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Nonrestoration of spontaneously brokenP and CP at high temperature
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The possibility ofP andCP violation at high temperature in models where these symmetries are sponta-
neously broken is investigated. It is found that in minimal models that include singlet fields, highT nonres-
toration is possible for a wide range of parameters of the theory, in particular, in models ofCP violation with
a CP-odd Higgs field. The same holds true for the invisible axion version of the Peccei-Quinn mechanism.
This can provide both a way out for the domain wall problem in these theories and theCP violation required
for baryogenesis. In the case of spontaneousP violation it turns out that highT nonrestoration requires going
beyond the minimal model. The results are shown to hold true when next-to-leading order effects are consid-
ered.@S0556-2821~96!02924-4#

PACS number~s!: 11.30.Qc, 11.10.Wx, 11.30.Er, 98.80.Cq
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I. INTRODUCTION

The phenomenon of spontaneous symmetry breaking
become a cornerstone of modern particle physics. To be
to establish a connection between particle physics and
mology, it is essential to investigate the behavior of symm
try breaking in the early universe, i.e., at high temperature
spite of common sense prejudice, it is by now known t
more heat does not necessarily imply more symmetry@1,2#.
Rather, the question of symmetry restoration is quite a co
plex phenomenon and depends on the dynamics of the th
considered.

Examples have been found with symmetries remain
broken at arbitrarily high temperature, or even exact symm
tries becoming broken as the system gets heated up@2–5#.
However, some of these examples were artificially crea
just in order to demonstrate the phenomenon. In our opin
symmetry nonrestoration becomes relevant only when res
ing from minimal and realistic models. This is precisely wh
we wish to address in this paper. For the sake of focus,
concentrate on the issues ofP andCP violation ~both weak
and strong!. The choice of parity and time reversal is in o
opinion natural, these being fundamental symmetries of
ture. Furthermore, the spontaneous breaking of these sym
tries may offer a simple way out of the strongCP problem
@6#.

There are at least two important reasons to haveCP bro-
ken at high temperature. Baryogenesis requiresCP violation,
and if one is to adhere to the appealing idea ofCP symmetry
being broken spontaneously, its nonrestoration become

*Electronic address: dvali@surya11.cern.ch
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must. On the other hand, the spontaneous breakdown
discrete symmetry leads to a domain wall problem, followi
the phase transition that takes place if the symmetry is
stored at highT @7,8#. Avoiding this phase transition may b
sufficient to solve the problem, since the thermal product
of large domain walls is naturally suppressed for a w
range of the parameters of the theory@9#. In Sec. II, we study
CP behavior at high temperature in some SU~2!3U~1! theo-
ries with Higgs doublets and singlets only. It turns out that
minimal such models with doublets onlyCP is always re-
stored, whereas it can naturally remain broken if there is
least one singlet on top of the usual Higgs doublet.

Section III is devoted toP violation and there we find tha
nonrestoration ofP at highT seems to be in conflict with
perturbation theory. Again, the existence ofP odd singlets,
welcome for the implementation of the minimal see-s
mechanism, works in favor of nonrestoration ofP just as in
the case ofCP.

There is yet another class of theories plagued by the
main wall problem, that is, those based on the Peccei-Qu
solution@10# to the strongCP problem. Once again, symme
try nonrestoration can solve the problem@9#. In Sec. IV we
demonstrate in detail how this is achieved.

It has been pointed out that next-to-leading order corr
tions to the high temperature effective potential may play
important role on the question of nonrestoration, even to
extent of invalidating it in the case of local gauge symm
tries @11,12#. A recent study@13# involving a Wilson renor-
malization group approach which simulates nonperturba
effects, seems to encourage the validity of the conventio
one loop results, if the relevant coupling constants are sm
enough. Since the issue is not completely settled, to be on
safe side we show in Sec. V how inclusion of next-to-lead
order terms does not affect any of our conclusions.

Focusing onCP forced us to ignore some rather impo
7857 © 1996 The American Physical Society
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7858 54GIA DVALI, ALEJANDRA MELFO, AND GORAN SENJANOVIĆ
tant applications of the idea of symmetry nonrestoration
particular a possible solution to the monopole problem
grand unified theories@14,15#. We leave this and related is
sues for the future.

II. SPONTANEOUS CP VIOLATION AND HIGH T

As with any discrete symmetry, we would like to be ab
to keepCP broken at high temperature in order to avoid t
formation of the dangerous domain walls. In the case
CP, there is yet an additional reason not to restore it in
early universe, at least not until the time of baryogene
Simply,CP must be broken in order for matter to be creat
@16#. This was actually the original motivation of the fir
application in particle physics of the phenomenon of nonr
toration of symmetries at high temperature@2#. The model
presented in@2# however does not satisfy the minimality co
dition introduced above, since there the Higgs sector is
tended to three doublets only in order to have highT sym-
metry nonrestoration.

A. CP with two doublets

The simplest and original example of a theory with spo
taneousCP violation was presented by Lee@17#. His model
is an extension of the standard model with two comp
Higgs doublets, with

LH5(
i51

2
1

2
~DmF i !

