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Abstract

The high density of scattered partons predicted in nuclear col-

lisions at very high energy makes color screening effects significant.

We explain how these screening mechanisms may suppress nonper-

turbative, soft QCD processes, permitting a consistent calculation of

quark-gluon plasma formation within the framework of perturbative

QCD. We present results of a model calculation of these effects in-

cluding predictions for the initial thermalized state for heavy nuclei

colliding at RHIC and LHC.

Most recent theoretical predictions for the initial conditions at which a
thermalized quark-gluon plasma will be produced at heavy ion colliders are
based on the concept of perturbative partonic cascades. The parton cascade
model [1] starts from a relativistic transport equation of the form

pµ ∂

∂xµ
Fi(x, p) = Ci(x, p|Fk) i = q, g, (1)

where Fi(x, p) denote the phase space distributions of quarks and gluons. The
collision terms Ci are obtained in the framework of perturbative QCD from
elementary 2 → 2 scattering amplitudes allowing for additional initial- and
final state radiation due to scale evolution of the perturbative quanta. To reg-
ulate infrared divergences, the parton cascade model requires a momentum
cut-off for the 2 → 2 scattering amplitudes (usually pmin

T = 1.5 − 2 GeV/c)
and a virtuality cut-off for time-like branchings (µ2

0 = 0.5 − 1 GeV2/c2).
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Figure 1: Schematic representation of a nuclear parton cascade.

Numerical simulations of such cascades for heavy nuclei provide a scenario
where a dense plasma of gluons and quarks develops in the central rapidity
region between the two colliding nuclei shortly after the impact [2]. De-
tailed studies [3] indicate that the momentum spectrum of partons becomes
isotropic and exponential, i.e. practically thermal, at a time τ ≈ 0.7∆z in
the rest frame of a slab of width ∆z at central rapidity. To permit a hy-
drodynamic description, the width of the slab should exceed the mean free
path of a parton. Including color screening effects, one finds that the mean
free path of a gluon in a thermalized plasma is λf ≈ (3αsT )−1 where T is
the thermal slope of the parton spectrum. For the predicted very high initial
values of T (≥ 0.7 GeV) one infers that a thermal hydrodynamic description
applies after τi ≈ 0.3 fm/c.

The high density of scattered partons in A+A collisions makes it possible
to replace the arbitrary infrared cut-off parameters pmin

T and µ2
0 by dynam-

ically calculated medium-induced cut-offs [4]. The dynamical screening of
color forces eliminates the need for introduction of the momentum cut-off
pmin

T , and the suppression of radiative processes provided by the Landau-
Pomeranchuk-Migdal effect makes the virtuality cut-off µ2

0 unnecessary. Note
that the viability of this concept crucially depends on the high parton density
achieved in nuclear collisions. The dynamical cut-off parameters must lie in
the range of applicability of perturbative QCD. Since the density of initially
scattered partons grows as (A1A2)

1/3(ln s)2, this condition requires both large
nuclei and high collision energy. The calculations indicate that this criterion
will be met at RHIC and LHC but not at the presently accessible energies of
the SPS and AGS. The framework is also not applicable to pp or pp̄ collisions
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Figure 2: An example of the processes contributing to color screening.

at current energies because the parton density remains too low.
The dynamic screening of parton cascades can be implemented as follows

[5]. Consider an example of two hard processes as illustrated in Fig. 2. Let
us assume that jets from the first hard scattering are produced at a large
angle and carry a high transverse momentum pT1. The interaction point is
well localized transversely on a distance of h̄/pT1. As these two jets travel in
the transverse direction, they will experience secondary interactions, which
can give rise to many nuclear effects of hard scatterings, e.g. energy loss and
Cronin effects. Here the interactions of the produced hard partons with the
propagating partons originating from other perturbative scatterings nearby
as shown in Fig. 2 are of interest.

A semiclassical estimate of the screening requires that different scatter-
ing events can be treated as incoherent. This condition is satisfied if the
produced partons, which screen other softer interactions, can be treated as
on-shell particles. This requires that the transverse distance ∆x⊥ between
the two scatterings must be larger than the interaction range of the two hard
scatterings which are determined by the off-shellness of the exchanged glu-
ons. If this condition is not satisfied, the propagating parton between two
scatterings cannot be treated as real and consequently one cannot treat the
multiple scatterings as incoherent. We are thus led to consider

τf (pT ) =
ah̄

pT

(2)
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as the formation time of the produced partons in the mid-rapidity region
from the hard or semihard scattering after which they can be treated as
real (on-shell) particles and can screen other interactions with smaller trans-
verse momentum transfer. The dimensionless coefficient a of order unity
parametrizes our uncertainty of the precise formation time.

