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If supersymmetric particles are discovered at high-energy colliders, what can we
Liope to learn about them? In principle, the properties of supersymimetric particles
can give a window into the physics of grand unification, or of other aspects of
interactions at very short distances. In this article, I sketch out a systematic
program for the experimental study of supersymmetric particles and point out the
essential role that et ¢~ linear colliders will play in this investigation.

1 Introduction

When we think about the motivation for a future accelerator project, it is easy
cnough to work out its ability to continue ongoing experimental programs or
10 test with greater stringency well-understood theoretical models. In these
areas, we can anticipate the goals of the next generation of experiments, and
we can reasonably compute the effectiveness of a new facility in meeting these
goals. And, when the price of a step in accelerator energy is in the billions of
dollars, it is reasonable that the physics community and the taxpayers should
ask for a program of experimentation that is well-considered and analyzed.

But these programmatic goals are the last thing on our minds when we
dream about new facilities for experimental particle physics. What we are
really hoping for is the discovery of new physical processes, of new particles
and interactions. To the extent that these process are truly unanticipated,
we cannot be quantitative about the capabilities of a proposed machine to
discover them. Thus, we have a ‘Catch-22’ situation. In such a situation,
there is a danger that simplistic or naive criteria can dominate the discussion
of the relative merits of possible future facilities.

To go beyond naive arguments, it is necessary to look into the details of
theoretical models. I do not mean by this that we must accept one of these
models as the truth. Rather, we must investigate models that are plausible,
and consider a large enough class of models to illustrate the range of options for
the next level of elementary particle physics. Let me emphasize that arguments
should flow from the study of models toward facilities; that is, we must first ask
what are the crucial problems that our field faces and then, given the various
options for their solution, what facilities will provide the experimental data
that we require.

If we ask what are the major problems facing elementary particle physics,

1



people give many answers. However, there is a single best answer: We must un-
derstand the mechanism for the spontaneous breaking of the weak-interaction
gauge symmetry, SU(2) x U(1). This answer springs out ahead of the others
for three reasons. First, this problem is the single glaring flaw in the standard
gauge theory of strong, weak, and electromagnetic interactions. From the pre-
cision experiments on the electroweak interactions done over the last six years
at SLAC, CERN, and Fermilab, we know that the weak interactions are de-
scribed by a gauge theory with spontaneous symmetry breaking, and we know
that this theory is not powerful enough to break its own symmetry. Thus,
some external agent is required. Second, because the mass scale of electroweak
symmetry breaking is the scale of the W and Z masses, we know that the
agent of this symmetry breaking must be close at hand, accessible to this or
the next generation of accelerators. Third, because the spontaneous breaking
of SU(2) x U(1) is the origin of the masses of all quarks, leptons, and gauge
bosons, the solution to any of the other pressing problems of elementary parti-
cle physics—CP violation, quark mixing, neutrino masses, or whatever—must
be based on finding the correct solution to this problem. Thus, to discuss
the relative merits of future collider facilities, we must enumerate a variety
of possible solutions to the problem of electroweak symmetry breaking and
understand their implications.

In a study of this kind, special consideration must be given to the pos-
sibility that Nature is supersymmetric at the TeV energy scale. It is by now
well appreciated among elementary particle physicists that supersymmetry, the
proposed symmetry which connects fermions and bosons, is an interesting op-
tion for the next layer of physics beyond the standard model. The motivations
for believing that supersymmetry is a property of Nature have been discussed
in many places, and I will not repeat them all here. Two useful reviews of
phenomenological supersymmetry are those of Nilles and Haber and Kane? A
recent list of encouragements for supersymmetry has been given in ref. 3. In
the present context, I would like to emphasize only one of these motivations,
the fact that supersymmetry can provide the explanation for the spontaneous
breaking of the weak-interaction gauge symmetry. (This aspect of supersym-
metry has recently been reviewed in ref. *.) Supersymmetry models naturally
contain Higgs scalar fields; they are on the same epistomological footing as
the scalar fields associated with quarks and leptons. These particular scalar
fields obtain negative (mass)? from radiative corrections due to the top quark
Yukawa coupling; thus, if the top quark is the heaviest standard particle, the
required pattern of electroweak symmetry breaking is naturally explained. Fi-
nally, supersymmetry is the unique setting in which the Higgs field and other
fundamental scalar fields do not obtain much larger postive contributions to
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their masses from radiative corrections. In this sense, supersymmetric models
are the only models of electroweak symmetry breaking through fundamental
scalar fields which all of the conceptual problems of this idea are naturally
remedied.

Many other explanations of SU(2) x U(1) breaking are possible. These
explanations are based on strong-coupling dynamics. For example, they may
postulate the pair condensation of new fermions or bosons to create a vac-
uum asymmetry. However, the fact that supersymmetric models have a weak-
coupling mechanism of symmetry breaking puts them in a special position. The
array of mathematical methods to study strong-coupling problems in quantum
field theory is rather limited. To work out the consequences of strong-coupling
models of electroweak symmetry breaking, we have to guess the outcome of
proposed strong-coupling dynamics. In models of supersymmetry, we can just
compute. That does not mean that supersymmetric models are intrinsically
more plausible, but it does mean that we can analyze them in great detail. In-
deed, if we assume that supersymmetry is the explanation of weak interaction
symmetry breaking, we can trace out the whole program of experimentation
that would follow from this assumption and understand exactly what this pro-
gram asks of future high-energy colliders. This gives a way of evaluating and
comparing planned colliders which is scientific and yet corresponds to our hopes
for their success. In principle, we should perform such an analysis for every
proposed model of electroweak symmetry breaking. It is illuminating, in any
event, to carry out the analysis for this one tractable case.

We have now arrived at the starting point for this article. I will assume
that Nature is supersymmetric at the TeV energy scale, and that supersym-
metry provides the explanation for SU(2) x U(1) symmetry breaking. Let me
assume also that the first signal of supersymmetry has been discovered, per-
haps already at LEP 2 or at the Fermilab collider, perhaps at the LHC or at
an ete~ linear collider. What happens next?

In Section 2, I will trace out the first consequence of this assumption:
The crucial problem for experiments at the next generation of colliders will be
the exploration of the mechanism of supersymmetry breaking. This problem
can be solved systematically by a three-stage experimental program that I
will describe in Sections 3-5. In Section 6, I will review the role that hadron
colliders have to play in this program. It is interesting, but limnited by several
well-known aspects of supersymmetry phenomenology. Finally, in Section 7, I
will review the analysis and point out the crucial questions that belong in the
province of et e~ experiments. In the accompanying article, Fujif will discuss
the measurements at ete~ linear colliders which would provide the answers to
these questions and thus give the foundation for the next stage of development
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of elementary particle physics.