†~DmF i !2V~F1 ,F2! ~1!

where

V~F i ,F2!5(
i51

2 S 2
mi
2

2
F i

†F i1
l i

4
~F i

†F i !
2D

2
a

4
F1

†F1F2
†F22

b

4
F1

†F2F2
†F1

1
1

8
@F1

†F2~aF1
†F21bF1

†F11cF2
†F2!

1H.c.#. ~2!

Choosing the parameterb.0, one can prove that th
minimum of the potential is achieved when the fields acqu
vacuum expectation values~VEV’s!:

F15S 0v1D , F25S 0v2D eiu. ~3!

The terms in parentheses in the potential will force
CP-violating phaseu to be nonzero. This can be readily se
by writing Eq. ~2! at the minimum~3!, and wisely rearrang-
ing terms:

V~^F1&,^F2&!5(
i51

2 S 2
mi
2

2
v i
21

pi
4
v i
4D 1

r

4
v i
2v2

2

1
a

2
v i
2v2

2@cosu2d#2, ~4!
n
n

f
e
s.

-

x-

-

x

e

e

where

p15l12
b2

8a
, p25l22

c2

8a
,

r5a1b1a1
cb

4a
, d5

2~bv1
21cv2

2!

4av1v2
. ~5!

Obviously, fora.0 the minimum will be at cosu5d, and
CP is broken spontaneously.

We are interested in the possibility thatCP remains bro-
ken at arbitrarily high temperature. For this to happen
Lee’s model, we need not only to have the VEV’s ofboth
F1 and F2 nonzero at highT, but also to keep the
CP-violating phase from vanishing.

To get an idea of how both VEV’s may be kept differe
from zero, consider a simple model with two real sca
fields (f1 ,f2), and a potential with aZ2 symmetry
f1→2f1, f2→2f2:

V~f1 ,f2!5(
i51

2 S 2
mi
2

2
f i
21

l i

4
f i
4D 2

a

2
f1
2f2

21b1f1
3f2

1b2f2
3f1 . ~6!

One can always choosea.0, b1 ,b2.0, and require

l1l2.a2 ~7!

so that the potential is bounded from below. The poten
has extrema at̂f1&5v1, ^f2&5v2 satisfying

@2m1
21l1v1

22av2
213b1v1v2#v11b2v2

350, ~8a!

@2m2
21l2v2

22av1
213b2v2v1#v21b1v1

350. ~8b!

With negative mass terms, both VEV’s are nonzero. A
mittedly, this model does not belong to the class of minim
models as defined in this paper, since one can break thZ2
symmetry with just one VEV; however, we include it i
order to illustrate the role of the linear terms in symme
nonrestoration.

At high temperature, the effective potential acquires
additional terms@1,18,19#

DV5
T2

24
@~3l12a!f1

21~3l22a!f2
216~b11b2!f1f2#.

~9!

By asking, e.g.,a.3l1, one can keep one of the mas
terms negative at any temperature, while Eq.~7! forces the
other to be positive. However, the cubic terms in Eq.~8!
guarantee that only one negative mass term suffices to h
bothVEV’s nonzero at highT. In other words, the field with
the negative mass term acquires a VEV and ‘‘forces’’ t
other to get one also, via the linear terms in the potent
The reader must have noticed that we can redefine the fi
at highT so that just one of them has a nonvanishing VE
However, she should keep in mind that the same holds
at T50; the point is that the symmetry breaking patterns
high and lowT are equal.
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One can hope that the potential in Lee’s model, being o
similar form as Eq.~6!, will exhibit a similar behavior, al-
lowing both VEV’s to remain nonzero at high temperatu
Unfortunately, it is readily found out that it does so at t
expense of having the phaseu going to zero, thus restoring
CP, as we now show.

The high temperature corrections to the effective poten
for a model withN Higgs doublets can be found by gene
alizing Weinberg’s formula@1# for complex doublets. Write
the most general potential forN complex doublets as1

V52(
i51

N

mi
2F i

†F i1 (
i , j ,k,l51

N

l i jklF i
†F jFk

†F l . ~10!

Then the highT correction is

DV~T!5 (
i , j ,k51

N
T2

6
~2l i jkk1lki jk!F i

†F j . ~11!

For the two doublet model~2!, this gives

DV~T!5
T2

6 F ~6l122a2b!F1
†F11~6l222a2b!F2

†F2

1
3

2
~b1c!~F1

†F21H.c.!G . ~12!

The potential at highT can then be cast in the same for
~4!, where now the massesmi

2 are replaced bymi
2(T),

m1
2~T!52m1

212T2S l12
a

3
2

b

6
2
b~b1c!

16a D.2T2n1
2,

m2
2~T!52m2

212T2S l22
a

3
2

b

6
2
c~b1c!

16a D.2T2n2
2 ,

~13!

for T..m; andd becomesd(T):

d~T!52Fbv121cv2
21T2~b1c!

4av1v2
G . ~14!

