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Abstract

Minijet production in hadronic and nuclear collisions through a

BFKL pomeron ladder is studied for the energies of the future LHC

heavy-ion collisions. We use unintegrated gluon densities compatible

with the small-x increase of parton distributions observed at HERA.

We show that at LHC energies the BFKL minijet and transverse en-

ergy production is at most of the same order of magnitude as that in

the collinear factorization approach.
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Semihard parton scatterings with transverse momenta pT ∼ few GeV have
been suggested to explain the rapid growth of the inelastic and total cross
sections in high energy pp(p̄) collisions at

√
s > 20 GeV [1, 2]. Especially in

heavy-ion collisions at very high energies the semihard processes are expected
to be abundant and dominate the transverse energy production in the central
rapidity region [3]. Event generators emphasizing the importance of semihard
processes in ultrarelativistic heavy-ion collisions at

√
s ≥ 200 AGeV have also

been actively developed during recent years [4, 5].
Perturbative processes take place at the very early stages of the time

evolution of an ultrarelativistic heavy-ion collision [6]. In the central rapidity
region, these semihard processes occur at time scales τ ∼ 1/pT, i.e. within
the first fractions of fm/c, while the particle production from soft processes is
expected to take longer, ∼ 1 fm/c. Therefore, semihard particle production
and associated transverse energy production give initial conditions for further
space-time evolution of the formed partonic system, which eventually may
lead to a thermalized quark-gluon plasma if the produced system is dense
enough. The key feature of the semihard parton production is that it can be
computed by using perturbative QCD [3, 6].

At central rapidities the semihard scatterings with momentum exchanges
pT ∼ 2 GeV probe typically parton distributions at x ∼ 2pT/

√
s. Especially

in nuclear collisions at the CERN Large Hadron Collider (LHC) with
√

s =
5.5 TeV, these x-values fall dominantly in the region of a rapid increase of
the structure function F p

2 (x, Q2) as observed in deep inelastic ep collisions at
HERA [7]. This increase persists down to Q2 = 1.5 GeV2 [8], thus strongly
enhancing production of semihard partons as discussed in [9]. Nuclear effects
in the parton distributions, in particular the observed nuclear shadowing of
F A

2 (x, Q2) at small x [10], are expected to be important, although the nuclear
gluon distributions are not well known at the moment [11, 12].

In the above-mentioned studies, the production mechanism of semihard
partons, minijets, is based on multiple independent 2 → 2 scatterings of
partons. Collinear factorization is assumed to hold, enabling separation of
the perturbatively calculable hard processes from the parton distributions
containing non-perturbative input. In the leading twist approximation, the
actual hard scattering involves only on-shell partons. In this paper, we will
study a different mechanism for minijet production, which is not based on
collinear factorization.

The small-x increase of F p
2 measured at HERA can be explained by the

Leading Log (log Q2) DGLAP-approach [13], by the Double Leading Log
(log Q2 log 1/x) approximation [14], or by the Leading Log (log 1/x) BFKL-
approach [15, 16, 17]. In this study, we adopt the BFKL standpoint. Based on
this we aim to study minijet and transverse energy production from a colour
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singlet (cut) BFKL ladder spanned between the two colliding nuclei. We will
not make any attempt to include nuclear effects here and, accordingly, our
conclusions for the minijet cross sections should hold for pp collisions as well.
The basic difference from the previous minijet studies including collinearly
factorized 2 → 2 on-shell parton scatterings only [9], is that we now consider
production of semihard gluons emitted by the virtual gluons in the legs of the
BFKL ladder ordered strongly in rapidity, i.e. essentially from 2 → 1 parton
processes. This mechanism of minijet production was first suggested in [18,
19]. As a new feature, we use the unintegrated gluon distributions directly
normalized to the integrated gluon distributions, which exhibit a small-x rise
compatible with HERA results [20]. Finally, we compare our results with
the more conventional calculation [9] based on collinear factorization. Our
conclusion is that the minijet and transverse energy production via the BFKL
mechanism is at most of the same order of magnitude as the conventional
one.