2 The Issue of Supersymmetry Breaking

If supersymmetry is the mechanism of electroweak symmetry breaking, we ex-
pect that it will be visible at the weak interaction scale. In fact, this hypothesis
implies that the W and Z masses belong to the mass scale of supersymmetry.
We can use that idea to to estimate the masses of the supersymmetric partners

of quarks, leptons, and gauge bosons. If we assume that the value of the weak

scale is a natural consequence of supersymmetry dynamics, that is, that there
1s no fine adjustment of parameters to make this scale especially small, we ob-
tain limits on the masses of supersymmetry partners. The most characteristic
of these are limits on the masses of the W and gluon partners

m(w) < 250GeV , m(g) < 800GeV | (1)

for some reasonable limits on allowable fine adjustment® Under the most com-
monly used hypotheses for supersymmetry phenomenology, in which there is
a conserved ‘R-parity’ which makes the lightest supersymmetric partner sta-
ble, these particles will decay to unobserved neutral states, giving signatures
of missing energy and unbalanced momentum which should be visible both at
lepton and at hadron colliders? In brief, if this scheme is chosen by Nature, we
will know it. I would now like to go on from this point. The discovery of su-
persymmetry will open up a new field of study in elementary particle physics,
and it will be the task of the machines that discover supersymmetry also to
explore it.

If we discover that quarks, leptons, or gauge bosons have supersymmetric
partners, what is the next question that we would like to answer? A simple
reply is that we will want to measure the masses of these supersymmetric
partners and understand their properties systematically. I would like to address
this issue in more detail.

The equation of motion of a supersymmetric extension of the standard
model has three parts. Of these, two are highly constrained by supersymmetry:
The gauge interactions of superpartners are fixed by their SU(3) x SU(2)x U (1)
quantum numbers, and the renomalizable couplings of quark, lepton, and Higgs
partners are fixed to be equal to the corresponding couplings of the standard
model. However, the third piece of the puzzle is a complete mystery. If we
wish to understand why the partners of quarks and leptons are heavy, we must

®T will not review here schemes of supersymmetry phenomenology in which R-parity is
violated; see refs. 2 and”.

appeal to some mechanism of spontaneous supersymmetry breaking. This
mechanism is unknown and is not constrained by a direct connection to any
known physics. This mechanism controls the regularities of the supersymmetric
mass spectrum and the possible mixings between superpartner states. It also
controls the other important qualitative features of the theory. For example,
the various sources of the Higgs boson masses which lead eventually to SU(2) x
U/ (1) breaking have their origin in supersymmetry breaking.

Supersymmetry breaking also connects the phenomenology of supersym-
metry to the truly deep questions about the structure of elementary particles.
If Nature is supersymmetric and weakly-coupled at the TeV scale, it is reason-
able that the strong, weak, and electromagnetic interactions have their origin
in a grand unified symmetry group. Indeed, there is evidence from the preci-
sion measurement of the coupling constants at Z® energies that the standard
model coupling constants extrapolate to a unification when the extrapolation
is done with renormalization group equations which incorporate the supersym-
metric particle spectrum? It is important to ask what additional hints we can
obtain from experiment about the nature of this underlying or unified theory
at very short distances. It is obvious that, to get new information, we must
go outside those parameters which are already understood from applying su-
persymmetry relations to the standard model couplings. What is less obvious,
but also true, is that the the supersymmetry breaking parameters measured
at the weak scale can provide essential clues to the origin of supersymmetry
breaking in the physics of very short distances and, just possibly, a glimpse
into the structure of the truly fundamental theory.

What, exactly, do we wish to know about supersymmetry breaking? At
the first level of any discussion of the physics of supersymmetry breaking, two
questions arise. The answers to these questions would take us a long way
toward an understanding of supersymmetry breaking and its relation to the
other fundamental interactions.

The first of these questions is the mass scale of supersymmetry breaking
and, as a closely connected issue, the scale of the transmission of supersym-
metry breaking. The interplay of these scales deserves some explanation. To
begin, we should recall why it is that the quarks and leptons are expected to
be lighter than their superpartners, rather than the other way around. Quarks
and leptons can receive mass only if SU(2) x U(1) is spontaneously broken.
However, their partners—squarks and sleptons-—are scalars, and there is no
principle of quantum field theory that prohibits scalar fields from obtaining
a mass. What keeps the quark and lepton partners light is their supersym-

“The success of this prediction, and the size of the residual uncertainties, are reviewed in
8
ref. ®.



metry relation to their fermion partners. If supersymmetry is spontaneously
broken in some sector of Nature, and this sector communicates with the quarks
and leptons and their partners through some interactions, the supersymmetry
breaking will be transmitted to the squarks and sleptons to produce scalar
masses and other simple interactions. Call the scale of these masses mg. The
Higgs boson masses will also be of scale mg. The Higgs vacuum expectation
value will also be of size mg, up to coupling constants, and so mg will deter-
mine the location of the weak interaction scale. Then, finally, masses are fed
down to the quarks and leptons according to the strength of their coupling to
the Higgs sector.

The value of mg is determined by the underlying physics responsible for
spontaneous supersymmetry breaking. Let A be the mass scale of spontaneous
supersymmetry breaking, and let M be the mass of the particles that con-
nect the symmetry-breaking sector to the quarks, leptons, and standard model
gauge bosons. I will refer to M as the ‘messenger scale’, and it will play a
crucial role in our analysis. Though the relation between M, A, and mjs is
model-dependent, the general form of this relation is given by the equation

AZ
ms ~ 4F (2)

so that different choices for A and M are correlated by the fact that they must
generate mg ~ my.

By default, gravity (or supergravity) is the messenger. This was made
clear in the beautiful foundational papers of Cremmer and collaborators?® who
showed explicitly how supersymmetry breaking is transferred from the original
symmetry-breaking sector to the rest of Nature through supergravity inter-
actions. More generally, the messenger interactions might be associated with
the grand unified scale or other flavor physics, with some intermediate scale,
or with the standard model gauge interactions. The nature of the messenger
plays an important role in determining the form and selection rules for the
supersymmetry breaking masses and interactions.

If this were our only information about M and A, there would be consid-
erable room for speculation. Fortunately, the range of possible theories that
lead to M and A is limited by additional constraints. These stem from the
second problem that the mechanism of supersymmetry breaking must solve,
the ‘supersymmetric flavor problem’. To understand this 1ssue, let us write the
formula for the mass matrix of the scalar partners of the d. s, b quarks. Since
in supersymmetry left- and right-handed fermions have independent complex
scalar fields as their superpartners, I will write this matrix as a 2 x 9 matrix
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of 3 x 3 blocks, acting on a vector

(%) ®

where ¢ is the generation label, i = 1,2,3. The mass matrix gets contributions
from four sources, two of which are supersymmetric—the quark mass matrix
mg of the standard model, and the combination of this term with the Higgs
mass parameter p—and two of which arise from supersymmetry-breaking—
scalar field mass matrices m3; and mZp, and a mixing term generated by
a supersymmetry-breaking 3-scalar term involving the Higgs field. The final
result is a matrix

M2 = ( m; +maml,  —ma(A+ utanﬂ)) . )
—mL(A + ptan 3) mfm + mLmd

[n this equation, tan g is the ratio of the two Higgs field vacuum expecta-
tion values required in the minimal supersymmetric extension of the standard
model: tan3 =< hY > / < A >= vy/v;. This parameter infects all of su-
persymmetry phenomenology. I have simplified the expression by writing the
3-scalar term in terms of a constant parameter A. In principle, this could also
be a matrix with flavor indices.

