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Abstract

Minijet production in hadronic and nuclear collisions through a

BFKL pomeron ladder is studied for the energies of the future LHC

heavy-ion collisions. We use unintegrated gluon densities compatible

with the small-x increase of parton distributions observed at HERA.

We show that at LHC energies the BFKL minijet and transverse en-

ergy production is at most of the same order of magnitude as that in

the collinear factorization approach.
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Semihard parton scatterings with transverse momenta pT � few GeV have

been suggested to explain the rapid growth of the inelastic and total cross

sections in high energy pp(�p) collisions at
p
s > 20 GeV [1, 2]. Especially in

heavy-ion collisions at very high energies the semihard processes are expected

to be abundant and dominate the transverse energy production in the central

rapidity region [3]. Event generators emphasizing the importance of semihard

processes in ultrarelativistic heavy-ion collisions at
p
s � 200 AGeV have also

been actively developed during recent years [4, 5].

Perturbative processes take place at the very early stages of the time

evolution of an ultrarelativistic heavy-ion collision [6]. In the central rapidity

region, these semihard processes occur at time scales � � 1=pT, i.e. within

the �rst fractions of fm/c, while the particle production from soft processes is

expected to take longer, � 1 fm/c. Therefore, semihard particle production

and associated transverse energy production give initial conditions for further

space-time evolution of the formed partonic system, which eventually may

lead to a thermalized quark-gluon plasma if the produced system is dense

enough. The key feature of the semihard parton production is that it can be

computed by using perturbative QCD [3, 6].

At central rapidities the semihard scatterings with momentum exchanges

pT � 2 GeV probe typically parton distributions at x � 2pT=
p
s. Especially

in nuclear collisions at the CERN Large Hadron Collider (LHC) with
p
s =

5:5 TeV, these x-values fall dominantly in the region of a rapid increase of

the structure function F
p
2 (x;Q

2) as observed in deep inelastic ep collisions at

HERA [7]. This increase persists down to Q2 = 1:5 GeV2 [8], thus strongly

enhancing production of semihard partons as discussed in [9]. Nuclear e�ects

in the parton distributions, in particular the observed nuclear shadowing of

FA
2
(x;Q2) at small x [10], are expected to be important, although the nuclear

gluon distributions are not well known at the moment [11, 12].

In the above-mentioned studies, the production mechanism of semihard

partons, minijets, is based on multiple independent 2 ! 2 scatterings of

partons. Collinear factorization is assumed to hold, enabling separation of

the perturbatively calculable hard processes from the parton distributions

containing non-perturbative input. In the leading twist approximation, the

actual hard scattering involves only on-shell partons. In this paper, we will

study a di�erent mechanism for minijet production, which is not based on

collinear factorization.

The small-x increase of F p
2 measured at HERA can be explained by the

Leading Log (logQ2) DGLAP-approach [13], by the Double Leading Log

(logQ2 log 1=x) approximation [14], or by the Leading Log (log 1=x) BFKL-

approach [15, 16, 17]. In this study, we adopt the BFKL standpoint. Based on

this we aim to study minijet and transverse energy production from a colour
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singlet (cut) BFKL ladder spanned between the two colliding nuclei. We will

not make any attempt to include nuclear e�ects here and, accordingly, our

conclusions for the minijet cross sections should hold for pp collisions as well.

The basic di�erence from the previous minijet studies including collinearly

factorized 2! 2 on-shell parton scatterings only [9], is that we now consider

production of semihard gluons emitted by the virtual gluons in the legs of the

BFKL ladder ordered strongly in rapidity, i.e. essentially from 2! 1 parton

processes. This mechanism of minijet production was �rst suggested in [18,

19]. As a new feature, we use the unintegrated gluon distributions directly

normalized to the integrated gluon distributions, which exhibit a small-x rise

compatible with HERA results [20]. Finally, we compare our results with

the more conventional calculation [9] based on collinear factorization. Our

conclusion is that the minijet and transverse energy production via the BFKL

mechanism is at most of the same order of magnitude as the conventional

one.