Again, as in the simpler model, one can have one
only one mass negative at highT, due to the condition analo
gous to Eq.~7!, i.e.,

p1p2.
r2

4
, ~15!

since now

1Obviously we do not worry about the potential being Hermitia
Needless to say, the reader should take care of this in choosin
potential, and then safely proceed to use our formula forDV(T).
a

.

l

d

n1
25p12s, n2

25p22s, with s5
r

2
2

a

6
2

b

3
2
a

2
,

r

2
.

~16!

Requiringn1
2 ,n2

2,0 will give p1p2,s2,r2/4, which con-
tradicts Eq.~15!.

Considering only theu-dependent part, we see as befo
that there is a minimum foru5d(T). However, it is not
difficult to see that with only one mass term negative, bo
VEV’s cannot be nonzero at highT, due to the fact that the
mass terms now depend on the coupling constants. Ta
n2
2,0, the requirement thatv1 be real gives

un2
2u

r

2
.n1

2p2 ~17!

together with Eq.~15!, this is also enough to ensure thatv2 is
real. Substituting forn1

2 andn2
2 one gets

r

2 S r

2
2p2D.

r

2
~s2p2!.~p12s!p2.S p12 r

2D p2 ,
~18!

which again impliesp1p2,r2/4, contradicting Eq.~15!.
We conclude then that the only way to have both fie

with a nonvanishing VEV at high temperature is to set t
phaseu to zero. In other words, the field with a negativ
mass term can ‘‘force’’ the other to acquire a VEV, but
drags it in the same direction in U~1! space.

Notice that in@2# the fact that both VEV’s can be nonzer
was overlooked, but it was still concluded correctly that w
two doublets only,CP would become a good symmetry a
high T.

B. CP and natural flavor conservation

A common feature of models with two Higgs doublets
the one in the previous section is that they allow for flav
violating interactions in neutral current phenomena.
shown in @20–22#, the minimal model for spontaneousCP
violation involving doublets only that conserves flavor, r
quires three of them.

To see why, consider a Lagrangian with two compl
Higgs doublets as in Eqs.~1!, ~2!, and an extra symmetry
D1

F1→2F1 , uiR→2uiR ~19!

~whereuaR are up quarks and hereaftera,b, . . . are flavor
indices!. The Yukawa interactions are written now

LY5~ ūd̄!L
ahab

1 F1dR
b1~ ūd̄!L

ahab
2 ~ i t2!F2* uR

b ~20!

so that flavor violation through neutral Higgs exchange
avoided. However, now the symmetry prohibits the terms
the typeF1

†F1F1
†F2 in the Higgs potential, and therefore a

the minimum we have the phaseu50 orp/2, both leading to
CP conservation.

The way out is to have three doublets, and an additio
symmetryD2 that prevents it from coupling to the quark

.
er
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F3→2F3, with other fields unchanged. The most gene
potential invariant under SU~2!3U~1!3D13D2 is

V5(
i51

3

@2mi
2F i

†F i1l i~F i
†F i !

2#

1(
i, j

@2a i j ~F i
†F i !~F j

†F j !2b i j ~F i
†F j !~F j

†F i !

1g i j ~F i
†F jF i

†F j1H.c.!#. ~21!

It can be shown@20–22# that choosingb i j ,g i j.0, the
above potential has a minimum at

F i5
1

A2
S 0

v ie
iu i D , ~22!

where only two of theu i ~say,u1 andu3) are relevant. Ex-
tremization with respect tou yields @21#

g12v2
2sin2u11g13v3

2sin2~u12u3!50, ~23a!

g13v1
2sin2~u12u3!1g23v2

2sin2u350. ~23b!

Notice that to haveCP violation, we need all threev i and
both u1 ,u3 to be nonzero.

It can be shown@22# that theCP-violating solution of Eq.
~23! is indeed a minimum. When the phases take this va
the remaining potential is

V~v i !5(
i51

3 S 2
mi

2
v i
21

pi
4
v i
4D2(

i, j

~a i j1b i j !

4
v i
2v j

2 ,

~24!

where

p15l12
g12g13

g23
~25!
iv
l

e,

and analogous expressions forp2 ,p3.
Once again, we are interested in whether theCP symme-

try can remain broken at high temperatures. It is straightf
ward using Eq.~11! to calculate the masses at high tempe
ture

mi
2~T!52mi

21
T2

6 F6pi2(
jÞ i

~2a i j1b i j !G.
T2

3
n i
2 .

~26!

Because of the high degree of symmetry of the potent
temperature contributions are independent of the phase
equations~23! are the same.

For the potential to be bounded from below, a set of co
straints analogous to Eq.~7! has to be imposed on the cou
plings: namely,

pi.0, pipj.ai j for each i, j , ~27a!

p1p2p32p1a23
2 2p2a13

2 2p3a12
2 22a12a13a23.0,

~27b!

with ai j[a i j1b i j , and we choosea i j.0, soai j.0.
It is easy to prove that Eq.~27a! prevents us from taking

all three of the mass terms negative at highT, as we could
have expected. Necessary conditions would be

(
jÞ i

ai j.3pi . ~28!