The quark mass matrix my is not intrinsically diagonal. In standard weak
interaction phenomenology, we diagonalize it with matrices V; and Vg which
cventually become ingredients of the Cabbibo-Kobayashi-Maskawa mixing ma-
trIX:

mq
myg = VL mg VR . (5)
mg

‘Then the Z° couplings are automatically flavor-diagonal; flavor-changing neu-
tral current effects appear only in loop diagrams, and only proportional to
products of quark mass differences. This lead to the observed suppression
of flavor-changing neutral current processes. However, the mass matrix (4)
contains new sources of flavor violation through the supersymmetry-breaking
scalar mass matrices m3;, m2,. Unless the diagonalization of my also diag-
onalizes these matrices, diagrams with supersymmetric particles in loops can
provide new and dangerous sources of flavor violation. For example, apply-
ing this logic to the contribution to the Kr—Kg mass difference due to gluino
exchange, Gabbiani and Masierd'® have derived the bound

(VRmgg Vi -2 ™3 \2
: 6
mZ <107 (550 Gev) ©)



Similar bounds on the flavor violation of the supersymmetry-breaking mass
terms have been discussed by many authors?

Why should the supersymmetry-breaking scalar masses be diagonal in the
same basis as the standard model mass terms? There are a large number of
explanations for this in the literature. These explanations divide into general
classes which express the range of possibilities for the underlying physics of
supersymmetry breaking. On the one hand, it is possible that the supersym-
metry breaking scalar masses are universal among generations, so that the
mass matrices m3; , m%, are proportional to 1 and thus diagonal in any basis.
Or these mass matrices may have structure, but they might also have a reason
to be diagonal in the basis set by the mass matrix. On the other hand, the
mechanism for the specific form of these matrices might be predetermined by
the short-distance physics, or it might arise as the result of dynamical effects
on larger scales. Thus, we have four classes of models:

1. Preset Universality. This is the original schema for supersymme-
try model building which was proposed in the early papers of Dimopoulos
and Georgtt? and Sakai!® It is realized elegantly, with M equal to the Planck
mass mpj, in models in which supersymmetry is broken at a high scale and
the breaking is communicated by supergravity!* Other agents which couple
universally to quarks and leptons can also give models of this structure.

2. Dynamical Universality. This class encompasses a broad range of
models in which the supersymmetry-breaking mass matrices are fixed in a man-
ner determined only by the standard model gauge couplings of superpartners.
It includes the ‘no-scale’ models in which m%, m% are zero at the fundamen-
tal scale and are generated by radiative corrections}® a model of Lanzagorta
and Ross'® in which m%, m% are determined by an infrared fixed point, and
models studied by Dine, Nelson, Nir, and Shirman'” in which supersymmetry
is broken at a low scale and communicated through the standard model gauge
interactions.

3. Preset Alignment. This class of models attempts to build up the
supersymmetry-breaking mass matrices using the same principles that one uses
to construct the standard model quark mass matrices (for example, the suc-
cessive breaking of discrete symmetries). Then these symmetry principles can
insure that the two sets of matrices are diagonal in the same basis, without
flavor-degeneracy of scalar masses!® In this class of models, it is natural for
the messenger scale to be of the order of the grand unification scale.

4. Dynamical Alignment. In this class of models, the relative orien-
tation of the supersymmetry-breaking and standard model mass matrices is a
free parameter in the underlying theory and is determined to be aligned by

dSee, for example, ref. ; some recent articles are given in ref. 11,
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radiative corrections. The one current example of a model in this class has
M near the Planck scale!®, leading to a phenomenology very similar to that
of the class just above. A very low value of M might be more natural in this
scheme and may lead to some different options.

Here are four broad classes of possibiilities for the mechanism of super-
symmetry breaking. It is interesting to lay out the various possibilities in this
way, because it makes clear that every specific solution to the supersymmetric
flavor problem entails a choice of M and therefore of A. If we can recognize
experimentally which possibility Nature chooses, we can also infer the nature
of the messenger and perhaps the specific origin of supersymmetry breaking.

How can we decide which mechanism is chosen? At a certain level, it is ob-
vious that the answer can be found by measuring the spectrum of superparticle
masses. To probe more deeply, we should ask which of these measurements are
easy and which are very challenging, and whether the measurements that are
reasonably straightforward can actually give us the information we are looking
for.

To understand how we will learn about these fundamental issues from mea-
surements, it is necessary to work out the correspondence between properties
of the supersymmetry spectrum and the various hypotheses described above.
1 will descibe that correspondence in Section 5. To prepare the way, we must
first discuss two issues that provide the baseline for that analysis, the masses
of the gauge boson superpartners and the value of the Higgs sector parameter
tan 3.

3 Gaugino Masses

In the discussion of the previous section, we concentrated our attention on
the masses of the scalar partners of the quarks and leptons. The masses of the
fermionic partners of gauge bosons—gauginos—did not seem to play an impor-
tant role. But in fact, a precise understanding of gauginos is a prerequisite to
any detailed exploration of supersymmetry. This is true for two reasons. First,
gaugino masses influence scalar masses through radiative corrections. Second,
the nature of the gaugino mass matrix affects the general phenomenology of
supersymmetry, as viewed by collider experiments. In this section, I will review
both of these issues.

The systematics of gaugino masses forms an essential part of the scalar
mass problem due to the diagram shown in Figure 1. The scalar masses are
renormalized, as shown, by the transition to a gaugino and a quark or lep-
ton. This process gives a correction to the mass which is described by the
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Figure 1: Feed-down of gaugino masses into scalar masses.

renormalization group equation

dm? 2
_ 20 am2
dlog 0 Zi 7 Croami (7)

where mf, are the scalar masses and m; are the gaugino mass parameters
generated by supersymmetry breaking. The coupling constants «; are the
standard model couplings, evaluated at the weak interaction scale, normalized
as in grand unification: oy = Qg 0y = ay, a1 = (5/3)a’. The C; are Casimir
coefficients:

3 3 4

Cr=:v?, CQ:{G ﬁ’ 03:{% . (8)
The renormalization group equation must be integrated from the messenger
scale M to the weak scale. One of the ways we can determine the value of the
messenger scale is to estimate how far this renormalization group equation has
been evolved in order to produce the observed spectrum of scalar masses. To
do that, we require the values of the gaugino masses, to set the overall scale of
this effect.