In the framework of the inside-outside cascade, the incoming nuclei being
highly Lorentz-contracted, the primary semihard parton-parton collisions all
start at t = 0 and the evolving dense system at central rapidity is longi-
tudinally boost invariant. In the space-time evolution of the collision the
partons with larger pT are produced earlier, as implied by (2). These hard
partons will then screen production of partons with smaller pT later in time
and space. Since, for fixed pT , partons with larger rapidities form later in the
chosen reference frame, only partons in the same rapidity range are relevant
for screening. For the central region around y = 0 we consider the screening
effect of partons within a unit rapidity interval, ∆y = 1.

We now estimate the static electric screening mass generated by the pro-
duced minijets. The number distribution of minijets produced in an AA
collision at an impact parameter b = 0 can be written as [6]

dNAA

dp2
Tdy

= TAA(b)
dσjet

dp2
T dy

, (3)

where TAA(b) is the nuclear overlap function and

dσjet

dp2
T dy

= K
∑

ijkℓ=q,q̄g

∫

dy2x1fi(x1, p
2
T )x2fj(x2, p

2
T )

dσ̂ij→kℓ

dt̂
(ŝ, t̂, û) (4)

is the minijet cross section. The hats refer to the kinematical variables of
the partonic sub-processes, xi is the momentum fraction of the initial state
parton i, pT is the transverse momentum, and y is the rapidity of the final
state parton. The fi are the parton distribution functions, and K = 2 is a
factor accounting for the contribution from higher-order terms in the cross
section [7]. For the purpose of screening we treat all the minijets as gluons.
This should again be a good approximation, since gluons clearly dominate
the minijet production [8].

To obtain an estimate of the average parton number density in the central
region at a given time τf (pT ), we divide (3) by the approximate volume
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V = πR2
A∆z ≈ πR2

Aτf∆y of the produced system. Then the static color
screening mass becomes [6]

µ2
D(pT ) ≈ 3αs(p

2
T )

R2
Aτf (pT )∆y

2 arcsin[tanh(∆y/2)]
∫

∞

pT

dkT
dNAA

dk2
T dy

∣

∣

∣

y=0
, (5)

assuming that all the quanta with transverse momenta kT ≥ pT screen the
formation of partons at transverse momenta kT < pT . Only the quanta
within the rapidity window ∆y are assumed to contribute to the screening
mass.

In order to estimate the effect of this screening on the parton scatterings
with smaller pT , we use the computed electric screening mass as a regulator
for the divergent t̂- and û- channel sub-processes. We will simply make a
replacement t̂(û) → t̂(û) − µ2

D in the minijet cross sections used in (4). In
this way, by feeding the pT -dependent screening mass back into the equation
that defines it, we obtain self-consistent equations for the screening mass
and the differential minijet cross section. These equations can be solved
numerically by starting at a large pT with no screening and then integrating
down to smaller pT .

In Fig. 3 we show the screening mass µD and the screened one-jet cross
section as functions of pT . In the upper panel the results are shown for the
LHC energy

√
s = 5.5 TeV (per nucleon pair) and in the lower panel for the

RHIC energy
√

s = 200 GeV. The jet cross sections are based on MRSA
structure functions without nuclear shadowing. The figure clearly supports
our self-consistent picture of color screening: as the jet cross section grows,
the parton medium becomes denser and generates a large screening mass,
slowing down the rise of the cross section towards smaller pT . In this way,
the medium of produced minijets regulates the rapid growth of the jet cross
section. Finally, at µD ∼ pT , the cross section saturates.

To study the lack of sensitivity of the results to details of the uncertainty
relation (2), we show curves corresponding to a = 1 and a = 2. For A = 200
collisions at RHIC energy, the screening mass saturates at slightly below 1
GeV, and at 1.5 GeV for collisions at the LHC. Both these values are comfort-
ably within the range of applicability of perturbative QCD, demonstrating
that there is no need for an artificial infrared cut-off. The screening of parton
scattering by already scattered partons is analogous to the interaction among
ladders in the traditional picture of soft hadronic interactions [10]. It would
be interesting to rederive our results from this alternative point of view.
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Figure 3: Differential minijet cross section at y = 0 and screening mass µD

as functions of transverse momentum pT . (a) LHC energy, (b) RHIC energy.
Dashed line: without screening; solid and dotted lines: with screening.
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Figure 4: Transverse energy density ǫ of produced minijets as a function of the
lowest momentum transfer p0 or the formation time τf(p0), respectively. The
solid and dashed lines show the estimate with and without color screening.