Multiplying these equations by pairs and adding them
sults in a contradiction with Eq.~27a!. But it turns out that
with only two negative mass terms, all three VEV’s cann
be nonzero at arbitrarily high temperature. Take for exam
n1
2.0, n2

2 ,n3
2,0. We needv1 to be real, that is, minimizing

Eq. ~24!,
v1
25S T23 D 2n1

2~p2p32a23
2 !1n2

2~p3a121a23a13!1n3
2~p2a131a23a12!

p1p2p32p1a23
2 2p2a13

2 2p3a12
2 22a12a13a23

.0. ~29!
t
the
e

We have already required the denominator to be posit
For the numerator to be positive also, necessary~though not
sufficient! conditions are

n̄2
2~p3a121a23a13!1 n̄3

2~p2a131a23a12!

.2 n̄1
2~p2p32a23

2 !, ~30!

where

n̄1
253p12a122a13,n1

2 ,

n̄2
25a121a2323p2.n2

2 ,

n̄3
25a131a2323p3.n3

2 . ~31!
e. Inserting Eq.~30! in Eq. ~31!, one gets

22p2p3~a121a13!2a23~p2a131p3a12!

.p1p2p32p1a23
2 2p2a13

2 2p3a12
2

22a12a13a2312p1~p2p32a23
2 !, ~32!

which in view of Eq.~27! cannot be satisfied.
Thus, once again, theCP-violating phase disappears a

high temperature. As in the two-doublet case, here too
problem is thatCP violation is achieved through the relativ
phase of the VEV’s of the doublets.
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C. CP with a singlet field

It should be clear from the previous examples that wh
the CP phase is related to the relative phases of dou
fields, high temperature effects will make it vanish. W
therefore look for models in whichCP violation is broken
spontaneously by the VEV of just one field, which may
easier to keep at high temperature.

The simplest such model is a minimal extension of
standard model with~a! a real singlet fieldS which trans-
forms underCP as S→2S and ~b! an additional down
quark, with both left and right componentsDL

a andDR
a sin-

glets under SU~2!.
The interaction Lagrangian for the down quarks, symm

ric underCP, contains the terms

LY5~ ūd̄!L
ahaFDR1~ ūd̄!L

ahabFdR
b1MDD̄LDR1Ma~D̄LdR

a

1H.c.!1 i f DS~D̄LDR2D̄RDL!1 i f aS~D̄LdR
a2d̄R

aDL!.

~33!

Clearly, whenS gets a VEV~at a scales much bigger
than the weak scaleMW) CP is spontaneously broken by th
terms in the last line. A model of this kind was developed
Bento and Branco@23#, in the version where the singlet is
complex field and gets a complex VEV, and with an ad
tional symmetry under whichS andDR are odd, all other
fields even.

We will for simplicity keepS real ~and impose no furthe
symmetries!, noting that the analysis goes over the sa
lines as in@23#, and referring the reader there for detai
Suffice it to say thatCP violation is achieved by complex
phases appearing in the Cabibbo-Kobayashi-Mask
~CKM! matrix through the mixings ofd and D quarks,
which are of the orders/MD . These phases remain in th
limit MD , s→` when the heavy quarks decouple. Th
should not come as a surprise, since in the decoupling l
the theory reduces to the minimal standard model, which
general has complex Yukawa couplings and a complex C
matrix. Also, flavor-violating currents are suppressed
powers ofMW /s, disappearing in the decoupling limit. Thu
the measure of the departure from the standard model is
dimensionless parameterMW /MD , and for the theory to be
experimentally testableMD should not be much bigger tha
1 TeV.

To leading order, the high-temperature behavior of
F2s system is very simple. The most general potential c
be written as

V~F,S!52mF
2 F†F1lF~F†F!22

mS
2

2
S21

lS

4
S4

2
a

2
F†FS2 ~34!

and it has a minimum at

^F&5
1

A2
S 0v D , ^S&51s. ~35!

At high T, the masses are replaced by
n
t

e

t-

y

-

e
.

a

it
in

y

he

e
n

mF
2 ~T!52mF

2 1
T2

24
~12lF2a!,

mS
2~T!

2
52

mS
2

2
1
T2

24
~3lS22a!. ~36!

We can havemS
2,0 always by requiring 2a.3lS , and thus

sÞ0 at any temperature.2 The only further restriction is the
usuallF.a2/lS .

It seems then that in this model, one can haveCP broken
at any temperature. Remember however that up to now
have only considered the leading order contributions to
effective potential in calculating the masses~36!. A complete
analysis should include the next-to leading order correctio
as we already mentioned in the Introduction. We can ant
pate that for a singlet field these effects will not change
picture much, but we leave a detailed analysis for a sepa
section.

III. SPONTANEOUS P VIOLATION AND HIGH T

SpontaneousP violation has been already discussed in t
second paper of Ref.@2#, mostly in connection with strong
CP violation. It was concluded there that in the minim
models of spontaneousP violation, left-right asymmetry
may persist to high temperatures. The analysis however
carried out without considering carefully the role of th
gauge couplings, which is now known to be fundamen
@15#, and which as we will show may invalidate that concl
sion.