At the same time that they renomalize the scalar masses, the gaugino
masses evolve by their own renormalization. This means that a simple spec-
trum of gauginos at one scale will acquire structure as we move to a different
scale. The simplest possible picture of gaugino masses is that they are grand-
unified, that is, they are all equal at the grand unification scale. From this
starting point, the one-loop renormalization group equation gives an inter-
esting pattern at lower scales: The gaugino masses evolve so as to remain
proportional to the gauge couplings:

my mo mg

T w )
[ will refer to this systematic relation as ‘gaugino unification’. The simnple rela-
tion is corrected by the two-loop terms in the renormalization group equations

10

and by finite one-loop corrections at the weak scale2? The only large correction
comes in the finite contributions which relate the short-distance gluino mass
to the physical gluino mass?® a problem reminiscent of the problems of the

quark mass definition in QCD.

[t is interesting to ask how broad a class of models obey gaugino uni-
fication. Obviously, if there is no grand unification, there is no reason for
this relation to be true. However, one of the phenomenological virtues of su-
persymmetry is that it allows the grand unification of couplings, and so it is
reasonable to assume this in model-building. Still, grand unification does not
necessarily imply gaugino unification. On one hand, the messenger scale might
be well below the grand unification scale, so that the physics of gaugino mass
generation is not grand unified. On the other hand, it is possible that the field
which breaks supersymmetry is not a singlet of the grand unification group.
Thus, a violation of gaugino universality would be a signal of one of these
mechanisms and thus would be of great experimental importance. Curiously,
though, the simplest models of each type actually respect the relation (9), so
that the observation of gaugino universality is not in itself a signature for a
particular mechanism of supersymmetry breaking2?

The experimental measurement of the gaugino mass parameters m; brings
in some additional issues. The parameter m3 is the only contribution to the
mass of the supersymmetry partner of the gluon, the gluino, up to the usual
problems of defining the mass of a colored particle. I will discuss techniques
for the measurement of the gluino mass in Section 6. For the supersymmetry
partners of W, Z, and v, however, there are additional effect that contribute
to their masses. Even in a supersymmetric situation, the partners of W and
Z will obtain mass from the Higgs mechanism. This mass term couples the
fermionic parters of the vector bosons to the fermionic partners of the Higgs
bosons. These latter particles can obtain mass also from a supersymmetric
mass term g, and we know from the non-observation of light superpartners at
the Z° that yu is nonzero®

These effects are summarized as a mixing problem involving the vector
boson and Higgs boson superpartners. Supersymmetric models necessarily
include two Higgs doublets hy, hs; therefore, they contain physical charged
Higgs fields, which have fermionic partners. Denote the left-handed fermion
partners of W* and k3 by @*t, A}, and adopt a similar notation for the
left-handed fermion partners of W~ and h7. Then the charged fermionic
superparticles have a mass matrix, including all three of the effects described

“A tiny corner of parameter space is still available; see rof 23.
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Figure 2: Lines of constant ;T mass in the (mg2, u) plane, for tang = 4.

in the previous paragraph, which takes the form

. 2 i —wt
(—zw“ hf)(ﬁmnvz,zcosﬁ \[mv;&nﬂ)( E; ) . (10)

This mass matrix is asymmetric, and its diagonalization will generally require
a different mixing angle for the positively and negatively charged left-handed
fermions. In a similar way, the Z, photon, and neutral Higgs partners have a
4 x 4 mixing problem:

m 0 —mygzsinf, cos 3 mgsinf, sin 4
0 mo mz cosfy, cos f  —myzcosfy, sin 3
—myzsinfy, cos 3 myz cos by cos 3 0 —p
mzsinfy,sin 3 —mz cosby sin 3 —u 0
(11)

acting on the vector (—iz, 4@{%?,%3). The mass eigenstates of (10) and (11)
are called, respectively, ‘charginos’ and ‘neutralinos’ and are denoted Y;, ¥V.

One cannot, then, extract m; and ms simply by observing the masses of
supersymmetric particles. It is also necessary to understand which values of
the mixing angles Nature has chosen. Constraints coming from searches for
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Figure 3: Diagrams contributing to the process e~et — ;1 ;1_

charginos and neutralinos are often plotted on the plane of my versus p, at
a constant value of tan 3. The lines in this plane representing constant mass
of the lighter chargino, for tan 3 = 4, are shown in Figure 2. Toward the
bottom of this figure, the masses of the lightest charginos and neutralinos are
close to m, and my, and these particles are composed dominantly of the gauge
partners. Toward the top of the figure, the lightest chargino and neutralino
become degenerate at the value ¢ and behave like the partners of Higgs bosons.
This means that it is essential, both for the extraction of the supersymmetry
breaking parameters and for the more general understanding of the signatures
of supersymmetry that experiments should determine where we actually sit in
the (mg, #) plane.

In hadron colliders, the dependence on the chargino and neutralino mixing
angles is typically folded with other dependences on supersymmetry param-
eters and must be obtained as part of a grand fit. However, lepton colliders
offer certain specific tools which allow one to solve the chargino and neutralino
mixing problem experimentally. 1 will now present two techniques for doing
this.

In this discussion, I will present the formulae for eTe~ cross sections to
supersymmetric particle pairs in a rather schematic way. A very useful com-
pilation of the formulae for supersymmetry production in e*e™ reactions can
be found in ref. 24,

We first consider the reaction e~et — X7 X, making use of the highly
polarized electron beams which are anticipated for linear collider experiments.
In ref. 22, some wonderful observations are made about this process. To un-
derstand these, imagine first that we study the reaction at very high energy,
so high that we can ignore all masses. Now assume that the electron beam can
be polarized completely in the right-handed orientation. Since right-handed
electrons do not couple to the SU(2) gauge interactions, the second diagram
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Figure 4: Total cross section for the process e}_ie+ — ;;’;1_, in fb, as a function of m; and
i, for tan 3 = 4, from ref. 25. The selected region is that in which the lightest chargino is
too heavy to have been discovered at the Z° but is accessible to a 500 GeV et e~ collider.

in Figure 3 vanishes. In addition, the first diagram in Figure 3 involves only
the linear combination of ¥ and Z° which gives the U(1) (hypercharge) gauge
boson. But the U(1) gauge boson does not couple to W superpartners. Thus,
this diagram only involves the Higgs superpartners. If we project onto the
lowest mass eigenstate, the rate of the process eget — ifif will be propor-
tional to the squares of the mixing angles linking the El— and 712' to this mass
eigenstate.

The promise which is suggested by this high-energy analysis is actually
realized under more realistic conditions. In Figure 4, I plot contours of this
polarized cross section for an ete™ collider at 500 GeV in the relevant region
of the (mg, #) plane. You can see that the cross section maps out this plane,
giving the location chosen by Nature, up to a two-fold (u — —p) ambiguity,
for any determined value of the chargino mass.

