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ABSTRACT

Phases of elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, as

obtained using decays of B mesons to π+π−, π±K∓, and π+K0 or π−K
0
,

are shown to have a class of discrete ambiguities. In most cases these can
be eliminated using other information on CKM phases.
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A promising source of information about the mechanism of CP violation is the
study of rate asymmetries in the comparison of B and B decays to specific final
states. These asymmetries often involve unknown strong-interaction phase shifts. A
method was recently proposed [1] to circumvent this difficulty using time-dependent

B0 and B
0

decays and time-integrated rates for B0 → π−K+, B
0 → π+K−, and

B+ → π+K0 or B− → π−K
0
. (The last two rates are predicted to be equal.) Within

an assumption of flavor SU(3) for strong phase shifts and for diagrams dominated by
tree (but not penguin) graphs, it was possible to exhibit six equations in six unknowns
and thus to demonstrate the existence of solutions for all parameters of interest.
However, the Monte Carlo method employed in Ref. [1] indicated the presence of
discrete ambiguities. Using numerical methods in the present note, we clarify these
ambiguities, and show that they may be eliminated for the most part using other
information already known about phases of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix.

The amplitudes of the processes B0 → π+π− and B0 → π−K+ are defined as
Aππ and AπK , while that for B+ → π+K0 is defined as A+. The amplitudes for
the corresponding charge-conjugate decay processes are denoted by Aππ, AπK , A−,
respectively. It was shown in Ref. [1] that one can measure six independent com-
binations of the following six parameters: the strangeness-preserving tree amplitude
T , the strangeness-preserving and -violating penguin amplitudes P and P̃ ′, the weak
phases α and γ, and the strong phase δ. These combinations may be expressed as

A ≡ 1

2
(|Aππ|2 + |Aππ|2) = T 2 + P2 − 2T P cos δ cos α , (1)

B ≡ 1

2
(|Aππ|2 − |Aππ|2) = −2T P sin δ sin α , (2)

C ≡ Im (e2iβAππA
∗

ππ) = −T 2 sin 2α + 2T P cos δ sin α , (3)

D ≡ 1

2
(|AπK |2 + |AπK |2) = (r̃uT )2 + P̃ ′

2 − 2r̃uT P̃ ′ cos δ cos γ , (4)

E ≡ 1

2
(|AπK |2 − |AπK |2) = 2r̃uT P̃ ′ sin δ sin γ , (5)

F ≡ |A+|2 = |A−|2 = P̃ ′
2

. (6)

Here r̃u ≡ rufK/fπ, where ru ≡ |Vus/Vud| = 0.23. The quantities A − C are

measured in time-dependent rates for B0 or B
0 → ππ, D and E by comparing rates

for B+ → π−K+ and B− → π+K−, and F via the rate for the process B+ → π+K0,
which is predicted to be dominated by a single penguin amplitude and hence to have

the same rate as B− → π−K
0
.

We considered [1] a set of representative CKM elements parametrized [2] as shown
in Table I, where ρ and η are the real and imaginary parts of V ∗

ub/|VcdVcb|. For each
of these points, the phase shifts δ = 5.7◦, 36.9◦, 84.3◦, 95.7◦, 143.1◦, and 174.3◦ were
chosen. (We shall not be concerned here with sin δ = 0, a singular case in which
the above equations no longer provide sufficient information.) Monte Carlo results
indicated that the equations sometimes had more than one solution.

We have used an exact numerical method to obtain all solutions of Eqs. (1-6) for
the points p1, p2, p3 and the six phases δ. We express the five observables A, B, C, D, E
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Table I: Points in the (ρ, η) plane and angles of the unitarity triangle.

