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Abstract

In this paper we present a complete next-to-leading order QCD calculation of

the �J (
3PJ ; J = 0; 1; 2) hadronic decay width. We include the NLO colour-octet

contribution, as de�ned in the Bodwin, Braaten and Lepage formalism. We extract

an estimate of the colour-octet parameter H8 from the charmonium decay data.
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1. Heavy quarkonium (HQ) systems are among the most interesting objects that

nature gave us to explore perturbative Quantum Chromodynamics (QCD). The predic-

tions of their production cross sections and decay rates were among the most important

tests of the early-time QCD. Nowadays there is a large renewed interest in the physics

of heavy quarkonium, due above all to the recent discovery of the surprisingly big dis-

crepancies between data and theory in the high-pT charmonium cross-section production

at the Tevatron [1]. Bodwin, Braaten and Lepage (BBL) [2] recently developed a new

formalism based on non-relativistic QCD (NRQCD) [3] to implement in a systematic way

both the relativistic and the QCD corrections to the naive Colour Singlet Model (CSM)

(for a recent review, see for example [4]). This framework has been successfully applied

to solve the charmonium anomaly at the Tevatron [?]. Another crucial test of pertur-

bative QCD in the heavy quarkonium systems is given by the P-wave hadronic decay

rates. In the CSM the inclusive hadronic decay rate of P-wave HQ states shows a sin-

gular infrared behaviour [8] which is a clear signal that such a process is sensitive to at

least another non-perturbative parameter beyond the usual wave function. In particular,

the infrared problem of �J (3PJ ) decay arises from the �(�J ! qqg) subprocess. The

amplitude associated to this process diverges when the �nal gluon becomes soft. This

ambiguity spoils the traditional factorization picture even at leading order in �s in the

decay of the �1 state into light hadrons (LH). In the BBL theory there is the solution of

the �J decay problem. In the CSM, the heavy quark pair that participates in the hard

annihilation process is in a colour singlet state and has the same quantum numbers as the

physical bound state: the non-perturbative transition changes neither the colour nor the

spin-parity of the heavy-quark pair. In this picture the �J decay occurs through the non-

perturbative transition �J ! QQ[3P
(1)

J ] (the upper right label indicates the colour state),

which is parametrized by the derivative of the wave function jR0(0)j2, followed by the

annihilation of the QQ[3P
(1)

J ] heavy quark pair. Bodwin, Braaten and Lepage suggested

that the HQ wave function contains a non-negligible component in which the heavy quark

pair is in a QQ[3S
(8)

1 ] state. This component leads to the HQ decay through the process

QQ[3S
(8)

1 ] ! qq. The �nal state created by the colour-octet contribution is degenerate

with the colour-singlet one in the kinematical region of soft �nal gluon. The colour-octet

long-distance matrix element absorbs the infrared sensitivity of the colour-singlet term

yielding an IR-�nite result [9]. In the NRQCD framework it is therefore possible to give

a theoretical prediction of �J hadron decays avoiding infrared inconsistencies.

Hadronic �J annihilation then gives a very important phenomenological test of the

role of the colour-octet mechanism, and of the BBL theory in general. In ref. [9] Bod-

win, Braaten and Lepage performed a phenomenological analysis of �cJ decays using the

LO results for both the colour-singlet and the colour-octet contributions. They justi�ed

the neglect of the known NLO colour-singlet corrections with the observation that NLO

accuracy would require inclusion of the yet unknown NLO colour-octet coe�cients. In a
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following paper [10] it was argued that it is justi�ed to include in the analysis the available

QCD NLO colour-singlet terms, because the octet contribution does not depend on J even

at NLO. Therefore the higher-order colour-octet coe�cient can be simply reabsorbed in a

rede�nition of the LO octet wave function without changing the values of �s and jR
0(0)j2

extracted from the �t to the experimental data.

In this work we perform the NLO calculation of the colour-octet coe�cient complet-

ing the picture of the �J hadron decay at order O(�s
3v5) in the sense of the BBL double

expansion. The knowledge of the NLO octet correction allows us to extract the value of

the parameter H8 using the results of ref [10].

An analogous calculation relative to the newly discovered 1P1 state [11] has recently ap-

peared [12].