Actually the chargino pair production cross section contains even more in-
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Figure 5: Diagrams contributing to the processes (a) e"et — et (b)eme — e,

formation. Going back to the limit of very high energies, the angular distribu-
tion for an e, to produce a right-handed fermion is proportional to (1+cos 6)2,
while the angular distribution to produce a left-handed fermion is (1 — cos 6)2.
Thus, the forward production of ¥7 is given by the mixing angle for E';, while
the backward production is controlled by the mixing angle for ﬁl_ Thus, mea-
surement of both the total cross section and the forward-backward asymmetry
for this process gives the two mixing angles needed to diagonalize the chargino
mass matrix (10). In this analysis, one must assume that there are only two of
Higgs doublets that the weak scale (as is required for the grand unification of

couplings), but there are essentially no other model-dependent assumptions2®

A second method for determining the gaugino mixing parameters involves
the production of electron partners, selectrons. There are two selectrons, one
the partner of ef, the other the partner of ef. (These states can be distin-
guished most easily by the polarization asymmetry of their production.) I will
discuss the expectations for the selectron masses in Section 5; let me note for
now that these particles are expected to be among the lightest superpartners.

The Feynman diagrams which contribute to selectron production in ete~
annihilation are shown in Figure 5(a). The second diagram involves neutralino
exchange. Although this diagram is exotic, it typically dominates, since the
lightest neutralino is usually lighter than the Z° and the diagram is a ¢-channel
rather than an s-channel exchange. A related process is that of selectron
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production in " e~ collisions. Here the reaction is mediated only by neutralino
exchange diagrams, in the ¢- and u-channel.

To discuss these processes, it is convenient to define ‘neutralino functions’,
i the following way: Let Vi; be the orthogonal matrix that diagonalizes (11),
with the first index denoting a weak eigenstate and the second denoting a mass
eigenstate. Define

1
i = - Vi
Ve cos Gy, !
1 1
Vi = Vi 1% (12)

- 19 — B 2 -
2 cos Oy, 2sin b,

Then define, for a,b = I, R,

mi
Nas(t) = E Vaimvbi
mym;
Mas(t) = 3 Vai—y— Vi (13)

where the sum runs over the four neutralino mass eigenstates, m; is the mass
of the ith neutralino, and m; has been introduced to make the functions di-
mensionless. The neutralino functions are simply related to the production
cross sections, for example,

do _ o
dcosB(BRE+ - 6361’;
.2
sin” @ s s ]
= 7%2 [ = 5 = —2NRR(t)]2B3 sin?§ . (14)

cos? By, s —m%  m?

The functions Ngg, Mg, N1 enter the formulae for the production of QIEEE,
€r€7, and €7 €}, respectively, in e*e~ annhiliation; the opposite three combi-
nations enter into the production cross sections for e~ ¢~ .

The neutralino functions are full of information about the neutralino mix-
ing problem. As an example, I plot in Figure 6 the values of the six neutralino
functions, extrapolated to ¢ = 0, along a contour of constant chargino mass in
the (my, 1) plane. These variables also map the position in this plane. Though
it is not shown here, the relative heights of the curves are sensitive to the value
of m; /my and thus provide a test of gaugino unification. A detailed simulation
of selectron pair production which uses these ideas to extract m;, my and 7
has been presented in ref. 22.

16

1.5 T

NorM

0

3-96 8136A6

Figure 6: Values of the ‘neutralino functions’ N,;, M;;, at t = 0, as a function of the angle in
the (m2, ) plane: o = tan~!(x/m;). The solid curves denote the predictions for selectron
productionin ete™ collisions, the dotted curves for selectron production in e~e™ collisions.
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4 Determination of tan 3

The set of parameters needed for a precise understanding of the spectrum of
superpartners also includes tan 8 = v2/v;, the ratio of the Higgs field vacumm
expectation values. We have already seen that tan [ appears as a parameter in
the gaugino mixing problem. This parameter also plays a role in the formula for
the scalar masses. Through the supersymmetrization of the gauge interactions,
all quark and lepton partners receive a ‘D-term’ contribution to their masses
of the form

tan?g — 1
tan? 3+ 1

where I® and Q are the electroweak quantum numbers/ More generally, any
discussion of the experimental signatures of supersymmetry brings in many
sources of dependence on tan 3, through the production and decay ampli-
tudes for gauginos and Higgs bosons. Thus, it is important to find a model-
independent method for determining this paramter.

Unfortunately, there is no method known which systematically determines
tan 8 throughout its whole range of possible values. I will discuss here four
methods, of which the first two apply mainly for small or intermediate values
of tan # and the last gives a bound rather than a value.

The first method for determining tan 3 goes back to the chargino produc-
tion cross section discussed in Section 3. I argued there that it is possible to
determine the mixing angles needed to diagonalize the chargino mass matrix;
from these, one can deduce the off-diagonal elements of this mass matrix. But
note from (10) that the ratio of these elements is just equal to tan 3. Since
these off-diagonal elements are related by supersymmetry to the vertices which
give mass to the W boson, this ratio is model-independent. In ref. 2°, it was
remarked that the determination of the chargino mass matrix discussed there
could be interpreted as a tan 3 measurement. Then this parameter could be
determined with an accuracy of was 3% at tan 8 = 4, for a parameter set
in which the lightest chargino was a roughly equal mixture of gaugino and
Higgsino.

A second method for determining tan 8 has been proposed by Nojiri?®
This involves a beautiful supersymmetry observable for linear colliders, the
polarization of the 7 leptons produced in 7 decay. The 7 polarization is now
known to be straightforwardly measurable in ete~ experiments. The polar-
ization of 7’s from T decay contains information on the mixing of the two 7
eigenstates and on the decay pattern. For a full discussion of the extraction of

Am} = —m%( J(I? — @sin?6,,) | (15)

f1f the theory contains additional gauge bosons, there are additional D terms. I include
these in the model-dependent part of the scalar masses.
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Figure 7: Components of the decay ;R — 7';(1).

this information, see ref. 6. For the purpose of this discussion, I will simply

point out that the mixing of 77 and Tg can be determined from the 7 cross
sections and polarization asymmetry. In the following discussion, I will assume
for simplicity that the lightest = partner is an unmixed Tg.

The dominant decay of this scalar should be to 7X}. In terms of weak-
interaction eigenstates, there are two amplitudes that contribute to this decay;
these are shown in Figure 7. On one hand, the 77 can decay to a 75 with
the emission of a °. On the other hand, the Tp can decay to a 7; with the

emission of a 71? These two processes give rise to a nontrivial 7 polarization,
given to first order by
cos?f, mZ 1 p(%?)

T

Plr7)=1- — =
(™) sin® 6, myy cos? B p(50)

(16)

where p(h?) and p(8°) are the probabilities that the lightest neutralino appears
as one of these states. If we know the content of the lightest neutralino mass
eigenstate in terms of weak eigenstates—and I have given methods for deter-
mining this in the previous section—this formula can be solved for cos 3. This
technique should give tan 8 measurements below the 10% level even when the
Higgsino component of the lightest neutralino is rather small.

Ideally, tan 3 can be determined from the branching ratios of the heavy
Higgs bosons of supersymmetry. If the A? boson of the Higgs sector has a
mass well above the Z° mass, the lightest Higgs boson h® has branching ratios
close to those of the Higgs boson of the minimal standard model. However,
the heavy Higgs bosons H° and A° have couplings which reflect the ratio of
the two Higgs vacuum expectation values. For example,

T(H® — 1) M 9 \2 4m? . 172
F(HO —>bb) (mb co ,6) ( m}{, ( )

Unfortunately, these heavy Higgs bosons have masses of order 500 GeV in typ-
ical models, and they must be pair-produced (except in vy collisions); thus,
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they may be difficult to find in the early stages of linear collider experimenta-
tion.