Point ρ η α β γ
(deg.) (deg.) (deg.)

p1 −0.30 0.15 20.0 6.6 153.3
p2 0 0.35 70.7 19.3 90.0
p3 0.36 0.27 120.3 22.9 36.9

in terms of five unknowns T ,P, α, γ, δ by substituting the measured value of P̃ ′ =
√

F
and noting that r̃u also is well-measured. The solution then proceeds as follows:

• We eliminate γ from Eq. (4) and Eq. (5) to get

D = r̃2

uT 2 + F − 2r̃uT
√

F cos δ

(

1 − E2

4r̃2
uT 2F sin2 δ

)1/2

. (7)

When both the sides are squared, this equation becomes a quadratic in x ≡
sin2 δ whose coefficients depend only on T . For each of the solutions which is
real and lies between 0.0 and 1.0 (since x = sin2 δ),

• we eliminate α from Eq. (1) and Eq. (2) to get

A = T 2 + P2 − 2T P cos δ

(

1 − B2

4T 2P2 sin2 δ

)1/2

. (8)

When both the sides of this equation are squared, we obtain a quadratic in
y ≡ P2 whose coefficients involve only T and x, which is a known function of
T . We proceed with those values of y that are real and positive.

• Now we know all the other unknowns P, α, γ, δ as explicit functions of a single
unknown T . We can now check for those values of T which satisfy Eq.(3). We
can increase the accuracy of our solutions as much as we want by decreasing
the step size in T and using the zero crossing algorithm, where a solution cor-
responds to that value of T where increasing T by a small amount changes the
sign of [L.H.S. - R.H.S.] in Eq. (3).

As many as 8 solutions were found for some sets of input parameters. The results
are summarized in Tables II – IV for points p1 − p3. We calculate A − E for the
input values T = 1, P̃ ′ = 1, P = P̃ ′ru sin γ/ sin α [assuming flavor SU(3) for the
input], and the input strong phases shown in the Tables. The equations are then
inverted using the method described above to obtain the output phases. In some cases
the numerical algorithm gives two closely related or identical sets of output phases;
we have indicated these with equal numbers. These are probably identical solutions
arrived at through two different branches of the step-by-step method described above,
with small differences associated with rounding errors. Nonetheless, we feel this point
could benefit from further study.
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Table II: Output values of weak and strong phases, for given values of input strong
phases, in degrees, for the point p1 with αin = 20.0◦ and γin = 153.3◦.

δin αout γout δout Notes

5.7 20.0 153.4 5.7 (a)
10.4 106.1 1.4 (b)

36.9 20.0 153.4 36.9 (a)
84.3 20.0 153.4 84.3 (a)

70.6 153.8 84.6 (c)
21.5 28.7 97.5 (b)
71.8 26.4 95.5 (b)
59.3 93.1 23.6 (d)
29.9 70.8 136.5 (b)
82.8 83.4 152.3 (d)

95.7 18.8 25.0 83.6 (b)
71.5 24.8 83.5 (b)
20.0 153.4 95.7 (a)
72.8 155.0 96.4 (c)
60.8 82.6 22.7 (d)
29.3 91.9 140.3 (b)
83.2 96.0 154.0 (e)

143.1 72.2 16.6 48.6 (b)
14.4 14.6 50.8 (b)
20.0 153.2 143.3 (a,1)
20.0 153.4 143.1 (a,1)
76.3 162.9 132.0 (c)
66.4 49.6 15.7 (b)
81.7 132.6 162.4 (c)

174.3 74.1 3.1 40.2 (b)
15.0 3.0 41.1 (b)
15.9 176.7 140.9 (c)
75.0 176.9 139.9 (b)
20.0 153.4 174.3 (a)
81.1 140.7 176.8 (c)

(a) Correct solution; (b) β > π/4 ; (c) α + γ > π;
(d) potential ambiguity; (e) β or γ too small.
Numbers denote solutions probably identical to one another.
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Table III: Output values of weak and strong phases, for given values of input strong
phases, in degrees, for the point p2 with αin = 70.7◦ and γin = 90.0◦. Notes are as for
Table II.

