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The possibility ofP and CP violation at high temperature in models where these symmetries are sponta-
neously broken is investigated. It is found that in minimal models that include singlet fieldsT highres-
toration is possible for a wide range of parameters of the theory, in particular, in modeR wblation with
a CP-odd Higgs field. The same holds true for the invisible axion version of the Peccei-Quinn mechanism.
This can provide both a way out for the domain wall problem in these theories af@iRholation required
for baryogenesis. In the case of spontaneBudolation it turns out that higfT nonrestoration requires going
beyond the minimal model. The results are shown to hold true when next-to-leading order effects are consid-
ered.[S0556-282(96)02924-4

PACS numbsgps): 11.30.Qc, 11.10.Wx, 11.30.Er, 98.80.Cq

[. INTRODUCTION must. On the other hand, the spontaneous breakdown of a
discrete symmetry leads to a domain wall problem, following
The phenomenon of spontaneous symmetry breaking habe phase transition that takes place if the symmetry is re-
become a cornerstone of modern particle physics. To be abkored at hight [7,8]. Avoiding this phase transition may be
to establish a connection between particle physics and cosufficient to solve the problem, since the thermal production
mology, it is essential to investigate the behavior of symmeof large domain walls is naturally suppressed for a wide
try breaking in the early universe, i.e., at high temperature. Imange of the parameters of the the@®y. In Sec. Il, we study
spite of common sense prejudice, it is by now known thatCP behavior at high temperature in some(8)x U(1) theo-
more heat does not necessarily imply more symmitrg]. ries with Higgs doublets and singlets only. It turns out that in
Rather, the question of symmetry restoration is quite a comminimal such models with doublets on{yP is always re-
plex phenomenon and depends on the dynamics of the theoggored, whereas it can naturally remain broken if there is at
considered. least one singlet on top of the usual Higgs doublet.
Examples have been found with symmetries remaining Section Il is devoted td violation and there we find that
broken at arbitrarily high temperature, or even exact symmenonrestoration oP at highT seems to be in conflict with
tries becoming broken as the system gets heatefPup].  perturbation theory. Again, the existence ®fodd singlets,
However, some of these examples were artificially createdvelcome for the implementation of the minimal see-saw
just in order to demonstrate the phenomenon. In our opinionmechanism, works in favor of nonrestorationP®fust as in
symmetry nonrestoration becomes relevant only when resulthe case ofZ P.
ing from minimal and realistic models. This is precisely what  There is yet another class of theories plagued by the do-
we wish to address in this paper. For the sake of focus, wenain wall problem, that is, those based on the Peccei-Quinn
concentrate on the issues Bfand CP violation (both weak  solution[10] to the strongC P problem. Once again, symme-
and strong The choice of parity and time reversal is in our try nonrestoration can solve the probl¢f]i. In Sec. IV we
opinion natural, these being fundamental symmetries of nademonstrate in detail how this is achieved.
ture. Furthermore, the spontaneous breaking of these symme- |t has been pointed out that next-to-leading order correc-
tries may offer a simple way out of the stro@P problem tions to the high temperature effective potential may play an
[6]. important role on the question of nonrestoration, even to the
There are at least two important reasons to ha¥ebro-  extent of invalidating it in the case of local gauge symme-
ken at high temperature. Baryogenesis requi¥®sviolation,  tries[11,12. A recent study{13] involving a Wilson renor-
and if one is to adhere to the appealing ide&€®& symmetry  malization group approach which simulates nonperturbative
being broken spontaneously, its nonrestoration becomes eiffects, seems to encourage the validity of the conventional
one loop results, if the relevant coupling constants are small
enough. Since the issue is not completely settled, to be on the

*Electronic address: dvali@suryall.cern.ch safe side we show in Sec. V how inclusion of next-to-leading
"Electronic address: melfo@stardust.sissa.it order terms does not affect any of our conclusions.
*Electronic address: goran@ictp.trieste. it Focusing onCP forced us to ignore some rather impor-
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tant applications of the idea of symmetry nonrestoration, invhere
particular a possible solution to the monopole problem in

grand unified theoriegl4,15. We leave this and related is- N b_z o 0_2
sues for the future. P1=A1 8a’ P2=A> 8a’
Il. SPONTANEOUS CP VIOLATION AND HIGH T cb —(bv3+cv3)
p=at+pB+at-—, 6=——-—"—. (5)
4a davqv,

As with any discrete symmetry, we would like to be able
to keepCP broken at high temperature in order to avoid the

formation of the dangerous domain walls. In the case of O_bwously, fora>0 the minimum will be at ca%=4, and
CP is broken spontaneously.

