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Phases of elements of the Cabibbo-Kobayashi-Maskawa~CKM! matrix, as obtained using decays ofB
mesons top1p2, p6K7, andp1K0 or p2K̄0, are shown to have a class of discrete ambiguities. In most
cases these can be eliminated using other information on CKM phases.@S0556-2821~96!02219-9#
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A promising source of information about the mechanis
of CP violation is the study of rate asymmetries in the com
parison ofB and B̄ decays to specific final states. Thes
asymmetries often involve unknown strong-interaction pha
shifts. A method was recently proposed@1# to circumvent
this difficulty using time-dependentB0 and B̄0 decays and
time-integrated rates forB0→p2K1, B̄0→p1K2, and
B1→p1K0 orB2→p2K̄0. ~The last two rates are predicte
to be equal.! Within an assumption of flavor SU~3! for strong
phase shifts and for diagrams dominated by tree~but not
penguin! graphs, it was possible to exhibit six equations
six unknowns and thus to demonstrate the existence of s
tions for all parameters of interest. However, the Mon
Carlo method employed in Ref.@1# indicated the presence o
discrete ambiguities. Using numerical methods in the pres
work, we clarify these ambiguities, and show that they m
be eliminated for the most part using other information a
ready known about phases of the Cabibbo-Kobayas
Maskawa~CKM! matrix.

The amplitudes of the processesB0→p1p2 and
B0→p2K1 are defined asApp and ApK , while that for
B1→p1K0 is defined asA1 . The amplitudes for the corre
sponding charge-conjugate decay processes are denote
Āpp ,ĀpK , andA2 , respectively. It was shown in Ref.@1#
that one can measure six independent combinations of
following six parameters: the strangeness-preserving t
amplitudeT, the strangeness-preserving and -violating pe
guin amplitudesP andP̃8, the weak phasesa andg, and the
strong phased. These combinations may be expressed as
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A[
1

2
~ uAppu21uĀppu2!5T 21P 222TPcosd cosa, ~1!

B[
1

2
~ uAppu22uĀppu2!522TPsind sina, ~2!

C[Im~e2ibAppĀpp* !52T 2sin2a12TPcosd sina, ~3!

D[
1

2
~ uApKu21uĀpKu2!5~ r̃ uT !21P̃8222r̃ uT P̃8cosd cosg,

~4!

E[
1

2
~ uApKu22uĀpKu2!52r̃ uT P̃8sind sing, ~5!

F[uA1u25uA2u25P̃82. ~6!

Here r̃ u[r uf K / f p , where r u[uVus /Vudu50.23. The
quantitiesA-C are measured in time-dependent rates forB0

or B̄0→pp, D, andE by comparing rates forB1→p2K1

and B2→p1K2, and F via the rate for the process
B1→p1K0, which is predicted to be dominated by a single
penguin amplitude and hence to have the same rate a
B2→p2K̄0.

We considered@1# a set of representative CKM elements
parametrized@2# as shown in Table I, wherer andh are the
real and imaginary parts ofVub* /uVcdVcbu. For each of these
points, the phase shiftsd55.7°, 36.9°, 84.3°, 95.7°,
143.1°, and 174.3° were chosen.~We shall not be concerned
here with sind50, a singular case in which the above equa-
tions no longer provide sufficient information.! Monte Carlo
results indicated that the equations sometimes had more tha
one solution.
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We have used an exact numerical method to obtain
solutions of Eqs.~1!–~6! for the pointsp1, p2, p3 and the
sixphasesd. We express the five observablesA,B,C,D,E in
terms of five unknownsT,P,a,g,d by substituting the mea-

TABLE I. Points in the (r,h) plane and angles of the unitarity
triangle.