Let us recall the salient features of the minimal left-rig
symmetric theories@24# based on a SU~2! L3SU~2!R
3U~1!B2L gauge symmetry. The fermions are in doub
representations

S udD
L

, S udD
R

,

S n

eD
L

, S n

eD
R

. ~37!

The minimal Higgs sector of the theory consists of t
bidoublets~one or more! F needed to provide Yukawa cou
plings and fermion masses and two multipletsDL and DR
which may be either doublets or triplets under SU~2! L and
SU~2!R , and which are in charge of breakingP spontane-
ously.

For the sake of completeness, we remind the reader of
essence of spontaneousP violation and we do it in a simpli-
fied toy example which has all the relevant features of
theory. More precisely, we takeDL and DR as real scalar
fields and assume a left-right symmetric potential

2According to Eq.~33! the Yukawa couplings also give contribu
tions to the high-temperature mass of the singlet. However, in th
kind of modelsf D and f i can be naturally taken to be small.
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V52
m2

2
~DL

21DR
2 !1

l

4
~DL

41DR
4 !1

l8

2
DL
2DR

2

52
m2

2
~DL

21DR
2 !1

l

4
~DL

21DR
2 !21

l82l

2
DL
2DR

2.

~38!

A simple inspection ofV is enough to convince onese
that for m2.0 andl82l.0, the global minimum of the
theory is obtained for

^DL&
250, ^DR&25

m2

l
~39!

or vice versa. Thus the left-right symmetry is broken spo
taneously. Of course in realistic models, besidesD ’s being
nontrivial representations under the gauge group, we do n
a fieldF. One can then try to take one or more of the co
pling constants betweenF and theD ’s negative, thus achiev
ing a negative mass term for theD ’s at all temperatures.

Let us concentrate in the version of the theory which
corporates the see-saw mechanism withDL and DR being
triplets @25#. Since we wish to keep̂DR& nonzero at high
temperature, it is enough to look at theDR2F system and,
as in @2#, consider a simplified model in which the potenti
is written

V52mD
2DR

†DR1lD~DR
†DR!212mF

2 TrF†F

1lF~TrF†F!222aTrF†FDR
†DR , ~40!

whereDR is a triplet under SU~2!R , hasB2L number 2, and
other couplings are taken to be small. The high tempera
masses are3

mF
2 ~T!52mF

2 1T2H 56 lF2
1

3
a1

3

16
g2J , ~41a!

mD
2 ~T!52mD

21T2H 12 lD2
2

3
a1

3

8
~g8212g2!J ,

~41b!

whereg82 is the U~1! gauge coupling andg2 is the SU~2!R
one. We have to keepmD

2 (T) negative at highT while pre-
serving the boundedness conditionlFlD.a2; thus we ar-
rive at

lF.
a2

lD
.
9

4 F12 lD1
3

8
~g8212g2!G . ~42!

lF as a function of lD has a minimum at lD

5(3/4)(g8212g2), so we must have

lF.
27

16
~g8212g2!. ~43!

3We use the normalization TrF†F5FaFa/2; DR
†DR5DR

aDR
a ,

wherea sums over six real fields.
-

ed
-

-

re

If we now useg825g2/2 and takeg251/4, we see that
nonrestoration ofP requireslF.1 in conflict with pertur-
bation theory. Including other couplings does not help, sin
new conditions on the couplings coming from the mass m
trices have to be imposed~since it is not illustrative, we omit
here the numerical analysis required to prove this!.

Although physically less attractive, one can in princip
use doublets to breakP spontaneously. This is actually th
case studied in@2#. It is easily found that with doublets th
condition equivalent to Eq.~43! is down by a factor of half.
Thus this case may be considered borderline.

Now, for the implementation of the see-saw mechani
in its minimal form, it turns out that a parity odd singlet fie
is needed@26#. The singlet fieldSwill couple to theD fields
with a left-right symmetric term

MS~DL
†DL2DR

†DR!. ~44!

Without the lower bound imposed by the gauge co
plings, the situation in this case goes along the same line
that of Sec. II C: the VEV of the singlet can be kept nonze
at high temperatures with the aid of the bidoublet fieldF, or
even of theD ’s. Exactly as it worked withCP, now P may
remain broken at high temperature, and the presence of m
fields coupled toS than in theCP case only makes it easie

IV. STRONG CP PROBLEM AND HIGH T

The strongCP problem arises in QCD when nonpertu
bative effects, resulting from the existence of instanton so
tions, induce effective terms in the Lagrangian that viola
CP. The resultingCP-violating phase is

Q̄5Q1argdet~M !, ~45!

whereQ is the coefficient of theeabmnFa
abFa

mn term, and
M is the quark’s mass matrix.Q̄ is constrained experimen
tally to be zero to a very high precision (Q̄,1029), giving
rise to a ‘‘naturalness’’ problem@27#.

