and the corresponding statistical uncertainty
are shown in (b) for

p
s = 161:3 GeV. Plot (c) shows the distribution of MW values evaluated using

repeated Monte Carlo trials. Its width gives the systematic uncertainty.
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Figure 4: Distribution of �WW as a function of MW, as predicted by GENTLE for
p
s = 161:3 GeV.

The measured W+W� cross-section is shown by a shaded band and the corresponding W boson mass
by vertical lines. The principal measurement of MW in this letter is shown as a point with error bars.
The uncertainties include statistical and systematic contributions, but do not include the e�ect of the
beam energy uncertainty.
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