Point r h a b g
~deg! ~deg! ~deg!

p1 20.30 0.15 20.0 6.6 153.3
p2 0 0.35 70.7 19.3 90.0
p3 0.36 0.27 120.3 22.9 36.9

TABLE II. Output values of weak and strong phases, for give
values of input strong phases in degrees, for the pointp1 with
a in520.0° andg in5153.3°. Numbers denote solutions probabl
identical to one another.

d in aout gout dout Notes

5.7 20.0 153.4 5.7 a
10.4 106.1 1.4 b

36.9 20.0 153.4 36.9 a

84.3 20.0 153.4 84.3 a
70.6 153.8 84.6 c
21.5 28.7 97.5 b
71.8 26.4 95.5 b
59.3 93.1 23.6 d
29.9 70.8 136.5 b
82.8 83.4 152.3 d

95.7 18.8 25.0 83.6 b
71.5 24.8 83.5 b
20.0 153.4 95.7 a
72.8 155.0 96.4 c
60.8 82.6 22.7 d
29.3 91.9 140.3 b
83.2 96.0 154.0 e

143.1 72.2 16.6 48.6 b
14.4 14.6 50.8 b
20.0 153.2 143.3 a,1
20.0 153.4 143.1 a,1
76.3 162.9 132.0 c
66.4 49.6 15.7 b
81.7 132.6 162.4 c

174.3 74.1 3.1 40.2 b
15.0 3.0 41.1 b
15.9 176.7 140.9 c
75.0 176.9 139.9 b
20.0 153.4 174.3 a
81.1 140.7 176.8 c

aCorrect solution.
bb.p/4.
ca1g.p.
dpotential ambiguity.
eb or g too small.
all

sured value ofP̃85AF and noting thatr̃ u also is well mea-
sured. The solution then proceeds as follows.

We eliminateg from Eq. ~4! and Eq.~5! to get

D5 r̃ u
2 T 21F22r̃ uTAFcosdS 12

E2

4r̃ u
2 T 2Fsin2d D

1/2

.

~7!

When both sides are squared, this equation becomes a q
dratic in x[sin2d whose coefficients depend only onT. For
each of the solutions that is real and lies between 0.0 and
~sincex5sin2d), we do the following.

We eliminatea from Eq. ~1! and Eq.~2! to get

A5T 21P 222T PcosdS 12
B2

4T 2P2sin2d D 1/2. ~8!

n

y

TABLE III. Output values of weak and strong phases, for give
values of input strong phases, in degrees, for the pointp2 with
a in570.7° andg in590.0°. Notes are as for Table II.

d in aout gout dout Notes

5.7 5.7 173.8 88.7 e
84.6 173.9 89.1 c
5.8 6.3 91.6 b
70.7 90.0 5.7 a
171.5 82.0 170.7 c
17.8 62.9 158.1 b
98.6 89.2 174.0 c

36.9 15.2 127.2 82.6 d
82.0 39.0 91.0 b
70.7 90.0 36.9 a
92.5 88.8 140.6 c

84.3 71.1 90.7 86.3 a,1
70.7 90.0 84.3 a,1

95.7 69.2 80.2 89.1 d
69.5 98.9 90.8 d
24.2 87.5 71.3 b
65.8 88.0 74.2 d
19.8 83.7 52.1 b
70.7 90.0 95.7 a

143.1 30.8 34.3 88.8 b
61.3 33.7 88.5 b
31.1 145.4 91.1 d
61.0 146.2 91.5 c
50.2 86.2 29.3 d
19.5 81.1 21.8 b
39.8 86.4 135.2 b
70.7 90.0 143.1 a

174.3 31.4 174.8 91.6 c
58.9 174.8 91.6 c
46.8 85.8 4.4 b
19.5 80.8 3.4 b
43.3 87.1 173.1 b
70.7 90.0 174.3 a
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When both sides of this equation are squared, we obtai
quadratic iny[P2 whose coefficients involve onlyT and
x, which is a known function ofT. We proceed with those
values ofy that are real and positive.