Minijet production in hadronic collisions from a BFKL ladder in the case
of two tagging (mini)jets separated by a wide rapidity gap was studied in
[21, 22] and more recently in [23, 24]. A closely related subject in deep
inelastic scattering (DIS) is the transverse energy flow due to minijets from
the BFKL ladder [25, 26]. Conceptually related to our study in this paper
may also be the studies in [27], where collisions of two virtual gluon clouds are
considered in the high energy heavy-ion collisions. Finally, let us also mention
Ref. [28], where minijet production by a usual soft pomeron is discussed.

As a starting point for our problem, it is useful to recall inclusive minijet
production in hadron collisions from a (cut) BFKL ladder as considered in
[21] in the case of two tagging jets with a large rapidity gap in between. The
situation on the parton level is illustrated in Fig. 1, where the transverse
momenta of the tagging jets are denoted by kaT, kbT, and rapidities at the
hadron CMS by ya, yb with ya ≫ yb. The building blocks of such a ladder
are the reggeized gluon propagators illustrated by the thick lines and the
non-local gauge-invariant effective Lipatov vertices represented by the black
blobs in the legs of the ladder. Squaring and summing all the gg → (n + 2)g
amplitudes in the leading log(ŝ/t̂) approximation leads then in the multi-
Regge kinematics to a hard pomeron, i.e. to a strongly rapidity-ordered
perturbative colour singlet gluon ladder, denoted by f(qT,kT, ya − yb) in
Fig. 1. Note that in the multi-Regge kinematics, only the transverse momenta
of the legs of the ladder become important, so that q2 ≈ −q2

T ≡ −q2
T. Also,

when intrinsic transverse momenta of the incoming partons are neglected, we
have qT = −kaT and kT = kbT. An addition of a rung to the pomeron ladder
is governed by an inhomogeneous BFKL equation [15, 16]. For details, we
refer to the lecture notes of Del Duca [29], here we merely cite the result for
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the cross section,

dσ

d2kaTd2kbTdyadyb

= xag(xa, µ
2) xbg(xb, µ

2)
dΣ̂

d2kaTd2kbTdyadyb

(1)

where

dΣ̂

d2kaTd2kbTdyadyb

=
4N2

c α2
s

N2
c − 1

1

k2
aT

2f(qT,kT, ya − yb)
1

k2
bT

. (2)

In the first approximation, only gluons can be considered, with densities
g(x, µ2). The factorization scale is denoted by µ2. Fractional momenta of
the incoming gluons are xa and xb, which in the multi-Regge kinematics
become

xa ≈ kaT√
s

e ya, xb ≈
kbT√

s
e−yb. (3)

With the tagging jets the calculation is well defined, since large trans-
verse momenta are required for the tagging jets so that the coupling of
the ladder to the jets becomes perturbative. In this case one can still rely
on collinear factorization and use the integrated parton densities xg(x, µ2).
Another important point in this calculation is that when all the radiative
and virtual corrections are neglected, one is left with the inhomogeneous
term of the BFKL equation only. At this limit the ladder shrinks into
2f(qT,kT, y) → δ(2)(qT − kT), and the Born limit for the two jets separated
by a large rapidity interval is recovered [29].

Within the framework of tagging jets, also more exclusive minijet pro-
cesses have been studied by drawing a minijet out of the ladder [22]. It is
straightforward to show that after pulling out a minijet, the gluon emissions
before and after the chosen minijet can be summed, resulting as a pomeron
ladder on each side of the pulled minijet, as illustrated in Fig. 2. The cross
section at the parton level becomes [22]

dΣ̂

d2kaTd2kbTd2kcTdyadybdyc

=
4N2

c α2
s

N2
c − 1

αsNc

π2

1

k2
cT

∫

d2q1Td2q2T ·

· δ(2)(kcT − q1T + q2T)
2f(kaT,q1T, ya − yc)

k2
aT

2f(q2T,kbT, yc − yb)

k2
bT

, (4)

where the minijet drawn from the middle of the pomeron ladder is labelled
as c. The factor αsNc/(π2k2

cT) is a combination of the phase-space factor and
the two Lipatov vertices associated with the step c. The factors 2 are related
to the normalization of the ladder f as in Eq. (2). Again, if the radiative and
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virtual corrections in the ladder are neglected, one recovers the Born limit
for production of three jets well separated in rapidity [29].