A. The invisible axion solution

The most popular solution to the strongCP problem is
the Peccei-Quinn mechanism@10#, in which the phaseQ̄ is
identified with the pseudo Goldstone boson resulting fr
the spontaneous breakdown of a global symmetry U~1!PQ.
Observational constraints require this breakdown to occu
a scaleMPQmuch bigger than the electroweak scale, mak
the axion ‘‘invisible’’ @28,29#. Besides the axion fielda, the
breaking of U~1!PQ produces a network of global string
@30#. As we go around each minimal string, the pha
Q̄5a/MPQ winds by 2p. Instanton effects appear late
when the temperature has reached the QCD scaleLQCD.
Their effects in the Higgs sector can be mimicked by
effective term

DV5LQCD
4 ~12cosNQ̄!, ~46!

whereN is the number of quark flavors. It becomes energe
cally favorable forQ̄ to choose one out of the discrete set
values 2pk/N (k51,2, . . . ,N). But since we must have
DQ̄52p around a string, this results in the formation ofN
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domain walls attached to each string@31#. For N.1, these
domain walls are stable and therefore in conflict with st
dard cosmology.

Clearly, without the global strings no walls will b
formed: aboveT.LQCD, Q̄ would be aligned having som
typical valueQ̄0 which after the QCD phase transition wou
relax to the nearest minimum. We wish then to study
detail the high temperature behavior of the invisible ax
mechanism, well above the scaleMPQ.

For concreteness we concentrate on the minimal ex
sion of the original Peccei-Quinn model@29#. The potential
for the PQ model with the doubletsf i ( i51,2) both having
Y51 and a SU~2!3U~1! singletSmay be written as

VPQ5(
i

F2
mi
2

2
f i
†f i1

l i

4
~f i

†f i !
2G2

a

2
~f1

†f1!~f2
†f2!

2
b

2
~f1

†f2!~f2
†f1!2

ms
2

2
S*S1

ls

4
~S*S!2

2(
i

S g i

2
f i
†f i DS*S2M ~f1

†f2S1f2
†f1S* !. ~47!

In addition to the SU~2! L3U~1!Y local gauge symmetry
VPQ has a chiral U~1!PQ symmetry (f1 couples to say down
quarks, andf2 to up quarks!

f1→eiaf1 , f2→e2 iaf2 , S→e2iaS. ~48!

For b.0, the minimum is found at

^F i&5S 0v i D , ^S&5vS . ~49!

To have U~1!PQbroken at any temperature, it is enough
keep the VEV of the singlet nonzero for allT. From our
analysis of the previous section for a potential with thr
doublets, one can already expect that keeping the VEV
only one field nonzero will not be difficult. In this mode
then the conditions on the potential parameters cannot b
obstacle for nonrestoration, but we present them here for
sake of completeness. TakingvS@v i , the conditions over
the couplings are, to leading order

l i.0, lS.0, l ilS.g i
2 , l1l2.~a1b!2,

~50a!

Mvs
3Fv13v2 ~l1lS2g1

2!1
v2
3

v1
~l2lS2g2

2!22v1v2@lS~a1b!

1g1g2#G1vS
2v1

2v2
2@l1l2lS2l1g2

22l2g1
2

2lS~a1b!222g1g2~a1b!#.0. ~50b!

It is easily proven that Eqs.~50a! imply that the first line
of Eq. ~50b! is positive. A sufficient condition for bounded
ness will then require Eq.~50a! and the second line of Eq
~50b! to be positive, the same conditions that were requi
in the three-doublet model of Sec. II B@Eq. ~27!#.
-

n-

e
of

an
he

d

The mass term of the singlet at high temperature will

mS
2~T!52mS

21
T2

3
~lS2g12g2!, ~51!

so that imposingg11g2.lS , we get the U~1!PQ symmetry
broken at all temperatures. We already know that at higT
one cannot have all three VEV’s nonzero, and notice t
because of the linear terms in Eq.~47!, havingvSÞ0 forces
v1 ,v2 to vanish.

Up to this order then, it seems quite natural to keep
VEV of S nonzero at highT; again we leave the next-to
leading order considerations for the next session. The lea
reader will notice that the same holds true for Kim’s versi
@28# of the invisible axion idea.

B. SpontaneousP or CP violation

Another well-known solution to the strongCP problem is
based on the idea of spontaneousCP or P violation @6#.
Here, the symmetries can be used to setQ̄tree50 and the
effective Q̄ is then finite and calculable in perturbatio
theory, and in many models small enough. The high T
havior of these theories is completely analogous to the
discussed in Secs. II and III, and thus we can conclude
the solution of the domain wall problem favors models w
singlets. However, beforethemodel is found we find it fruit-
less to study this question in detail.

V. NEXT-TO-LEADING ORDER CONTRIBUTIONS

In a series of recent papers, Bimonte and Lozano@11,12#
have addressed the issue of next-to-leading order contr
tions to the effective potential. As was already pointed ou
@19#, in a theory with alf4 potential, the next-to-leading
order contributions to the mass2 are of order

m2~T!}l3/2T2, ~52!

while higher loop corrections do not contribute significant
The point is that in a theory with two fields where one of t
self-coupling constants is required to be larger than the o
~as we did to avoid symmetry restoration!, the larger con-
stant will enter in corrections to the other field’s mass. Th
one has to make sure that the results to leading order
maintained when including such terms.