Minijet production in hadronic collisions from a BFKL ladder in the case

of two tagging (mini)jets separated by a wide rapidity gap was studied in

[21, 22] and more recently in [23, 24]. A closely related subject in deep

inelastic scattering (DIS) is the transverse energy 
ow due to minijets from

the BFKL ladder [25, 26]. Conceptually related to our study in this paper

may also be the studies in [27], where collisions of two virtual gluon clouds are

considered in the high energy heavy-ion collisions. Finally, let us also mention

Ref. [28], where minijet production by a usual soft pomeron is discussed.

As a starting point for our problem, it is useful to recall inclusive minijet

production in hadron collisions from a (cut) BFKL ladder as considered in

[21] in the case of two tagging jets with a large rapidity gap in between. The

situation on the parton level is illustrated in Fig. 1, where the transverse

momenta of the tagging jets are denoted by kaT; kbT, and rapidities at the

hadron CMS by ya; yb with ya � yb. The building blocks of such a ladder

are the reggeized gluon propagators illustrated by the thick lines and the

non-local gauge-invariant e�ective Lipatov vertices represented by the black

blobs in the legs of the ladder. Squaring and summing all the gg ! (n+2)g

amplitudes in the leading log(ŝ=t̂) approximation leads then in the multi-

Regge kinematics to a hard pomeron, i.e. to a strongly rapidity-ordered

perturbative colour singlet gluon ladder, denoted by f(qT;kT; ya � yb) in

Fig. 1. Note that in the multi-Regge kinematics, only the transverse momenta

of the legs of the ladder become important, so that q2 � �q2
T
� �q2

T
. Also,

when intrinsic transverse momenta of the incoming partons are neglected, we

have qT = �kaT and kT = kbT. An addition of a rung to the pomeron ladder

is governed by an inhomogeneous BFKL equation [15, 16]. For details, we

refer to the lecture notes of Del Duca [29], here we merely cite the result for
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the cross section,

d�

d2kaTd2kbTdyadyb
= xag(xa; �

2)xbg(xb; �
2)

d�̂

d2kaTd2kbTdyadyb
(1)

where

d�̂

d2kaTd2kbTdyadyb
=

4N2

c
�2

s

N2
c
� 1

1

k2aT
2f(qT;kT; ya � yb)

1

k2bT
: (2)

In the �rst approximation, only gluons can be considered, with densities

g(x; �2). The factorization scale is denoted by �2. Fractional momenta of

the incoming gluons are xa and xb, which in the multi-Regge kinematics

become

xa � kaTp
s
e ya; xb � kbTp

s
e�yb : (3)

With the tagging jets the calculation is well de�ned, since large trans-

verse momenta are required for the tagging jets so that the coupling of

the ladder to the jets becomes perturbative. In this case one can still rely

on collinear factorization and use the integrated parton densities xg(x; �2).

Another important point in this calculation is that when all the radiative

and virtual corrections are neglected, one is left with the inhomogeneous

term of the BFKL equation only. At this limit the ladder shrinks into

2f(qT;kT; y)! �(2)(qT �kT), and the Born limit for the two jets separated

by a large rapidity interval is recovered [29].

Within the framework of tagging jets, also more exclusive minijet pro-

cesses have been studied by drawing a minijet out of the ladder [22]. It is

straightforward to show that after pulling out a minijet, the gluon emissions

before and after the chosen minijet can be summed, resulting as a pomeron

ladder on each side of the pulled minijet, as illustrated in Fig. 2. The cross

section at the parton level becomes [22]

d�̂

d2kaTd2kbTd2kcTdyadybdyc
=

4N2

c
�2

s

N2
c
� 1

�sNc

�2

1

k2cT

Z
d2q1Td

2q2T �

� �(2)(kcT � q1T + q2T)
2f(kaT;q1T; ya � yc)

k2aT

2f(q2T;kbT; yc � yb)

k2bT
; (4)

where the minijet drawn from the middle of the pomeron ladder is labelled

as c. The factor �sNc=(�
2k2cT) is a combination of the phase-space factor and

the two Lipatov vertices associated with the step c. The factors 2 are related

to the normalization of the ladder f as in Eq. (2). Again, if the radiative and
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virtual corrections in the ladder are neglected, one recovers the Born limit

for production of three jets well separated in rapidity [29].