What we do in the following is that we simply relax the requirement
of having tagging jets, since we want to study the leading BFKL minijet
production mechanism, which is ∼ αs. This means, unfortunately, that
coupling of the pomeron ladder to the hadron becomes essentially soft in qT

and kT, i.e. non-perturbative. This in turn results in the fact that while the
other leg of the ladder is coupled to one constituent of the incoming hadron,
in the squared graph the other leg may be coupled to another constituent,
as shown in Fig. 3. This is nicely illustrated in a classic paper [16] where
photon-photon scattering via heavy quarks was studied. Also, now that we
do not require any tagging jets we have to give up collinear factorization,
and, for the forward scattering amplitude, we do not have a perturbative
Born limit to compare with, either. Therefore, the best we can do is to
adopt the procedure for deep inelastic scattering in [20], where an addition
of each rung into the pomeron ladder between the two hadrons or nuclei is
expected to be described by the homogeneous BFKL equation. Justification
for using a homogeneous evolution equation is that the x-dependence of the
hadron form factor describing coupling of the gluon ladder to the hadron is
negligible with respect to the x-dependence generated by the BFKL evolution
[16].

The homogeneous BFKL equation for the unintegrated gluon densities
f(x, q2

T) given in [20], which we will utilize in our problem, can be derived
from the homogeneous BFKL equation for f(qT,kT, y) in [15, 21] by first
integrating over the last momentum exchange kT in the pomeron ladder,
then scaling with q2

T and integrating over the azimuthal angle in the kernel,
setting y = log(1/x) and finally scaling with x. The BFKL equation then
becomes [20]

− x
∂f(x, q2

T)

∂x
=

αsNc

π
q2
T

∫

∞

0

dq2
1T

q2
1T

[

f(x, q2
1T) − f(x, q2

T)

|q2
T − q2

1T|
+

f(x, q2
T)

√

q4
T + 4q4

1T

]

. (5)

The above equation is scale-invariant, so that additional information for
fixing the normalization of the f(x, q2

T) is needed. The integrated gluon
densities of a proton, determined through the global analysis of parton dis-
tributions [20], will provide us with this input:

xg(x, Q2) =
∫ Q2 dq2

T

q2
T

f(x, q2
T). (6)

It should be noted that the non-perturbative nature of the pomeron-hadron
coupling is now hidden into the initial q2

T-distribution f(x0, q
2
T), which must

4



be supplied at fixed x0 ≤ 0.01. Equation (5) can then be solved numerically
to obtain f(x, q2

T). In our discussion we will return to the treatment of the
infrared problems of Eq. (5) but here will rely on the analysis of [20].

Now we are ready to write down the formula for inclusive minijet produc-
tion from the BFKL pomeron ladder between the two colliding hadrons (nu-
clei) as illustrated in Fig. 3. Based on Eq. (4), we get the factor αsNc/(π2p2

T)
when pulling out a minijet by fixing the momentum of one rung of the
pomeron ladder. When doing this we form a new ladder on each side of
the minijet. The coupling of these ladders to the hadrons or nuclei is con-
tained in the initial condition for the unintegrated gluon distribution f(x, q2),
as explained above. Then, the cross section for inclusive minijet production
is bound to have the same structure as in Eq. (4), and one obtains [18, 19]

dσjet

d2pTdy
= KN

αsNc

π2

1

p2
T

∫

d2q1Td2q2T δ(2)(pT−q1T +q2T)
f(x1, q

2
1)

q2
1T

f(x2, q
2
2)

q2
2T

(7)
where pT and y are the transverse momentum and the rapidity (in the hadron
CMS) of the minijet. From momentum conservation and multi-Regge kine-
matics the momentum fractions become

x1 ≈
pT√

s
e y, x2 ≈

pT√
s

e−y. (8)

Due to the fact that in this case we do not have an “external” hard probe like
the virtual photon with an associated quark box as in DIS, nor an on-shell
Born cross section to relax into, we cannot determine the overall dimension-
less normalization constant KN exactly. However, we are able to fix the slope

of the minijet pT-distribution. Then, based on this slope we will discuss the
upper bound for KN and actually argue that KN

<
∼ 1. It is possible that an

analysis of two-jet emission will clarify this issue. This demands in fact con-
sidering a kT-factorized form of the two-jet production cross section [30]. By
comparing this rate with the one evaluated directly from the BFKL ladder
one would hope to get an absolute normalization to the off-shell gluon flux.

