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ABSTRACT

Phases of elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, as

obtained using decays of B mesons to 7+7—, 7 KT, and 77 K° or 7 K,
are shown to have a class of discrete ambiguities. In most cases these can
be eliminated using other information on CKM phases.
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A promising source of information about the mechanism of CP violation is the
study of rate asymmetries in the comparison of B and B decays to specific final
states. These asymmetries often involve unknown strong-interaction phase shifts. A
method was recently proposed [1] to circumvent this difficulty using time-dependent
B° and B’ decays and time-integrated rates for B® — 7~ K+, B° — 7tK~, and
Bt 5 1tK%or B- s 1 K. (The last two rates are predicted to be equal.) Within
an assumption of flavor SU(3) for strong phase shifts and for diagrams dominated by
tree (but not penguin) graphs, it was possible to exhibit six equations in six unknowns
and thus to demonstrate the existence of solutions for all parameters of interest.
However, the Monte Carlo method employed in Ref. [1] indicated the presence of
discrete ambiguities. Using numerical methods in the present note, we clarify these
ambiguities, and show that they may be eliminated for the most part using other
information already known about phases of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix.

The amplitudes of the processes B® — 777~ and B — 7~ KT are defined as
Arr and Arg, while that for BT — 77K is defined as A,. The amplitudes for
the corresponding charge-conjugate decay processes are denoted by A, Arx, A_,
respectively. It was shown in Ref. [1] that one can measure six independent com-
binations of the following six parameters: the strangeness-preserving tree amplitude
T, the strangeness-preserving and -violating penguin amplitudes P and P, the weak
phases a and ~y, and the strong phase §. These combinations may be expressed as
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Here 7, = rufx/fr, where r, = |V,s/Via| = 0.23. The quantities A — C' are
measured in time-dependent rates for B° or B = wmw, D and E by comparing rates
for Bt - n~K* and B~ — 7K, and F via the rate for the process Bt — n+tK?,
which is predicted to be dominated by a single penguin amplitude and hence to have
the same rate as B~ — 7 K .

We considered [1] a set of representative CKM elements parametrized [2] as shown
in Table I, where p and 7 are the real and imaginary parts of V% /|V.qVi|. For each
of these points, the phase shifts § = 5.7°, 36.9°, 84.3°, 95.7°, 143.1°, and 174.3° were
chosen. (We shall not be concerned here with sind = 0, a singular case in which
the above equations no longer provide sufficient information.) Monte Carlo results
indicated that the equations sometimes had more than one solution.

We have used an exact numerical method to obtain all solutions of Egs. (1-6) for
the points py, p2, p3 and the six phases §. We express the five observables A, B,C, D, E



Table I: Points in the (p,7n) plane and angles of the unitarity triangle.

Point P n o 16} y
(deg.) (deg.) (deg.)
pr —0.30 0.15 20.0 6.6  153.3
D2 0 0.35 70.7 19.3  90.0
D3 0.36 0.27 1203 229 36.9

in terms of five unknowns 7', P, a, 7, § by substituting the measured value of P’ = /F
and noting that 7, also is well-measured. The solution then proceeds as follows:

e We eliminate v from Eq. (4) and Eq. (5) to get

) JE 2 1/2
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When both the sides are squared, this equation becomes a quadratic in x =
sin? § whose coefficients depend only on 7. For each of the solutions which is
real and lies between 0.0 and 1.0 (since z = sin® §),

e we eliminate o from Eq. (1) and Eq. (2) to get

A=T?+P?>—2TPcosd 1—B—2 v (8)
N AT?P?sin® § '

When both the sides of this equation are squared, we obtain a quadratic in
y = P? whose coefficients involve only 7 and x, which is a known function of
T. We proceed with those values of y that are real and positive.

e Now we know all the other unknowns P, a,y, d as explicit functions of a single
unknown 7. We can now check for those values of 7~ which satisfy Eq.(3). We
can increase the accuracy of our solutions as much as we want by decreasing
the step size in T and using the zero crossing algorithm, where a solution cor-
responds to that value of 7 where increasing 7 by a small amount changes the
sign of [L.H.S. - R.H.S.] in Eq. (3).

As many as 8 solutions were found for some sets of input parameters. The results
are summarized in Tables I — IV for points p; — p3. We calculate A — E for the
input values 7 = 1, P’ = 1, P = P'r,sinvy/sina [assuming flavor SU(3) for the
input], and the input strong phases shown in the Tables. The equations are then
inverted using the method described above to obtain the output phases. In some cases
the numerical algorithm gives two closely related or identical sets of output phases;
we have indicated these with equal numbers. These are probably identical solutions
arrived at through two different branches of the step-by-step method described above,
with small differences associated with rounding errors. Nonetheless, we feel this point
could benefit from further study.



Table II: Output values of weak and strong phases, for given values of input strong
phases, in degrees, for the point p; with a;, = 20.0° and ~;, = 153.3°.