2. The �J state is represented as a Fock-space vector superposition of heavy quark

pair states of di�erent spin, angular momentum and colour, possibly accompanied by

gluons [2]:

j�Ji = O(1)jQQ[3P
(1)

J ]i+O(v)jQQ[3S
(8)

1 ]gi+ � � � ; (1)

where v is the relative velocity between the bound quarks. The �rst term of eq. (1)

represents the conventional colour-singlet con�guration and the second one corresponds

to a colour-octet heavy quark pair in the QQ[3S
(8)

1 ] state accompanied by a gluon. The

small relative bound quark velocity v splits the physics of heavy quarkonium into two well

separated energy scales, allowing a formal factorization of the physical observables into

perturbative short-distance kernels describing annihilation of the heavy quark pair and

soft non-perturbative coe�cients. In the BBL factorization framework, the low energy

heavy quarkonium physics is described by the NRQCD Lagrangian which has a physical

ultraviolet cuto� � . The short-distance annihilation e�ects are implemented including

4-fermion interactions in the Lagrangian:

�L4�fermions = �n

fn(�)

m�n�4
On(�); (2)

where m is the mass of the heavy quark. Both the NRQCD operators On and the short-

distance coe�cients fn depend on �, but their product does not. The operators On have

well-de�ned scaling rules with velocity v and the coe�cients fn have a QCD perturbative

de�nition. Equation (2) can be actually read as a double �s and v expansion. For our

study, the relevant operators On are:
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O8(
3S1) =  y�T a� � �y�T a (6)

The �J hadronic decay width can be written as:

�(�J ! LH) = 2 Imf1(
3PJ )

h�J jO1(
3PJ )j�Ji

m4
+ 2 Imf8(

3S1)
h�J jO8(

3S1)j�Ji

m2
(7)

The short-distance coe�cients can be extracted by matching NRQCD and full QCD

amplitudes [2]. The NRQCD matrix elements can be determined phenomenologically or

calculated on the lattice.

De�ning:

H1 =
h�J jO1(

3PJ )j�Ji

m4
H8(�) =

h�J jO8(
3S1; �)j�Ji

m2
: (8)

we can rewrite the �J width as follows

�(�J ! LH) = �̂1(
3P

(1)

J ! LH)H1 + �̂8(
3S

(8)

1 ! LH)H8 = �̂1(J)H1 + �̂8H8 (9)

Velocity and mass scaling of the matrix elements of the relevant NRQCD operators are

H1 � mv5, H8 � mv5. The QCD leading-order colour-singlet short-distance coe�cients

are of O(�2

s) for �0 and �2 and of O(�3

s) for �1 states. On the other hand, the QCD

lowest order colour-octet short-distance process QQ[3S
(8)

1 ]! qq is of O(�2

s) while the
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process QQ[3S
(8)

1
]! gg with both gluons on the mass shell is forbidden. Therefore a

consistent perturbative picture of the �1 decay at order �s
3v5 requires the calculation

of the QCD NLO colour-octet contribution. For ease of reference, we collect here the

expression for the �J decay widths including the NLO colour-singlet terms [8] and the

LO colour-octet terms [9]

�(�0 ! LH) = 4

3
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�s
�
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2
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(11)

nLf is the number of light quarks: nLf = 3 for charmonium and nLf = 4 for bottomonium

states and �s = �s(m). H1 is related to the derivative of the wave function through the

relation:

H1 =
9

2�

jR0(0)j2

m4

h
1 +O(v2)

i
(12)

We denote by E a momentum scale that regularizes the soft divergence associated to the

�J ! qqg process. E was usually related to the binding energy of quarkonium. Notice

that neither the colour-octet term nor the coe�cient of the divergent logarithm depends

on the quarkonium spin J ; this fact makes a universal renormalization of the parameter

H8 possible. In fact, considering only the universal piece (U�) of �J widths we get:
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�
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16
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�

�
= nLf

�

3
�s

2H8(m): (14)

The �-dependence of the colour-singlet coe�cient is consistent with that speci�ed by the

RGE for H8 [2].

3. We perform the calculation of the full NLO QCD colour-octet contribution to the �J

decay widths term using the dimensional regularization scheme to regularize UV, IR and

collinear divergences. We work in D= 4 � 2� dimensions. If we de�ne:

�̂
(0)

8 = ��s
2
1 � �

3� 2�

 
4��2

M2

!�
�(1 � �)

�(2 � 2�)
(15)

whereM � 2 m, then the D-dim Born colour-octet short-distance coe�cient assumes the

form:

�̂
(Born)

8 = nLf �̂
(0)

8 (16)

The NLO correction to �̂8 consists of real and virtual emission of gluons.

Real emission

The real correction to the short-distance colour-octet �J annihilation term is repre-

sented by the two processes QQ[3S
(8)

1 ]! ggg and QQ[3S
(8)

1 ]! qqg . The calculation of

the D=4 QQ[3S
(8)

1 ]! ggg amplitude can be obtained via crossing from the results of ref

[7]. This amplitude is completely IR and collinear �nite because the two-gluon leading

order amplitude vanishes. The calculation of the three-gluon real contribution is therefore

straightforward. We obtain 1:

�̂
(ggg)

8 = �̂
(0)

8

�s

�
5

�
�
73

4
+
67

36
�2
�

(17)

1The expression reported here assumes implicitly Nc = 3, since the explicit Nc dependence of the

matrix elements is not reported in the result of ref. [7]
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On the contrary the process QQ[3S
(8)