As a last resort, there is one interesting determination of tan 3 that will be
available from the LHC. The processes H?, A’ — 7++~ is a possible mode for
observing the heavy Higgs bosons at the LHC, but only if the branching ratios
to 717~ are enhanced by a large value of tan 32728 If this signature can be
observed, then tan § > 10, which is already sufficient information to evaluate
the scalar mass contribution (15) to a reasonable accuracy.

5 The Pattern of Scalar Masses

In the previous two sections, I have discussed the experimental determination
of the parameters which provide the baseline for a discussion of the spectrum
of scalar masses. With these parameters known, we can examine the pattern
of scalar masses systematically. Let me now discuss how this can be done, and
what variety of patterns the various models of Section 2 produce.

In general, the formula for a scalar partner mass has three components.
First, there is the underlying supersymmetry-breaking mass term. At least
for the light generations, for which we can ignore the Yukawa couplings to the
Higgs sector, this term is not renormalized at the level of one-loop renormal-
ization group equations. Second, there is the contribution fed down from the
gaugino masses, obtained by integrating the renormalization group equation
(7). Finally, there is the D-term contribution (15). Once tan f is known, this
last, contribution can be computed in a model-independent way and subtracted;
I will define the reduced scalar partner masses

ms = m} — Amp(1%,Q) . (18)

Next, we must deal with the mass contribution due to gauginos. The result
of integrating (7) can be conveniently written

. a?-a‘?
mE = My + (ZQCZ—’—bE;—M—) -m? . (19)
. iad
i3

In this equation, ¢ = 1,2, 3 runs over the standard model gauge groups. The (;
are the Casimirs from (8). The b; are the renormalization group coefficients;
these are given by b; = (—33/5,—1,3) for ¢ = 1,2, 3 in minimal supersymmetry.
Finally, the a;a are the values of the coupling constants at the messenger scale
M. In writing this equation, I have assumed gaugino universality to convert
the gaugino masses to the single value my, which should be precisely known.
I emphasize again that gaugino universality is an assumption, but one which
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can be confirmed or refuted experimentally as part of the broader exploration
of supersymmetry.

In Section 2, the class of models exhibiting dynamical universality included
models in which the messengers of supersymmetry breaking were the standard
model gauge interactions. In models of this type, gaugino masses are generated
directly by one-loop diagrams involving the supersymmetry breaking sector,
and scalar masses are generated at the two-loop level. I have already noted that
these models can naturally lead to gaugino unification. A particular model of
Dine, Nelson, Nir, and Shirman'” gives also gives a simple spectrum of scalar

nmasses: 2
—2 a; .
m? = (Z 20,-53) g ; (20)

in this formula, the coefficient 2 depends on the model assumptions, while the
general structure is characteristic of this mechanism for the communication of
supersymmetry breaking.

The simplicity of the formula (20) and its curious resemblance to (19)
motivates us to consider the following device for exhibiting the spectrum of
quark and lepton superpartners. We plot the ratio 7 /m; against a weighted
combination of Casimirs,

2
c=0Q a0 (21)
p 2

The prediction of (20) is that the superpartner spectrum is a straight line on
this plot. Thus it is reasonable to call this device the ‘Dine-Nelson plot’.

Models in which the scalar masses come dominantly from the renormal-
ization group effect (19) also have a relatively simple form on the Dine-Nelson
plot. In Figure 8, I have plotted the contributions from renormalization-group
running for three values of the messenger scale—a low scale M = 100 TeV, the
grand unification scale 2 x 101 GeV, and the fundamental scale of superstring
theory, 10*® GeV. As a comparison, I have also plotted the result (20). It is
important to note that the Casimir C is not continuously variable but rather
takes only fives distinct values, those for the SU(2) x U(1) multiplets of the
standard model, fg, Lr, dgr, ug, and @r. Of these, the values of C for dg
and ug (and also the gaugino contributions to their scalar masses) are highly
degenerate. So the Dine-Nelson plot is really defined by the value of the masses
at these specific points. The curves in Figure 8 are intended only to guide the
cye.

The device of the Dine-Nelson plot gives us a concrete way to view the
distinctions between the various classes of models reviewed in Section 2. In
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Figure 8: Some reference models displayed on the Dine-Nelson plot. The solid lines show

the integration of the renormalization group equation for two values of the messenger scale.

The dotted line shows the linear relation predicted in the model of Dine, Nelson, Nir, and
Shirman.
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Figure 9: Six classes of models of supersymmetry breaking, displayed as patterns on the
Dine-Nelson plot. The solid reference line is the result of integrating the renormalization
group equation from the Planck scale. The models (a)-(f) are described in the text.
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Figure 9, I have plotted the spectrum of quark and lepton partners for each
of six representative models. The values of the masses are compared to the
position of the top solid curve from Figure 8, representing the gaugino loop
contribution of Figure 1 integrated from the superstring scale.

Model (a) is a typical model with preset universal scalar masses commu-
nicated by supergravity!® The values of the masses sit a constant distance in
(mass)? above the solid curve. This increment is positive, so that the theory
does not develop an instability at the fundamental scaled Notice that the
sleptons are typically lighter than the squarks, but the ratio of these masses
depends on the size of the original supersymmetry-breaking mass term relative
to that generated by renormalization group corrections.

Model (b) is the Dine-Nelson-Nir-Shirman model " I have made some small
improvements of the formula (20), evaluating the coupling constants at a more
realistic scale of about 100 TeV, and then adding the renormalization group
enhancements as the masses come down to the weak interaction scale. The
dashed line is copied from Figure 8. Notice that in this class of models the
slepton masses are rather small, and also different by a factor 2 between the
partners of left- and right-handed leptons.

Model (c) is a variant of the supergravity models which has been con-
sidered in ref. 3°. Here the original supersymmetry-breaking scalar masses
are universal among generations for a given set of gauge quantum numbers,
However, the values of these masses depend on the quantum numbers, for ex-
ample, differing for the particles that belong to 10 and 5 representations of
SU(5). Models in which there are large contributions to the scalar masses
from new D terms due to extended gauge interactions, as in refs. 332 and the
superstring-based models of ref. 33, generate patterns similar to these.

Model (d) is a model with dynamical universality presented by Choi3* In
this model, the original supersymmetry breaking masses are zero, so that the
final masses are determined only by the renormalization group effect, as in ‘no-
scale’ models. However, for Choi, the messenger scale is F,, the axion decay
constant, and the messenger interactions are those associated with Peccei-
Quinn symmetry breaking.

Model (e) illustrates an idea for dynamical universality due to Lanzagorta
and Ross!® In this model, the supersymmetry-breaking masses are driven to
the fixed points of the renormalization group equations for a more complex
underlying theory at a high scale. The locations of the fixed points depend on
the standard model quantum numbers of the quark and lepton partners, but
not on the generation. In principle, the pattern of soft masses is predicted by

9There are realistic models which avoid this constraint in which our vacuum is not the
global minimum of the potential but is stable over cosmological time; see ref, 29.
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the underlying model.