δin αout γout δout Notes

5.7 5.7 173.8 88.7 (e)
84.6 173.9 89.1 (c)
5.8 6.3 91.6 (b)

70.7 90.0 5.7 (a)
171.5 82.0 170.7 (c)
17.8 62.9 158.1 (b)
98.6 89.2 174.0 (c)

36.9 15.2 127.2 82.6 (d)
82.0 39.0 91.0 (b)
70.7 90.0 36.9 (a)
92.5 88.8 140.6 (c)

84.3 71.1 90.7 86.3 (a,1)
70.7 90.0 84.3 (a,1)

95.7 69.2 80.2 89.1 (d)
69.5 98.9 90.8 (d)
24.2 87.5 71.3 (b)
65.8 88.0 74.2 (d)
19.8 83.7 52.1 (b)
70.7 90.0 95.7 (a)

143.1 30.8 34.3 88.8 (b)
61.3 33.7 88.5 (b)
31.1 145.4 91.1 (d)
61.0 146.2 91.5 (c)
50.2 86.2 29.3 (d)
19.5 81.1 21.8 (b)
39.8 86.4 135.2 (b)
70.7 90.0 143.1 (a)

174.3 31.4 174.8 91.6 (c)
58.9 174.8 91.6 (c)
46.8 85.8 4.4 (b)
19.5 80.8 3.4 (b)
43.3 87.1 173.1 (b)
70.7 90.0 174.3 (a)
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Table IV: Output values of weak and strong phases, for given values of input strong
phases, in degrees, for the point p1 with αin = 120.3◦ and γin = 36.9◦. Notes are as
for Table II.

δin αout γout δout Notes

5.7 141.6 5.0 40.0 (e)
126.8 4.9 40.3 (b)
128.4 175.2 138.8 (c)
143.2 175.3 138.6 (c)
135.7 34.0 6.5 (d)
120.3 36.9 5.7 (a)
136.2 134.6 176.1 (c)
151.4 131.9 176.7 (c)

36.9 120.4 36.8 37.0 (a,1)
120.9 34.2 39.5 (a,1)
129.8 154.5 131.9 (c)
146.4 155.8 130.6 (c)
120.2 37.2 36.8 (a,1)
135.2 128.8 157.9 (c)
152.7 125.7 161.5 (c)

84.3 145.8 38.2 84.6 (c)
120.3 36.9 84.3 (a)
147.4 143.6 95.9 (c)
121.9 143.8 95.9 (c)
137.6 86.7 47.8 (c)
111.1 85.1 40.4 (c)
132.3 97.2 148.9 (c)
158.6 100.7 156.0 (c)

95.7 146.8 140.0 82.3 (c)
118.6 142.4 83.8 (c)
148.8 37.2 96.0 (c)
120.3 36.9 95.7 (a)
139.7 105.3 51.2 (c)
109.6 98.6 41.2 (c)
130.9 87.8 148.5 (c)
160.5 94.6 157.2 (c)

143.1 120.3 36.9 143.1 (a,1)
158.9 25.4 129.1 (c)
120.3 36.9 143.1 (a,1)
120.2 37.0 143.3 (a,1)
121.7 42.6 148.4 (d)

174.3 109.9 171.3 25.7 (c)
113.4 7.4 150.5 (b)
159.4 6.1 145.1 (e)
106.6 158.1 10.3 (c)
120.3 36.9 174.3 (a)
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The correct solutions in Tables II – IV are labeled (a). Solutions with β > π/4
[labeled (b)] imply ρ > 1/2, which is disfavored by the constraint [1] (ρ2 + η2)1/2 =
|Vub/VcdVcb| = 0.27 ± 0.09. Solutions (c) with α + γ > π similarly imply CKM
parameters outside the currently allowed range of (ρ, η), as do those (e) with β or γ
too small. A few of the unphysical solutions show up on the plots of Ref. [1], but
many were not found because attention was restricted to values of α and γ in rough
accord with known CKM constraints.

One source of discrete ambiguity is the approximate symmetry α ↔ π/2 − α
or α ↔ 3π/2 − α. This substitution leaves B, D, E, F , and the first term in C
unchanged for fixed values of γ, δ, T , P, and P̃ ′. The substitution does affect the
interference terms between T and P in A and C, but small changes in the parameters
seem to be able to compensate for this effect.

Another frequently encountered discrete ambiguity involves the interchange γ ↔
δ, which leaves D and E invariant. Of course, α changes under this replacement.

Many solutions thus can be rejected as unphysical. Those “wrong” solutions
which remain [labeled (d)] are sources of potential ambiguity. While the existence of
discrete ambiguities undercuts the ability of the method to point toward new physics,
the procedure serves as a consistency check of the standard CKM picture and as a
potential source of further constraints on parameters within that context.
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