What we do in the following is that we simply relax the requirement

of having tagging jets, since we want to study the leading BFKL minijet

production mechanism, which is � �s. This means, unfortunately, that

coupling of the pomeron ladder to the hadron becomes essentially soft in qT
and kT, i.e. non-perturbative. This in turn results in the fact that while the

other leg of the ladder is coupled to one constituent of the incoming hadron,

in the squared graph the other leg may be coupled to another constituent,

as shown in Fig. 3. This is nicely illustrated in a classic paper [16] where

photon-photon scattering via heavy quarks was studied. Also, now that we

do not require any tagging jets we have to give up collinear factorization,

and, for the forward scattering amplitude, we do not have a perturbative

Born limit to compare with, either. Therefore, the best we can do is to

adopt the procedure for deep inelastic scattering in [20], where an addition

of each rung into the pomeron ladder between the two hadrons or nuclei is

expected to be described by the homogeneous BFKL equation. Justi�cation

for using a homogeneous evolution equation is that the x-dependence of the

hadron form factor describing coupling of the gluon ladder to the hadron is

negligible with respect to the x-dependence generated by the BFKL evolution

[16].

The homogeneous BFKL equation for the unintegrated gluon densities

f(x; q2
T
) given in [20], which we will utilize in our problem, can be derived

from the homogeneous BFKL equation for f(qT;kT; y) in [15, 21] by �rst

integrating over the last momentum exchange kT in the pomeron ladder,

then scaling with q2
T
and integrating over the azimuthal angle in the kernel,

setting y = log(1=x) and �nally scaling with x. The BFKL equation then

becomes [20]

�x@f(x; q
2

T
)

@x
=

�sNc

�
q2
T

Z
1

0

dq2
1T

q2
1T

�
f(x; q2

1T
)� f(x; q2

T
)

jq2
T
� q2

1T
j +

f(x; q2
T
)q

q4
T
+ 4q4

1T

�
: (5)

The above equation is scale-invariant, so that additional information for

�xing the normalization of the f(x; q2
T
) is needed. The integrated gluon

densities of a proton, determined through the global analysis of parton dis-

tributions [20], will provide us with this input:

xg(x;Q2) =

Z Q2 dq2
T

q2
T

f(x; q2
T
): (6)

It should be noted that the non-perturbative nature of the pomeron-hadron

coupling is now hidden into the initial q2
T
-distribution f(x0; q

2

T
), which must
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be supplied at �xed x0 � 0:01. Equation (5) can then be solved numerically

to obtain f(x; q2
T
). In our discussion we will return to the treatment of the

infrared problems of Eq. (5) but here will rely on the analysis of [20].

Now we are ready to write down the formula for inclusive minijet produc-

tion from the BFKL pomeron ladder between the two colliding hadrons (nu-

clei) as illustrated in Fig. 3. Based on Eq. (4), we get the factor �sNc=(�
2p2

T
)

when pulling out a minijet by �xing the momentum of one rung of the

pomeron ladder. When doing this we form a new ladder on each side of

the minijet. The coupling of these ladders to the hadrons or nuclei is con-

tained in the initial condition for the unintegrated gluon distribution f(x; q2),

as explained above. Then, the cross section for inclusive minijet production

is bound to have the same structure as in Eq. (4), and one obtains [18, 19]

d�jet

d2pTdy
= KN

�sNc

�2

1

p2
T

Z
d2q1Td

2q2T �
(2)(pT�q1T+q2T)

f(x1; q
2

1
)

q2
1T

f(x2; q
2

2
)

q2
2T

(7)

where pT and y are the transverse momentum and the rapidity (in the hadron

CMS) of the minijet. From momentum conservation and multi-Regge kine-

matics the momentum fractions become

x1 �
pTp
s
e y; x2 �

pTp
s
e�y: (8)

Due to the fact that in this case we do not have an \external" hard probe like

the virtual photon with an associated quark box as in DIS, nor an on-shell

Born cross section to relax into, we cannot determine the overall dimension-

less normalization constant KN exactly. However, we are able to �x the slope

of the minijet pT-distribution. Then, based on this slope we will discuss the

upper bound for KN and actually argue that KN
<
�
1. It is possible that an

analysis of two-jet emission will clarify this issue. This demands in fact con-

sidering a kT-factorized form of the two-jet production cross section [30]. By

comparing this rate with the one evaluated directly from the BFKL ladder

one would hope to get an absolute normalization to the o�-shell gluon 
ux.