Model (f) is an example of a model with preset alignment. In such a
scheme, the three supersymmetry-breaking mass parameters for each set of
standard-model quantum numbers are distinctly different. Though this is not
required in these models, I have drawn the figure to suggest that the masses,
for each set of quantum numbers, have an asymptote which is the solid line;
this would suggest that the messenger scale is the Planck or string scale, and
that the discrete symmetries which regulate the alignment of the mass matrices
are characteristic of superstring or other deep-level physics.

Each one of the possibilities presented here is interesting as a plausible
model of the origin of supersymmetry breaking. The range of possibilities is
fun to think about, and is certainly not exhausted by these cases. That there
should be such a wide range is no surprise. In physics, every time we open
another door to speculation, manifold possibilities are revealed, and the one
chosen by experiment is often one that seemed least likely at the beginning.
The real surprise in this figure is how different models of physics coming from a
very deep level of Nature present distinctly different patterns. These patterns
will be visible in data that can be collected at the weak interaction scale, data
that we will gather with the coming generation of high-energy colliders.

6 Superspectrum Experiments at Hadron Colliders

Now we have set out the essential problems of supersymmetry experimentation.
We must first set the scale of supersymmetry partner masses by measuring the
gaugino masses and testing gaugino universality. Then we must identify the
scalar states associated with each flavor and helicity of quarks and leptons,
and we must measure their masses with sufficient precision to recognize their
pattern on the Dine-Nelson plot. I have already explained the role that lin-
ear collider experiments will play in the background issues of determining the
gaugino spectrum. It is also straightforward to measure slepton masses at a
linear collider, and also squark masses if the squarks are kinematically acces-
sible. The experimental issues connected with all of these measurements are
explained in the accompanying paper by Fujii?

On the other hand, supersymmetric particles can also be found at hadron
colliders. I have already noted that, if Nature has chosen supersymmetry as
the explanation of the weak interaction scale, supersymmetric particles must
be visible at the LHC. Thus, any proper understanding of the role of linear
ete” colliders must take into account the anticipated results of hadron collider
experiments. Will the e*e~ results cover much the same ground as these in-
vestigations, or do they bring some distinctly different ingredient to the study?
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In this section, [ would like to briefly review studies of supersymmetry
experiments for hadron colliders, mainly for the LHC. These studies have,
for the most part, been directed to shorter-term goals than the ones I have
emphasized here, to the first discovery of supersymmetry, rather than to the
systematic experimental pursuit of the new physics. It should be easy for the
LHC (or, if we are lucky about Nature’s choice of supersymmetry parameters,
for the Tevatron) to discover supersymmetry. The cross section for gluino pair
production in hadronic collisions is an order of magnitude larger than that
for production of a quark of comparable mass, and the expected signature of
multijet events with large missing energy is striking and characteristic.

To go deeper than the observation of anomalies, however, will be difficult
at hadron colliders. The reasons for this do not come from considerations of
relative cleanliness and such experimental matters which are debated between
the hadron and lepton physics communities. Rather, they come from the
specific predictions of supersymmetry phenomenology. The difficulties and the
promise of hadron collider experiments can be made clearer by reviewing some
of the techniques which have been developed to date for obtaining information
on the supersymmetry spectrum in this environment.

Before beginning this review, I would like to recall the expectation, both
in this generation of accelerators and the next, that hadron and lepton collider
experiments should probe roughly the same regions of the parameter space
of supersymmetry. The reason for this is that colored superpartners receive
large positive mass enhancements from their coupling to gluons and gluinos.
This is most clear in the gaugino sector. I argued in Section 3 that gaugino
unification should at least be a useful guide to the general properties of the
supersymmetry spectrum. According to (9), the short-distance gluino mass
m3 should be roughly three times the mass parameter m,. To convert to
physical mass values, we must note that my is essentially an upper bound to
the lightest chargino mass, while mg receives a 15% upward radiative correction
when converted to the ‘pole’ mass which determines the kinematics of gluino
production. Another similarly large correction, which may be of either sign,
may appear if the gluino and squark masses differ by a large ratio® Thus,

m(7) > 3.5(m(XT)? — miy) 1?2 (22)

Thus, a chargino discovery at 80 GeV which might be made at LEP 2 would
correspond to a gluino at 300 GeV which might be discovered at the Tevatron.
A linear collider at 1 TeV would be able to search for charginos up to 500
GeV; the corresponding gluino mass is 1700 GeV, which is roughly the search
limit of the LHC if m; <« m32?® Both of these values are a factor of two
beyond the naturalness limits given in (1). In a similar way, the sleptons are
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expected to be lighter than the squarks, though the precise relation is more
model-dependent. Figure 8 contains spectra in which the ratio of squark to
right-handed slepton masses varies from 2 to 6. Of course, this correspondence
does not mean that the hadron and lepton colliders are competing to discover
the same information. In fact, as we will see, quite the reverse is true.

Hadron colliders provide many striking signatures of supersymmetry. The
most basic signature is that of missing energy in multijet events. But the
production of supersymmetric particles can also lead to interesting multilepton
and Z° plus lepton topologies. A summary of event rates at the LHC for a
variety of increasingly exotic reactions is shown in Figure 103% These exotic
final states arise from decays in which the gluino or squark which is the primary
product of the hadronic reaction decays to a neutralino or chargino, which then
decays by a cascade to reach the lightest superparticle3® An example of such
a cascade decay is

pp — §—q@+X3 - v+3—q@+ )
+ §—q@+x3—2°+x] (23)

The appearance of these many topologies is a strength of the hadronic
window into supersymmetry, but it is also its weakness. First, because super-
partners are pair-produced, and each partner decays with missing energy, it is
not possible to reconstruct a superpartner as a mass peak. The reaction shown
in (23) illustrates that supersymmetry reactions can contain sources of missing
energy from v or Z° emission in addition to that from the final neutralinos. Of
course, in hadronic collisions, the initial parton energies and polarizations are
also unknown. Thus, analyses of supersymmetry parameters must be based on
overall hadronic reaction rates, or on other observables which integrate over
the underlying kinematic parameters. To interpret such variables, one needs
a trustworthy model of the reaction being studied. But now we come to the
second problem. The pattern of squark and gluino decays is influenced by the
spectrum and mixings of charginos and neutralinos and changes as the param-
eters of these states move in the (mq, i, tan 3) space. If one relies only on data
from hadronic supersymmetry processes, the dependence on these parameters
enters as an essential modelling ambiguity.