In fact, in the case of gauge symmetries, it was conclu
@12# that the inclusion of these effects can alter significan
the phase diagram of the theory. This is mainly due to
fact that in the gauge case the coupling constants canno
as small as one wishes, but are bounded from below by
value of the gauge coupling. In the case of singlets@11#,
although the effects are not so dramatic, they do alter
parameter space for symmetry nonrestoration. Since in
investigation the models that allow for nonrestoration at h
T were based on singlet fields, we will only consider here
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next-to-leading order corrections in the case of glo
symmetry.4

We begin by reviewing briefly the contributions of nex
to-leading corrections in the effective potential of
O(N1)3O(N2)-symmetric model, although we refer th
reader to@11# for details. Take two real fieldsf1 ,f2, trans-
forming as vectors under O(N1),O(N2), respectively, and
write the potential

V~f1 ,f2!5(
i

S 2
mi
2

2
uf i u21

l i

4
uf i u4D 2

a

2
uf1u2uf2u2.

~53!

The temperature contributions to the effective masses
calculated to leading order to be

Dm1
2~T!5T2n1

25T2Fl i S 21N1

12 D2
N2

12
aG ~54!

~and a similar expression forDm2) while to next-to-leading,
Dmi[Txi is found by solving the coupled pair of equatio

x1
25n1

22S 21N1

4p Dl1x11
N2

4p
ax2 ,

x2
25n2

22S 21N2

4p Dl2x21
N1

4p
ax1 . ~55!

Symmetry is restored when such solutions are real
positive. The conditions under which those solutions do
exist, and therefore the O(N2) symmetry isnot restored can
be found to be

aS N1

21N2
D @12 f ~l1 ,a!#.l2 , ~56a!

l1l2.a2, ~56b!

where

f ~l1 ,a!5
3~21N1!

8p2 F S l1
21S 16p2

3~21N1!
D

3S l12
N2

21N1
a D D 1/22l1G ~57!

is a function that can take values from 0 to 1. The lead
order conditions are Eqs.~56! with f50. One can see the
why the parameter space is reduced: it gets more difficu
fulfill Eq. ~56a!. The behavior with the number of fields als
becomes nontrivial, since (12 f ) is a decreasing function o
N1, and the two factors ofa in Eq. ~56a! compete~up to

4We thank G. Lozano for calling our attention to the fact that
gauge coupling does play a role, even when the field causing
nonrestoration is a singlet. The reason is that the equations fo
high temperature masses of the doublet and the singlet are cou
The effect is nevertheless small~for a gauge couplingg2.1/4 we
found an error in our estimates of less than around 5%!, so we have
chosen to keep our discussion to the global case for simplicity
l

re

d
t

g

to

leading order, it is always preferable to keep nonzero
VEV of the field in the smallest representation!.

The O(N1)3O(N2) toy model can mimick models with
more complicated symmetries involving two fields withN1
andN2 real components, in the approximation where th
interaction is just of the typeauf1u2uf2u2. In particular, no
approximation needs to be done in the doublet1singlet case.

In Fig. 1 we show how symmetry nonrestoration depen
in the number of fields when the next-to-leading order effe
are included, i.e., we find the values ofN1 andN2 for which
the conditions~56! are satisfied when the parameters of t
potential are fixed. The plot shows the situation for two s
of ratios of the couplings: l1 :a:l251:1/3:1/9 and
1:1/10:1/100. Notice thatN2,N1 is still preferred. As the
ratio N2 /N1 increases, it becomes necessary for nonrest
tion to take smaller ratiol2 /l1.

The cases ofN154,N251 ~a complex doublet plus a rea
singlet, as required forCP violation in Sec. II C!, that of
N158, N252 ~two doublets and one complex singlet, as
the invisible axion model of Sec. IV! and that ofN158,
N251 ~two doublets and a singlet, as in the parity-violatin
model of Sec. III! lie in the nonrestoration region.

The relevant question is how big is the region in para
eter space where nonrestoration occurs. In Fig. 2 we s
that region for the case of theCP violation with a real sin-
glet, inlF ,a space, whenlS is kept at a fixed value. Vary-
ing lS basically ‘‘rescales’’ the whole picture in thea axis.
The corresponding region with only leading-order effects
also shown. Although the parameter space is reduced
higher order corrections, the difference with the leading
der case is not dramatic.

For the Peccei-Quinn model, the next-to-leading ord
calculations are only approximated by an O(8)3O(2)
model, in the limit where in Eq.~47!, l15l252a[lF ,
b50, andg15g2[g.

he
he
ed.

FIG. 1. Symmetry nonrestoration in a model wi
O(N1)3O(N2) symmetry. Points indicate the values ofN1, N2 for
which the VEV of the O(N2) vector can be kept nonzero at hig
temperature, for fixed values of the potential’s parameters: cir
correspond tol150.1, a50.03, l250.01, crosses tol150.1,
a50.01, l250.001.
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Under such approximation, the region where nonresto
tion is allowed is presented in Fig. 3, for the same range
parameters as in Fig. 2. It is evident comparing both figu
that nonrestoration does not depend only on the r
N2 /N1.