Instead of numerically solving the homogeneous BFKL equation (5), we

will use a simple parametrization for the solution, motivated by the form of

the solution in the limit of asymptotically small x [16, 20]:

f(x; q2
T
) =

C

x�

�
q2
T

q20

� 1

2 �'0q
2��00 ln(1=x)

exp

�
� ln2(q2

T
=�q2)

r2�00 ln(1=x)

�
: (9)

In this expression � = 4��s ln 2, �
00 = 28��s�(3), ��s = 3�s=�, �(3) = 1:202 is

the Riemann zeta function and �'0, q0 and �q are parameters characterizing

the initial distribution in [20]. We reproduce the width of the solution with
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an additional parameter r. For de�niteness we shall take �s = 0:2, resulting

in the same slope (� x�0:5) as in the MRSD-' set of parton distributions [31].

By choosing �q = q0 = 1, C �' = 1:19 and r = 0:15, the proposed parametriza-

tion (9) describes with a satisfactory accuracy the gluon distribution, which is

obtained as the numerical solution of the BFKL equation in the global anal-

ysis [20]3. For comparison with Ref. [20], we show the unintegrated gluon

distributions of Eq. (9) in Fig. 4 as functions of q2
T
at di�erent values of x.

Proceeding then to the computation of the minijet cross sections, we inte-

grate over the azimuthal angle between pT and q1 in Eq. (7) and �x KN = 1

and y = 0. Results for the minijet cross sections d�jet=(dpTdy) at the LHC

heavy-ion energy
p
s = 5:5 TeV and at the UA1 energy

p
s = 900 GeV are

shown in Figs. 5a and b. These are the main results of this paper. The cor-

responding cross sections from the more conventional, collinearly factorized

leading twist lowest order (CFLTLO) 2 ! 2 mechanism (see [9]) with the

MRSD-' parton distributions, are also shown for comparison. In the MRSD-'

parton distribution functions we have made a scale choice Q = pT, so we can

only proceed down to pT =
p
5 GeV, the lowest scale for this set. With the

BFKL mechanism, we extend our computation down to 1 GeV. Note also

that no K-factor to simulate the next-to-leading order (NLO) terms is used

for the CFLTLO computation.

In the BFKL approach only gluons are considered, and we have �xed

�s = 0:2 in Eq. (7). In order to compare the two production mechanisms at

the same level of approximation, we also plot the corresponding curves for

the collinearly factorized results. However, since in the analysis of f(x; q2
T
)

in [20], the strong coupling constant was set to run | phenomenologically,

because NLO corrections to the BFKL ladder are not yet known | we show

also the BFKL result with �s(pT).

Let us then come to the question of the normalization constant KN . We

expect the BFKL mechanism to be valid and potentially important only at

x < 0:01, where the rapid rise of the structure function F2(x;Q
2) is observed

[7, 8]. Based on Eq. (8), the region of validity would then be pT < 9 GeV

for
p
s = 900 GeV at y = 0 in Fig. 5b. On the other hand, the experi-

mentally measured jet cross sections at pT > 5:5 GeV [32] can be explained

through the collinear factorization mechanism for jet production rather than

through the BFKL mechanism considered here. When the next-to-leading

order corrections to CFLTLO jet cross section are included, the measured

jet cross sections are well reproduced [33, 34]. Let us also note that with a

scale choice Q = pT the NLO calculation can be reproduced by multiplying

the Born level cross section by a factor between 2 and 1.5, depending on
p
s

3We are grateful to D.M. Ostrovsky for a numerical check of this statement.
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and on the size of the jet [34]. This tells us that there is no room for an

additional jet production mechanism of the same order of magnitude. Given

this, and comparing the two mechanisms at the same level of approximation,

the conclusion from Fig. 5b is that the BFKL mechanism in Eq. (7) can

indeed at most have KN � 1. In fact, this provides an upper bound for the

non-leading BFKL corrections as well.

Up to this point, everything we have considered applies to pp collisions.

The �rst estimate, without nuclear modi�cations to the parton densities, of

the average number distributions of produced semihard gluons in central AA

collisions can be obtained simply by multiplying the results in Fig. 5 by the

nuclear overlap function, TAA(b = 0) � A2=(�R2

A) [3]. For central Pb-Pb

collisions, TPbPb(0) = 32=mb.