TABLE IV. Output values of weak and strong phases, for give
values of input strong phases, in degrees, for the pointp1 with
a in5120.3° andg in536.9°. Notes are as for Table II.

d in aout gout dout Notes

5.7 141.6 5.0 40.0 e
126.8 4.9 40.3 b
128.4 175.2 138.8 c
143.2 175.3 138.6 c
135.7 34.0 6.5 d
120.3 36.9 5.7 a
136.2 134.6 176.1 c
151.4 131.9 176.7 c

36.9 120.4 36.8 37.0 a,1
120.9 34.2 39.5 a,1
129.8 154.5 131.9 c
146.4 155.8 130.6 c
120.2 37.2 36.8 a,1
135.2 128.8 157.9 c
152.7 125.7 161.5 c

84.3 145.8 38.2 84.6 c
120.3 36.9 84.3 a
147.4 143.6 95.9 c
121.9 143.8 95.9 c
137.6 86.7 47.8 c
111.1 85.1 40.4 c
132.3 97.2 148.9 c
158.6 100.7 156.0 c

95.7 146.8 140.0 82.3 c
118.6 142.4 83.8 c
148.8 37.2 96.0 c
120.3 36.9 95.7 a
139.7 105.3 51.2 c
109.6 98.6 41.2 c
130.9 87.8 148.5 c
160.5 94.6 157.2 c

143.1 120.3 36.9 143.1 a,1
158.9 25.4 129.1 c
120.3 36.9 143.1 a,1
120.2 37.0 143.3 a,1
121.7 42.6 148.4 d

174.3 109.9 171.3 25.7 c
113.4 7.4 150.5 b
159.4 6.1 145.1 e
106.6 158.1 10.3 c
120.3 36.9 174.3 a
n a

Now we know all the other unknownsP,a,g,d as explicit
functions of a single unknownT. We can now check for
those values ofT that satisfy Eq.~3!. We can increase the
accuracy of our solutions as much as we want by decreas
the step size inT and using thezero crossing algorithm,
where a solution corresponds to that value ofT where in-
creasing T by a small amount changes the sign o
c1T 2sin2a22T Pcosd sina.

As many as eight solutions were found for some sets
input parameters. The results are summarized in Tab
II–IV for points p1–p3. We calculateA–E for the input
values T51, P̃851, P5P̃8r using /sina @assuming flavor
SU~3! for the input#, and the input strong phases shown i
the tables. The equations are then inverted using the meth
described above to obtain the output phases. In some ca
the numerical algorithm gives two closely related or identic
sets of output phases; we have indicated these with eq
numbers. These are probably identical solutions arrived
through two different branches of the step-by-step meth
described above, with small differences associated w
rounding errors. Nonetheless, we feel this point could bene
from further study.

The correct solutions in Tables II–IV are labeled~a!. So-
lutions with b.p/4 @labeled ~b!# imply r.1/2, which is
disfavored by the constraint @1# (r21h2)1/2

5uVub /VcdVcbu50.2760.09. Solutions~c! with a1g.p
similarly imply CKM parameters outside the currently al
lowed range of (r,h), as do those~e! with b or g too small.
A few of the unphysical solutions show up on the plots o
Ref. @1#, but many were not found because attention wa
restricted to values ofa andg in rough accord with known
CKM constraints.

One source of discrete ambiguity is the approximate sym
metrya↔p/22a or a↔3p/22a. This substitution leaves
B,D,E, F, and the first term inC unchanged for fixed values
of g, d, T, P, andP̃8. The substitution does affect the inter-
ference terms betweenT and P in A and C, but small
changes in the parameters seem to be able to compensate
this effect.

Another frequently encountered discrete ambiguity in
volves the interchangeg↔d, which leavesD andE invari-
ant. Of course,a changes under this replacement.

Many solutions thus can be rejected as unphysical. Tho
‘‘wrong’’ solutions that remain@labeled~d!# are sources of
potential ambiguity. While the existence of discrete ambigu
ities undercuts the ability of the method to point toward ne
physics, the procedure serves as a consistency check of
standard CKM picture and as a potential source of furth
constraints on parameterswithin that context.
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