1
]! qqg shows IR and collinear poles that we ex-

pect will cancel when adding the virtual correction. The D-dimension QQ[3S
(8)

1
]! qqg

amplitude that we obtain is in agreement with ref [7] in the D=4 limit. It leads to the

following width contribution

d�̂
(qqg)

8
= nLf

64�3�s
3

M2(3� 2�)

h
t2 + u2 + 2M2s� �(t+ u)2

i "CF

tu
�

CA

(s�M2)2

#
d(PS)[qqg](18)

where s = (q + q)2, t = (q + g)2, u = (q + g)2. Performing the Mandelstam variable sub-

stitution s =M2(1� x), t =M2xy, u =M2x(1� y), the phase space assumes the follow-

ing form:

d(PS)[qqg] =
M2

128�3

 
4��2

M2

!2�
1

�(1 � �)
x
h
x2(1 � x)y(1� y)

i��
dxdy: (19)

Integrating over the phase space we get

�̂
(qqg)
8 = nLf �̂

(0)

8

�s

�
f(�)

�
CF

�
1

�2
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3
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where

f(�) =

 
4��2

M2

!�
�(1 + �) : (21)

Virtual emission

The diagrams contributing to NLO virtual emission are shown in �g. (1). In table 1

we list the contribution Dk of each diagram with the relative colour factors. The virtual

colour-octet width can be written as

�̂
(V irtual)

8;QCD = nLf �̂
(0)

8 f(�)
�s

�

X
k
(Dkfk) (22)

Summing all the virtual diagrams, we �nd
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where
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The Coulomb singularity disappears by performing the matching between the NLO full

QCD and NRQCD amplitudes, yielding a �nite result in the v ! 0 limit. Summing the

real and the virtual emission corrections, we obtain the �s NLO colour-octet decay width

for �J states; we give the result for CF =4/3, CA = 3 and TF =1/2:

�̂
(NLO)

8 = �̂
(Born)
8

2
41 + �s

MS(�)

�

�
107

6
�

3

4
�2 + 2 log 2 +

�
5
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��
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4
+
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36
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�
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Choosing the renormalization scale � = m ( the same of the colour-singlet terms in

eqs. (10)) we obtain the following expression of the �s NLO imaginary part of f8(
3S1):

Im f8(
3S1) =

�

6

�
�s

MS(m)
�2 24nLf + nLf

�s
MS(m)

�

�
107

6
�
3
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�2 � 9 log 2 +
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nLf log 2
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+
�s
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�
�
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4
+
67

36
�2
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Always keeping � = m, we report below the numerical colour-octet corrections for char-

monium and bottomonium:

�̂
(NLO)

8

�̂
(Born)
8

= 1 + 3:9
�s

MS(mc)

�
[charm] (29)

�̂
(NLO)

8

�̂
(Born)

8

= 1 + 3:8
�s

MS(mb)

�
[bottom] (30)

Using the results of ref. [10] it is straightforward to obtain the best �t of the pa-

rameter H8 for charmonium �c including the NLO QCD e�ects, and we get the value

H8

(c)(mc) = 3.1 � 0.5 MeV. Taking mc = 1:5 GeV we obtain h�cJ jO8(
3S1;mc)j�cJi =

(6:8 � 1:1)� 10�3 GeV3. For completeness we recall that the �ts of the other parameters

obtained in [10] are H1 = 13:7 � 2:3 MeV and �s
MS(mc) = 0:286 � 0:031. As discussed

in the introduction these results are not a�ected by the inclusion of the NLO colour-octet

corrections. Using the NRQCD scaling rules, we can obtain an estimate of the bottom

octet matrix element H8

(b)(mb) ' 0:66 MeV.

We now want to analyse the renormalization scale dependence of the NLO colour-

octet decay widths compared with the leading-order ones. The results are shown in �gs.

2 and 3 for charmonium and bottomonium states, respectively. The normalization of

the bottomonium width is achieved by using the estimate of the colour-octet parameter

H8

(b)(mb) obtained above through the NRQCD scaling rules. For the running of two-loop

�s we use the input �MS
nf=5

= 160 MeV extracted from the �tted value of �s
MS(mc).

The pictures show that the inclusion of NLO corrections signi�cantly reduces the scale

dependence of the processes.

To conclude we notice that the calculation presented here can be used to compute the

strong NLO qq! QQ[3S
(8)

1 ] contribution to the total  hadronic production cross section

and the NLO colour-octet fragmentation function of the gluon into  . Work on these

issues is in progress.
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Diag. Dk fk
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Table 1: Partial virtual QCD corrections to the process QQ[3S
(8)

1 ]! qq
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Figure 1: Virtual Feynman diagrams contributing to the process QQ[3S
(8)

1
]! qq
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Figure 2: Renormalization scale dependence of the colour-octet contribution to

�c hadronic decay width �8 = �̂8H8

Figure 3: Same as �g. 2 but for �b
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