As the last step, we estimate the transverse energy production due to the

BFKL minijets in nuclear collisions. From the point of view of quark-gluon-

plasma formation, and of its further evolution, we are mostly interested in

the transverse energy deposit into the central rapidity region y � 0. An

estimate for the rapidity distribution of the average transverse energy in an

AA collision at an impact parameter b = 0 is obtained as

d �EAA
T

dy

����
y=0

= TAA(b)
Z
p0

dpTpT
d�jet

dpTdy

����
y=0

: (10)

Since the minijet cross sections computed for Fig. 5 are approximately con-

stant at rapidities jyj < 0:5, Eq. (10) also gives a good estimate for the

transverse energy deposit into the central unit of rapidity. By using the

BFKL cross sections in Fig. 5 with p0 = 1 GeV we obtain the results shown

in Table 1 for the LHC heavy-ion energy
p
s = 5:5ATeV. Again, comparison

with the CFLTLO results with p0 =
p
5 GeV is made in this table. We

remind the reader that the numbers quoted for the BFKL minijets are with

KN = 1 and we do not make any attempt to include nuclear modi�cations

[11, 12] in any of the gluon distributions considered.

Concerning our results, we would like to point out the following observa-

tions:

1. Although the BFKL mechanism we have considered here is leading

in powers of �s � BFKL � �s and CFLTLO � �2

s � and although the

transverse momenta in the BFKL ladder have enlarged phase-space in the

sense that they are not ordered as in the DGLAP-ladder, it is not enough to

overcome the CFLTLO contribution at pT � p0 � 2 GeV.

2. The slopes of the BFKL and CFLTLO computations in Fig. 5 are

quite similar at large pT. This demonstrates that at �xed
p
s the relevant

physical scale is the transverse momentum pT. Since the gluon distributions

have the slope � x�0:5 and since x � pT=
p
s, the jet cross sections scale as
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d �EPbPb

T
=dy BFKL CFLTLO

y = 0, b = 0 KN = 1, p0 = 1 GeV glue only, p0 =
p
5 GeV

�s = 0:2 3060 GeV 3060 GeV

�s = �s(pT) 4940 GeV 4870 GeV

Table 1: The average transverse energy at y = 0 carried by minijets with

pT � p0 in central Pb-Pb collisions at
p
s = 5:5 ATeV.

d�jet=dpT � (x1x2)
�0:5=p3

T
� ps=p4

T
for both mechanisms.

Let us next discuss the potential caveats and uncertainties. As discussed

above, due to the non-perturbative coupling of the pomeron to the hadrons

or nuclei, and lacking the corresponding partonic Born process as a special

limiting case, we were able to �x the slope of the minijet production only, not

the absolute magnitude. Based then on the measured jet cross sections [32]

and the collinearly factorized calculations, we argued that the production

of minijets through the BFKL mechanism can at most be compatible with

minijet production in the collinear factorization approach [9].

However, both approaches have problems when pT ! 0, which we did

not discuss above. At this limit the CFLTLO cross sections grow rapidly,

and, especially with the HERA parton distributions, it is not plausible to go

much below pT = p0 � 2 GeV since this leads to an overprediction of the

measured charged hadron distributions [35].

On the other hand, also the BFKL approach has serious infrared prob-

lems. As seen in Eq. (5), a contribution to the BFKL evolution comes from

the soft region qT < q0
T
� 1 GeV, the importance of which is enhanced if a

running coupling is used. The infrared region was treated in [20] by introduc-

ing an x-independent form factor at qT < q0
T
= 1 GeV together with �s(q

2

T
).

For a more detailed discussion, we refer to [20] and references therein. We

believe that in spite of this phenomenological input in the soft sector, the

correct order of magnitude of the BFKL results can be obtained since, �rst,

the high-q2
T
region can be computed perturbatively from the BFKL equation

and, second, the normalization of the unintegrated gluon distributions to the

integrated ones can be made. We would also expect that if the BFKL mech-

anism is indeed the reason for the rapid rise of the HERA parton densities at
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small x, it could dominate the minijet production in the region of pT < p0,

where the CFLTLO calculation does not apply.