τi = 0.25 fm/c RHIC LHC
ǫi (GeV/fm3) 61.4 425
Ti (GeV) 0.668 1.02
λ(i)

g 0.34 0.43

Table 1: Initial conditions for the hydrodynamical expansion phase at RHIC
and LHC. The initial time is taken as τi = 0.25 fm/c; ǫi is the initial
transverse energy density, and the effective number of flavors is assumed
as Nf = 2.5.
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In order to study the further evolution of the dense parton plasma created
in the first generation of interactions, one can calculate the energy density
carried by the scattered partons. The energy density is obtained by dividing
the total transverse energy produced by the minijets with momentum transfer
pT exceeding p0 by the volume corresponding to the formation time τf(p0):

ǫ(p0) =
EAA

T (p0)

πR2
A τf(p0)∆y

≡ ǫ(τf ). (6)

The result is shown in Figure 4. As a function of τf the energy density first
rises as more and more parton scatterings are completed, but later starts to
fall on account of the longitudinal expansion when the saturation of minijet
production due to color screening sets in.

Since earlier studies [3, 4] have shown that the conditions for a hydrody-
namic description of the expansion are satisfied at a time of order τi = 0.25
fm/c, for the energy densities predicted by (6). The full set of initial condi-
tions is listed in Table 1. The initial temperature is predicted to be very high
in nuclear collisions both at RHIC and the LHC, but only about one-third
of the gluonic phase space is populated by the initial parton interactions.
We assumed here that the parton distributions become isotropic due to free-
streaming, and no additional transverse energy is produced in the kinetic
equilibration. (We emphasize that the assumptions necessary for the con-
version of our results into initial conditions for the hydrodynamic evolution
introduce considerable uncertainties into the values listed in Table 1. These
uncertainties could be eliminated by a microscopic transport calculation of
the kinetic equilibration processes.)

Figure 5 shows the evolution of the temperature T , as well as the gluon
and quark phase space occupation ratios, λg and λq, as obtained from a
longitudinal hydrodynamical expansion with chemical equilibration [4]. The
equilibration only accounts for the processes gg → ggg and gg → qq̄; it may
proceed faster if more complex reactions are also included [12]. We have
assumed that λ(i)

q = 1
5
λ(i)

g . The evolution is stopped when the energy density
reaches 1.6 GeV/fm3, where the transition to a mixed phase is assumed to
occur. The lifetime of the pure plasma is found to be about 4 fm/c at RHIC
and 18 fm/c at the LHC. For such a long life-time transverse expansion is
expected to significantly reduce the plasma life-time at LHC energies and to
produce large collective transverse flow [13].
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Figure 5: Evolution of the temperature T and parton saturation factors λg, λq

for the initial conditions given in Table 1 in the longitudinal expansion model.

Although many quantitative issues need to be resolved (e.g. the influence
of shadowing, the precise formation time, the correct value for ∆y) a well-
defined picture of a parton cascade in nuclear collisions, which screens its
own infrared divergences, is emerging. The screening mass µD(pT ) sets a
scale which permits a perturbative description of QCD interactions even in
the limit pT → 0 as the parton density becomes high. This concept is akin
to the picture of random classical color fields proposed in [14] for the small-x
gluon structure of large nuclei. It is quite likely that the two approaches can
be connected.
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[6] T.S. Biró, B. Müller, and X.N. Wang, Phys. Lett. 283, 171 (1992).

[7] S.D. Ellis, Z. Kunszt and D.E. Soper, Phys. Rev. Lett. 62, 726 (1989);
Phys. Rev. D40, 2188 (1989); Phys. Rev. Lett. 69, 1496 (1992); Z. Kunszt
and D.E. Soper, Phys. Rev. D46, 192 (1992).

[8] K.J. Eskola, K. Kajantie and P.V. Ruuskanen, Phys. Lett. B332, 191
(1994).

[9] B.M. McCoy and T.T. Wu, Phys. Rev. D12, 546 and 578 (1975).

[10] S.G. Matinyan and A.G. Sedrakyan, Sov. J. Nucl. Phys. 24, 440 (1976).

[11] A.D. Martin, W.J. Stirling and R.G. Roberts, Phys. Rev. D51, 4756
(1995).

[12] L. Xiong and E.V. Shuryak, Phys. Rev. C49, 2207 (1994).

[13] D.K. Srivastava, private communication; B. Kämpfer, private commu-
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