Instead of numerically solving the homogeneous BFKL equation (5), we
will use a simple parametrization for the solution, motivated by the form of
the solution in the limit of asymptotically small x [16, 20]:

f(x, q2
T) =

C

xλ

(

q2
T

q2
0

)
1

2 ϕ̄0
√

2πλ′′ ln(1/x)
exp

[

− ln2(q2
T/q̄2)

r2λ′′ ln(1/x)

]

. (9)

In this expression λ = 4ᾱs ln 2, λ′′ = 28ᾱsζ(3), ᾱs = 3αs/π, ζ(3) = 1.202 is
the Riemann zeta function and ϕ̄0, q0 and q̄ are parameters characterizing
the initial distribution in [20]. We reproduce the width of the solution with
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an additional parameter r. For definiteness we shall take αs = 0.2, resulting
in the same slope (∼ x−0.5) as in the MRSD-’ set of parton distributions [31].
By choosing q̄ = q0 = 1, Cϕ̄ = 1.19 and r = 0.15, the proposed parametriza-
tion (9) describes with a satisfactory accuracy the gluon distribution, which is
obtained as the numerical solution of the BFKL equation in the global anal-
ysis [20]3. For comparison with Ref. [20], we show the unintegrated gluon
distributions of Eq. (9) in Fig. 4 as functions of q2

T at different values of x.
Proceeding then to the computation of the minijet cross sections, we inte-

grate over the azimuthal angle between pT and q1 in Eq. (7) and fix KN = 1
and y = 0. Results for the minijet cross sections dσjet/(dpTdy) at the LHC
heavy-ion energy

√
s = 5.5 TeV and at the UA1 energy

√
s = 900 GeV are

shown in Figs. 5a and b. These are the main results of this paper. The cor-
responding cross sections from the more conventional, collinearly factorized
leading twist lowest order (CFLTLO) 2 → 2 mechanism (see [9]) with the
MRSD-’ parton distributions, are also shown for comparison. In the MRSD-’
parton distribution functions we have made a scale choice Q = pT, so we can
only proceed down to pT =

√
5 GeV, the lowest scale for this set. With the

BFKL mechanism, we extend our computation down to 1 GeV. Note also
that no K-factor to simulate the next-to-leading order (NLO) terms is used
for the CFLTLO computation.

In the BFKL approach only gluons are considered, and we have fixed
αs = 0.2 in Eq. (7). In order to compare the two production mechanisms at
the same level of approximation, we also plot the corresponding curves for
the collinearly factorized results. However, since in the analysis of f(x, q2

T)
in [20], the strong coupling constant was set to run — phenomenologically,
because NLO corrections to the BFKL ladder are not yet known — we show
also the BFKL result with αs(pT).

Let us then come to the question of the normalization constant KN . We
expect the BFKL mechanism to be valid and potentially important only at
x < 0.01, where the rapid rise of the structure function F2(x, Q2) is observed
[7, 8]. Based on Eq. (8), the region of validity would then be pT < 9 GeV
for

√
s = 900 GeV at y = 0 in Fig. 5b. On the other hand, the experi-

mentally measured jet cross sections at pT > 5.5 GeV [32] can be explained
through the collinear factorization mechanism for jet production rather than
through the BFKL mechanism considered here. When the next-to-leading
order corrections to CFLTLO jet cross section are included, the measured
jet cross sections are well reproduced [33, 34]. Let us also note that with a
scale choice Q = pT the NLO calculation can be reproduced by multiplying
the Born level cross section by a factor between 2 and 1.5, depending on

√
s

3We are grateful to D.M. Ostrovsky for a numerical check of this statement.
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and on the size of the jet [34]. This tells us that there is no room for an
additional jet production mechanism of the same order of magnitude. Given
this, and comparing the two mechanisms at the same level of approximation,
the conclusion from Fig. 5b is that the BFKL mechanism in Eq. (7) can
indeed at most have KN ∼ 1. In fact, this provides an upper bound for the
non-leading BFKL corrections as well.

Up to this point, everything we have considered applies to pp collisions.
The first estimate, without nuclear modifications to the parton densities, of
the average number distributions of produced semihard gluons in central AA
collisions can be obtained simply by multiplying the results in Fig. 5 by the
nuclear overlap function, TAA(b = 0) ≈ A2/(πR2

A) [3]. For central Pb-Pb
collisions, TPbPb(0) = 32/mb.