The subleading contributions are not yet known for the BFKL approach,

although the work is currently in progress [36]. For the 2! 2 cross sections

of massless partons, the NLO terms have already been known for a while [37],

and they have been applied to the case of jet production [33]. However, one

should keep in mind that minijet production is conceptually di�erent from

the jet production since minijets are not observed as individual jets. For

minijets the NLO analysis can be made for infrared-safe quantities, such as

the transverse energy deposit in jyj � 0:5. This task has not been completed

yet. Especially, it remains to be seen what the scale dependence of the

transverse energy deposit turns out to be.

The last potential caveat, well hidden in our BFKL approach4, is related

to the inclusive and more exclusive processes. In [21], the calculation is well

de�ned, since the minijet production considered is fully inclusive. One �nds

a complete cancellation of infrared singularities between the virtual and real

emissions in the pomeron ladder, leading to the explicit form of the kernel in

Eq. (5). When the coherence of the ladder is broken by extracting a minijet,

a potential problem with the exclusiveness and the cancellation of the sin-

gularities arises (see [38]). At the moment we do not know precisely how to

address this problem. However, since we are computing semi-inclusive quan-

tities, in particular the transverse energy 
ow with less infrared-sensitivity,

we believe that our estimates of the magnitude of minijet production with

pT � 1 GeV and of the associated �EAA
T in jyj � 0:5 are reliable.

Finally, we would like to discuss the connection to other studies. Recently,

there has been a lot of activity in developing an approach to semihard par-

ton production in ultrarelativistic heavy-ion collisions, based on an idea of

colour charge distributions of the nuclear valence quarks moving along the

light cone and creating clouds of virtual gluons around them [27]. In this

approach, production of semihard quanta will result from a collision of two

such incoming clouds. The leading mechanism of minijet production would

then obviously be through 2! 1 processes, i.e. of order �s, not �
2

s as in the

collinearly factorized mechanism. Conceptually, this may be similar to the

BFKL mechanism we have considered here, although, to our knowledge, an

exact relation is not known at the moment.

To summarize, we have computed minijet production from a BFKL pom-

eron ladder and estimated the transverse energy production in the mid-

rapidity in a central Pb-Pb collision at
p
s = 5:5 ATeV. We have used un-

integrated gluon densities similar to those of Ref. [20], so as to show that

4We thank Yu. Dokshitzer for pointing this out.
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the BFKL contribution is at most of the same order of magnitude as the

collinearly factorized one in the considered region. However, with the BFKL

mechanism one could be able to bridge the way into the region pT < p0 in a

manner at least partly controlled by perturbative QCD.
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Figure Captions

Fig. 1. Fully inclusive minijet production with tagging jets a and b [21].

The BFKL pomeron ladder is denoted by f(qT;kT; ya�yb), and only the cut

ladder is shown. The thick lines represent the exponentiated gluon propa-

gators and the black blobs stand for the e�ective non-local Lipatov vertices.

Fig. 2. Production of minijet c from the cut BFKL pomeron ladder of Fig. 1

[22]. A new ladder arises on each side of the minijet.

Fig. 3. Production of minijets from the cut BFKL pomeron ladder without

tagging jets. The ovals with one thick line and three thin ones attached rep-

resent the incoming protons, and f(x1(2); q
2

1(2)T
) describe the BFKL pomeron

ladders obeying Eq. (5). For details, see the text. The cross section for

minijet production through this mechanism is given in Eq. (7).

Fig. 4. The unintegrated gluon distributions f(x; q2
T
) divided by

q
q2
T
as

given by the parametrization in Eq. (9) as a function of q2
T
. The curves

correspond to three di�erent, �xed values of x.

Fig. 5. a. Cross sections d�jet=(dpTdy) at y = 0 as functions of pT forp
s = 5:5 TeV as predicted by Eq. (7). For the BFKL mechanism, two

di�erent curves are shown: the solid line corresponds to having �xed �s = 0:2

in Eq. (7), the dashed line corresponds to �s = �s(pT). For the collinearly

factorized leading twist lowest order (CFLTLO) computation [9], we show

three di�erent curves: the dash-dotted line is the full computation with all

parton 
avours and �s(pT), the dashed line is the line with gluons only, and

the solid line is obtained with gluons only and �s = 0:2. To see the deviations

from scaling limit (see the text), the log-log plot is used.

b. The same as in Fig. 5a, but for
p
s = 900 GeV.
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