As for the model ofP violation with a singlet of Sec. III,
it can be imitated by a O(8)3O(1) model if the quartic
coupling with the two doublet fields is taken negative. O
can also choose the couplings with the bidoublet negat
and then consider an approximated model with some of
self and mixed couplings small. The nonrestoration regio
clearly bigger than in the weak or strongCP cases.

Notice that in Ref.@11# the authors do find a considerab
reduction of the nonrestoration region for the case they c
sider, that of an O(90)3O(24) symmetry and a large cou
pling constantls;1 @relevant for the discussion of nonre
toration in SU~5! gauge theories#. Of course, in the globa
cases we are interested in here, one can takels as small as
necessary to reduce the next-to-leading order effects.

VI. OUTLOOK AND CONCLUSIONS

In this paper we have studied the phenomenon of sym
try nonrestoration at high temperature, focusing on so
minimal models of spontaneousT andP violation. We were
motivated by the fundamental role that these symmet
play in nature and by the possibility of using them in solvi
the strongCP problem. We find that symmetry nonrestor
tion seems to require singlet fields and that it seems to w
in accord with perturbation theory. This provides the ho
for solving the domain wall problem and having baryoge
esis operate at very high temperature as we now dis
briefly.

FIG. 2. The region of symmetry nonrestoration for the mode
CP with a real,CP odd singlet, for two values of the singlet’
self-coupling constantls as indicated. When only leading orde
effects are taken into account, the region extends up to the do
line.
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Domain wall problem

Avoiding the phase transition is not enough to solve t
domain wall problem, since thermal fluctuations are in pri
ciple able to produce topological defects at any time. As w
shown in@9#, thermal production of domain walls and string
can be naturally suppressed. We briefly sketch how this s
pression occurs for the two models admitting nonrestorat
presented here, and refer to@9# for details.

Consider the nucleation of a large spherically symmet
domain wall or a closed loop of string. The production ra
per unit time per unit volume at a temperatureT will be
given by @32#

G5T4S S3
2pTD 3/2e2S3 /T, ~58!

whereS3 is the energy of the closed defect. The suppress
factor e2S3 /T is readily calculated in the limit where the
defect’s radius is much bigger than its width. For the doma
walls produced in the model ofCP violation with a singlet,
we get

S3
T

@
16p

3A6
A2a23lS

lS
. ~59!

Analogously, for the Peccei-Quinn model the thermal pr
duction of large loops of strings is suppressed by5

S3
T

@4p2
Ag11g22lS

lS
. ~60!

5We note that the normalization of the kinetic term we use he
differs from that of@9#.

f

ed

FIG. 3. The region of symmetry nonrestoration for a O~8!
3O~2! model, an approximation of the Peccei-Quinn model.
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We see that in both cases, it suffices to take the singl
self-couplinglS small to avoid significant thermal produc
tion of defects.

The considered models with singlets involve a high sc
MH much bigger than the weak scaleMW , and it is note-
worthy that the smallness oflS is intimately related to this
hierarchy. Strictly speaking one could just fine tune the co
bination ofmS

2 andlSvS
2 to be small, but this is not stabl

under radiative corrections. It is maybe more natural to t
all the mass parameters of the modelmF andmS to be small,
i.e., of orderMW , and the singlet’s self and mixed coupling
of order (MW /vS)

2. In such case it is obvious that both Eq
~59! and~60! become enormous, suppressing completely
production of defects. Of course, the nature of the fine-tun
is finally a matter of taste. However, the second possibi
has the clear prediction of keeping both Higgs doublets li
in the invisible axion model, as is commonly assumed a
experimentally verifiable.

Of course, all the above still does not guarantee the
sence of domain walls. One needs to assume initial co
tions in which the singlet field has a uniform value over
region of roughly the comoving size of the present horiz
This is equivalent to assume that the so-called horizon p
lem has been solved, for example, by means of a perio
primordial inflation.
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Baryogenesis

The issue of baryogenesis in the context of broken sy
metries at highT has been discused in@33# with emphasis on
the theories where the SU~2!3U~1! gauge symmetry of the
standard model never gets restored. This implies mas
fermions at highT, but it can still be shown that baryogen
esis may take place along the usual lines of the out
equilibrium decays of superheavy lepto-quark gauge
Higgs bosons.

Now, in the examples we have discussed both withP and
CP violation at high T, and including the Peccei-Quin
mechanism, the SU~2!3U~1! symmetry gets restored as i
the more conventional scenarios. Thus fermions beco
massless and the creation of baryon asymmetry proceed
usual. Of course, this implies embedding of the models d
cussed into GUT’s, a task beyond the scope of our pape

Note Added. We have left out the issue of supersymmet
theories. Here unfortunately we have a no-go theorem du
Mangano and Haber@34# which states that internal symme
tries in the context of supersymmetry~SUSY! are necessarily
restored at highT. The issue has been revisited recently
the context of nonrenormalizable SUSY theories in@35#, but
the theorem seems to be valid also in those cases@36#.
ett.
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