As the last step, we estimate the transverse energy production due to the
BFKL minijets in nuclear collisions. From the point of view of quark-gluon-
plasma formation, and of its further evolution, we are mostly interested in
the transverse energy deposit into the central rapidity region y ∼ 0. An
estimate for the rapidity distribution of the average transverse energy in an
AA collision at an impact parameter b = 0 is obtained as

dĒAA
T

dy

∣

∣

∣

∣

y=0
= TAA(b)

∫

p0

dpTpT
dσjet

dpTdy

∣

∣

∣

∣

y=0
. (10)

Since the minijet cross sections computed for Fig. 5 are approximately con-
stant at rapidities |y| < 0.5, Eq. (10) also gives a good estimate for the
transverse energy deposit into the central unit of rapidity. By using the
BFKL cross sections in Fig. 5 with p0 = 1 GeV we obtain the results shown
in Table 1 for the LHC heavy-ion energy

√
s = 5.5 ATeV. Again, comparison

with the CFLTLO results with p0 =
√

5 GeV is made in this table. We
remind the reader that the numbers quoted for the BFKL minijets are with
KN = 1 and we do not make any attempt to include nuclear modifications
[11, 12] in any of the gluon distributions considered.

Concerning our results, we would like to point out the following observa-
tions:

1. Although the BFKL mechanism we have considered here is leading
in powers of αs − BFKL ∼ αs and CFLTLO ∼ α2

s − and although the
transverse momenta in the BFKL ladder have enlarged phase-space in the
sense that they are not ordered as in the DGLAP-ladder, it is not enough to
overcome the CFLTLO contribution at pT ≥ p0 ∼ 2 GeV.

2. The slopes of the BFKL and CFLTLO computations in Fig. 5 are
quite similar at large pT. This demonstrates that at fixed

√
s the relevant

physical scale is the transverse momentum pT. Since the gluon distributions
have the slope ∼ x−0.5 and since x ∼ pT/

√
s, the jet cross sections scale as
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dĒPbPb
T /dy BFKL CFLTLO

y = 0, b = 0 KN = 1, p0 = 1 GeV glue only, p0 =
√

5 GeV

αs = 0.2 3060 GeV 3060 GeV

αs = αs(pT) 4940 GeV 4870 GeV

Table 1: The average transverse energy at y = 0 carried by minijets with
pT ≥ p0 in central Pb-Pb collisions at

√
s = 5.5 ATeV.

dσjet/dpT ∼ (x1x2)
−0.5/p3

T ∼ √
s/p4

T for both mechanisms.
Let us next discuss the potential caveats and uncertainties. As discussed

above, due to the non-perturbative coupling of the pomeron to the hadrons
or nuclei, and lacking the corresponding partonic Born process as a special
limiting case, we were able to fix the slope of the minijet production only, not
the absolute magnitude. Based then on the measured jet cross sections [32]
and the collinearly factorized calculations, we argued that the production
of minijets through the BFKL mechanism can at most be compatible with
minijet production in the collinear factorization approach [9].

However, both approaches have problems when pT → 0, which we did
not discuss above. At this limit the CFLTLO cross sections grow rapidly,
and, especially with the HERA parton distributions, it is not plausible to go
much below pT = p0 ∼ 2 GeV since this leads to an overprediction of the
measured charged hadron distributions [35].

On the other hand, also the BFKL approach has serious infrared prob-
lems. As seen in Eq. (5), a contribution to the BFKL evolution comes from
the soft region qT < q0

T ∼ 1 GeV, the importance of which is enhanced if a
running coupling is used. The infrared region was treated in [20] by introduc-
ing an x-independent form factor at qT < q0

T = 1 GeV together with αs(q
2
T).

For a more detailed discussion, we refer to [20] and references therein. We
believe that in spite of this phenomenological input in the soft sector, the
correct order of magnitude of the BFKL results can be obtained since, first,
the high-q2

T region can be computed perturbatively from the BFKL equation
and, second, the normalization of the unintegrated gluon distributions to the
integrated ones can be made. We would also expect that if the BFKL mech-
anism is indeed the reason for the rapid rise of the HERA parton densities at
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small x, it could dominate the minijet production in the region of pT < p0,
where the CFLTLO calculation does not apply.