To clarify these issues, I would like to describe a number of methods pro-
posed in the literature for the detailed measurement of supersymmetry param-
eters. Before turning to strongly interacting particles, I will comment on color
neutral states. Hadronic collisions can also access the chargino and neutralino
states directly, through the reactions

q—X%", q7— %t (24)
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Figure 10: Cross sections for various signatures of supersymmetry observable at the LHC,
from ref. 35. The various curves give the cross sections for missing transverse energy, same-
sign dilepton production, multilepton events, and multilepton + Z events. The cross sections
are shown (a) as a function of the mass of the gluino, for m(g) = m(3)/2 and u = —150
GeV, (b) as a function of the parameter x for a fixed gluino mass equal to 750 GeV.
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The second of these reactions is a potential source of trilepton events, and
therefore has been discussed as an interesting mode for the discovery of su-
persymmetry at the Tevatron collider3 Baer and collaborators have noticed
that this reaction can also give some spectral information: The dilepton spec-
trum in trilepton events falls off sharply at dilepton masses equal to the mass
difference m(x3%) — m(X9), allowing a measurement of this parameter of the
neutralino mass matrix3® Sleptons can also be discovered at hadron colliders.
An analysis of the slepton signal at LHC, using as the signature acoplanar
isolated leptons, is given in ref. *”. This signal unfortunately has a very low
rate, and also sums the contributions of the partners of left- and right-handed
sleptons, so it 1s not promising for an accurate mass determination.

For the strongly interacting superpartners, we should hope that the hadron
colliders can give us accurate mass measurements. Let us consider first the
gluino mass measurement. This is simplest if the supersymmetry parameters
are such that me < me, and I will restrict my attention to that case for a
moment. There is one proposed estimator for the gluino mass that does peak
sharply, proposed some time ago by Barnett, Gunion, and Haber? These
authors suggested that one should select events with like-sign dileptons and
combine a lepton momentum with the momentum vectors of the nearest ap-
propriately hard jets. The resulting mass distribution roughly tracks the gluino
mass and has a width of about 15%. Baer, Chen, Tata, and Paige have criti-
cized this analysis for omitting some backgrounds, but have introduced their
own observable applicable simply to missing energy events*! In events with
missing transverse energy greater than some criterion E., and with two jets in
one hemisphere with transverse energy greater than E,, they examine the mass
distribution of these two jets. Mass distributions generated by Monte Carlo
are shown in Figure 11 for sets of three values of the gluino mass differing by
15%. This analysis makes plausible that such integral variables can produce a
gluino mass estimate of reasonable accuracy.

In order to understand whether the gluino is in fact lighter than the
squarks, and to measure the mass ratio, a number of techniques can be em-
ployed. For example, the ¢ typically decays dominantly into the lightest neu-
tralino, so if these particles are light the missing energy signature is stronger
and the jet multiplicity is smaller. The use of jet multiplicity to probe the ratio
of the squark and gluino masses in discussed in ref. *!. An additional amusing
probe of the squark-gluino mass ratio has been studied by Basa'? and by the
ATLAS collaboration?® If squarks and sleptons are comparable in mass, one
of the major processes for supersymmetry production at the LHC is

7+q¢—qq (25)
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Figure 11: Mass distribution of the estimator of Baer et al., ref. 41, for two different ranges

of gluino mass: (a) using E. = 100 GeV, the distributions are shown for m(?f) = 296, 340,

369 GeV; (b) using E. = 350 GeV, the distributions are shown for m(y) = 773, 885. 966
GeV. The simulation assumes that the squarks are much heavier than the gluinos.
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Figure 12: Dependence of the asymmetry between dilepton events with ¢+ ¢% to those with
£7£7, as a function of the mass ratio of the squark and gluino, from ref. 28. The three
curves represent three different values of the gluino mass.

by t-channel gluino exchange. Since there are more up quarks than down
quarks in the proton, this reaction produces an excess of £1£% over £~ ¢~ like-
sign dilepton events. The asymmetry peaks when the squark and gluino masses
are roughly comparable, as shown in Figure 12. On the other hand, the total
rate of like-sign dilepton events falls as the gluinos become heavier than the
squarks. Thus, it is possible at least in principle to determine the mass ratio
from these two pieces of information.

These observables give the flavor of supersymmetry mass determinations
in hadronic collisions. There will be considerable information available, if one
can learn how to use it. This information resides in integrated reaction rates
for various supersymmetry production processes, and in the rates of exotic
multilepton reactions. Unfortunately, the spectral pattern is coupled in these
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observables to the detailed model of squark and gluino decay, which contains
the full complexity of the chargino and neutralino mixing problem.

The task of separating these components and extracting the supersymme-
try mass parameters purely from hadronic cross sections seems like a night-
mare. In fact, none of the analyses I have just described have yet been carried
out as systematic surveys over parameter space. It is not so easy to choose a
parameter space of sufficiently low dimension that it can be surveyed system-
atically.

On the other hand, I have emphasized in Section 3 that the experimental
environment of ete~ colliders provides tools which allow a model-independent
determination of the chargino and neutralino mixing parameters. Armed with
the results of ete~ experiments, the hadron experimenters will be able ac-
curately model the decays of strongly interacting superpartners, and thus to
convert their supersymmetry signals to squark and gluino masses. I have ar-
gued that the ete~ results will play an essential role in turning the wealth
of cross sections that the hadron machines will observe into information with
fundamental value.

7 Conclusions

In this article, I have tried to sketch out the experimental program that would
follow from the discovery of supersymmetry at the weak interaction scale. It is
an important question whether supersymmetry is present at the TeV scale, and
whether it is the mechanism of electroweak symmetry breaking. But, if indeed
Nature chooses this mechanism, what we have to learn at the next generation
of colliders goes far beyond this single piece of information. The spectrum
of supersymmetric particles contains information which bears directly on the
physics of very short distances, perhaps even down to the unification or grav-
itational scale. The challenge will be to extract this information and study its
lessons.

Pursuing this goal, I have set out a three-step program to clarify the physics
of the supersymmetry mass spectrum. To set the scale of superpartner masses,
we first need to measure the gaugino masses and the Higgs sector parameter
tan3. In the process, we must test the hypothesis of gaugino unversality.
Then, incorporating all of this information, we can measure the slepton and
squark masses and try to recognize their pattern as characteristic of a specific
messenger of supersymmetry breaking.

Electron-positron colliders have a major role to play in this program. Us-
ing their access to the simplest supersymmetry reactions and the handle of
polarization, they can make model-independent measurements of the uncol-
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ored gaugino masses. They can also provide accurate, helicity-specific mea-
surements of the slepton masses. If the squarks are sufficiently light, they can
also provide specific spectral information about the squarks. The details of
these experiments will be discussed in the paper of Fujii®

Hadron collider experiments can be expected to pin down the masses of
the heavier states of supersymmetry, the squarks and gluinos. However, the
observables which are useful for hadron experiments require information on the
decay pattern of strongly-interacting superpartners, and thus the interpreta-
tion of experimental results from hadron collider will also rely on the precision
information available from ete™ colldiers.

If supersymmetry is a part of Nature at the weak scale, we can look forward
to an exciting future, with experimental information from many sources coming
to bear on the deepest questions about the fundamental interactions. Linear
colliders have an essential role to play in the grand synthesis that these models
promise.
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