5in Qlout Yout 50ut Notes

20.0 1534 174.3
81.1 140.7 176.8

SR

57 200 1534 57 (a)
104 106.1 1.4 (b)

36.9 20.0 1534 369 (a)
843 200 1534 843 (a)
70.6 1538 84.6 (c)
215 287 975 (b)
718 264 955 (b)
593 93.1 236 (d)
20.9 708 1365 (b)
828 834 1523 (d)
95.7 188 250 83.6 (D)
715 248 835 (b)
200 1534 95.7 (a)

728 155.0 964 (c)
60.8 826 227 (d)
293 919 140.3 (b)
832 96.0 154.0 (e)
1431 722 166 486 (Db)
144 146 508 (b)
20.0 153.2 143.3 (a,1)
20.0 1534 143.1 (a1)
76.3 162.9 132.0 (c)
66.4 496 15.7 (b)
81.7 132.6 1624 (c)
1743 741 3.1 402 (b)
150 3.0 41.1 (b)
15.9 176.7 1409 (c)

75.0 1769 139.9 (b)

(a)

()

(a) Correct solution; (b) > /4 ; (¢) a+v >
(d) potential ambiguity; (e) 5 or v too small.
Numbers denote solutions probably identical to one another.



Table IIT: Output values of weak and strong phases, for given values of input strong
phases, in degrees, for the point ps with ay, = 70.7° and +;, = 90.0°. Notes are as for
Table II.

5in Qout Yout 5out Notes
5.7 5.7 173.8  88.7

—~
(¢]
~—

84.6 173.9 89.1 (c)

58 63 916 (b)

70.7 900 57 (a)

171.5 820 170.7 (c)

178 629 158.1 (b)

98.6 89.2 174.0 (c)

36.9 152 1272 82.6 (d)
820 39.0 910 (b)

70.7  90.0 369 (a)

92.5 88.8 140.6 (c)

843 711 90.7 863 (al)
70.7  90.0 843 (al)

9.7 692 802 89.1 (d)
69.5 989 908 (d)

242 875 713 (b)

658 88.0 742 (d)

19.8 837 521 (b)

70.7  90.0 957 (a)

1431 30.8 343 888 (b)
61.3 337 885 (b)

31.1 1454 9L1 (d)

61.0 146.2 915 (c)

502 86.2 29.3 (d)

195 81.1 21.8 (b)

30.8 864 1352 (b)

70.7  90.0 143.1 (a)
1743 314 1748 0916 (c)
58.9 1748 916 (c)

468 858 44 (b)

195 808 3.4 (b)

433 871 173.1 (b)

(a)

70.7  90.0 174.3

Q




Table IV: Output values of weak and strong phases, for given values of input strong
phases, in degrees, for the point p; with oy, = 120.3° and =, = 36.9°. Notes are as
for Table II.

5in Qout Yout 5out Notes
5.7 141.6 5.0 40.0

—~
(¢]
~—

159.4 6.1 145.1
106.6 158.1  10.3
120.3 36,9 174.3

¢}

Q

@]
o — —

1268 4.9 403 (b)
1284 175.2 1388 (c)
1432 1753 1386 (c)
135.7 340 65 (d)
120.3 369 5.7 (a)
136.2 134.6 176.1 (c)
151.4 131.9 176.7 (c)
36.9 1204 36.8 37.0 (al)
1209 342 395 (a])
120.8 154.5 1319 (c)
146.4 155.8 130.6 (c)
1202 372 368 (a)
135.2 128.8 157.9 (c)
152.7 125.7 1615 (c)

843 1458 382 846 ()
120.3 369 843 (a)
1474 1436 959 (c)
121.9 1438 959 (c)
137.6  86.7 47.8 (c)
111.1 851 404 (c)
1323 97.2 1489 (c)
158.6 100.7 156.0 (c)
957 1468 140.0 823 ()
1186 1424 838 (c)
1488 372 96.0 (c)
120.3 369 95.7 (a)
139.7 1053 51.2 (c)
109.6 986 41.2 (c)
130.9 87.8 1485 (c)
160.5 94.6 157.2 (c)
1431 1203 369 1431 (a1)
1589 254 129.1 (c)
120.3 369 1431 (a,1)
120.2  37.0 1433 (a,1)
121.7  42.6 1484 (d)
1743 109.9 171.3 257 (c)
1134 74 1505 (b)

(

(

(




The correct solutions in Tables II — IV are labeled (a). Solutions with 8 > 7 /4
[labeled (b)] imply p > 1/2, which is disfavored by the constraint [1] (p? + 7?)Y/? =
|Vin/VeaVes| = 0.27 + 0.09. Solutions (c¢) with o + v > 7 similarly imply CKM
parameters outside the currently allowed range of (p,7), as do those (e) with 5 or v
too small. A few of the unphysical solutions show up on the plots of Ref. [1], but
many were not found because attention was restricted to values of a and ~ in rough
accord with known CKM constraints.

One source of discrete ambiguity is the approximate symmetry a < 7/2 — «
or <> 37/2 — a. This substitution leaves B, D, E, F', and the first term in C
unchanged for fixed values of v, §, 7, P, and P’. The substitution does affect the
interference terms between 7 and P in A and C, but small changes in the parameters
seem to be able to compensate for this effect.

Another frequently encountered discrete ambiguity involves the interchange v <>
0, which leaves D and FE invariant. Of course, a changes under this replacement.

Many solutions thus can be rejected as unphysical. Those “wrong” solutions
which remain [labeled (d)] are sources of potential ambiguity. While the existence of
discrete ambiguities undercuts the ability of the method to point toward new physics,
the procedure serves as a consistency check of the standard CKM picture and as a
potential source of further constraints on parameters within that context.
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