The subleading contributions are not yet known for the BFKL approach,
although the work is currently in progress [36]. For the 2 → 2 cross sections
of massless partons, the NLO terms have already been known for a while [37],
and they have been applied to the case of jet production [33]. However, one
should keep in mind that minijet production is conceptually different from
the jet production since minijets are not observed as individual jets. For
minijets the NLO analysis can be made for infrared-safe quantities, such as
the transverse energy deposit in |y| ≤ 0.5. This task has not been completed
yet. Especially, it remains to be seen what the scale dependence of the
transverse energy deposit turns out to be.

The last potential caveat, well hidden in our BFKL approach4, is related
to the inclusive and more exclusive processes. In [21], the calculation is well
defined, since the minijet production considered is fully inclusive. One finds
a complete cancellation of infrared singularities between the virtual and real
emissions in the pomeron ladder, leading to the explicit form of the kernel in
Eq. (5). When the coherence of the ladder is broken by extracting a minijet,
a potential problem with the exclusiveness and the cancellation of the sin-
gularities arises (see [38]). At the moment we do not know precisely how to
address this problem. However, since we are computing semi-inclusive quan-
tities, in particular the transverse energy flow with less infrared-sensitivity,
we believe that our estimates of the magnitude of minijet production with
pT ≥ 1 GeV and of the associated ĒAA

T in |y| ≤ 0.5 are reliable.
Finally, we would like to discuss the connection to other studies. Recently,

there has been a lot of activity in developing an approach to semihard par-
ton production in ultrarelativistic heavy-ion collisions, based on an idea of
colour charge distributions of the nuclear valence quarks moving along the
light cone and creating clouds of virtual gluons around them [27]. In this
approach, production of semihard quanta will result from a collision of two
such incoming clouds. The leading mechanism of minijet production would
then obviously be through 2 → 1 processes, i.e. of order αs, not α2

s as in the
collinearly factorized mechanism. Conceptually, this may be similar to the
BFKL mechanism we have considered here, although, to our knowledge, an
exact relation is not known at the moment.

To summarize, we have computed minijet production from a BFKL pom-
eron ladder and estimated the transverse energy production in the mid-
rapidity in a central Pb-Pb collision at

√
s = 5.5 ATeV. We have used un-

integrated gluon densities similar to those of Ref. [20], so as to show that

4We thank Yu. Dokshitzer for pointing this out.
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the BFKL contribution is at most of the same order of magnitude as the
collinearly factorized one in the considered region. However, with the BFKL
mechanism one could be able to bridge the way into the region pT < p0 in a
manner at least partly controlled by perturbative QCD.
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Figure Captions

Fig. 1. Fully inclusive minijet production with tagging jets a and b [21].
The BFKL pomeron ladder is denoted by f(qT,kT, ya−yb), and only the cut
ladder is shown. The thick lines represent the exponentiated gluon propa-
gators and the black blobs stand for the effective non-local Lipatov vertices.

Fig. 2. Production of minijet c from the cut BFKL pomeron ladder of Fig. 1
[22]. A new ladder arises on each side of the minijet.

Fig. 3. Production of minijets from the cut BFKL pomeron ladder without
tagging jets. The ovals with one thick line and three thin ones attached rep-
resent the incoming protons, and f(x1(2), q

2
1(2)T) describe the BFKL pomeron

ladders obeying Eq. (5). For details, see the text. The cross section for
minijet production through this mechanism is given in Eq. (7).

Fig. 4. The unintegrated gluon distributions f(x, q2
T) divided by

√

q2
T as

given by the parametrization in Eq. (9) as a function of q2
T. The curves

correspond to three different, fixed values of x.

Fig. 5. a. Cross sections dσjet/(dpTdy) at y = 0 as functions of pT for√
s = 5.5 TeV as predicted by Eq. (7). For the BFKL mechanism, two

different curves are shown: the solid line corresponds to having fixed αs = 0.2
in Eq. (7), the dashed line corresponds to αs = αs(pT). For the collinearly
factorized leading twist lowest order (CFLTLO) computation [9], we show
three different curves: the dash-dotted line is the full computation with all
parton flavours and αs(pT), the dashed line is the line with gluons only, and
the solid line is obtained with gluons only and αs = 0.2. To see the deviations
from scaling limit (see the text), the log-log plot is used.

b. The same as in Fig. 5a, but for
√

s = 900 GeV.
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