CP, there is yet an additional reason not to restore it in the We are interested in the possibility tHa® remains bro-
early universe, at least not until the time of baryogenesisken at arbitrarilv high tem perature yFor this to happen in
Simply, CP must be broken in order for matter to be createdl_ee,S model wg neged not Fc))nl o Have the VEV's l:E)I?th
[16]. This was actually the original maotivation of the first O d o ’ t hi hyr but also to keep the
application in particle physics of the phenomenon of nonres-C Ig-\iglating Sﬁ;jjrﬁos va:ﬁshi’ng u P
toration of symmetries at high temperatd@y. The model To get an idea of how both VEV's may be kept different

presented ifi2] however does not satisfy the minimality con- ¢ i imol del with tw | I
dition introduced above, since there the Higgs sector is exJOm Zz€ro, consider a Simpie model wi 0 real scalar

tended to three doublets only in order to have higbym- fields (41,¢,), and a potential with aZ, symmetry

metry nonrestoration. 17~ b1 o e
i . m 2 Noa| @ 5 3
A. CP with two doublets V(¢1a¢2):i21 - 7¢i +Z¢i - 5‘!’1‘1"2“‘314’14’2
The simplest and original example of a theory with spon-
taneousCP violation was presented by Lé&7]. His model + B3 (6)
is an extension of the standard model with two complex
Higgs doublets, with One can always choose>0, 8,,8,>0, and require
2 2
1 )\1)\2> o (7)
Ly=2, 5(D, @) (D@ =V(®y,0) (D)

so that the potential is bounded from below. The potential

Where has extrema at¢,)=v4, (¢,)=v, satisfying

2 2 [—mi+\wi—av3+3B1v10,Jv1+Bw3=0, (88

Mt Ni g2
V(@ @5)= 2, | = @D+ (@) s .
=1 [—m3+Nv5—avi+3Bavsv1]ue+ B1v1=0.  (8b)

- %@I(qu)gq)z_ g(b’qu)zq);q)l mit\t/gictir negative mass terms, both VEV’s are nonzero. Ad-
y, this model does not belong to the class of minimal
1 models as defined in this paper, since one can breakthe
+ [ DID(adlD,+bd I, +cdld,) symmetry with just one VEV; however, we include it in
8 order to illustrate the role of the linear terms in symmetry
+H.cl. ) nonrestoration.

At high temperature, the effective potential acquires the

Choosing the parametg8>0, one can prove that the additional termg1,18,19

minimum of the potential is achieved when the fields acquire T2
vacuum expectation valu¢¥EV’s): AV= ﬂ_[(s)\l_ a) 2+ (3N~ a) p2+6(B1+ Ba) b1 s ).
0 0\ 9
q)l: f CI)2= ele. (3)
U1 U2 By asking, e.g.a>3\4, one can keep one of the mass

] ) ] ] terms negative at any temperature, while EQ.forces the
The terms in parentheses in the potential will force thegiher to pe positive. However, the cubic terms in E8).

CP-violating phase) to be nonzero. This can be readily seengyarantee that only one negative mass term suffices to have
by writing Eq. (2) at the minimum(3), and wisely rearrang-  poth\VEV's nonzero at highr. In other words, the field with

ing terms: the negative mass term acquires a VEV and “forces” the
5 ) other to get one also, via the linear terms in the potential.

_ M 5 Pi 4 P 5y The reader must have noticed that we can redefine the fields
V(<q)1>’<¢)2>)_§1 ( 2 Vit g T guive at highT so that just one of them has a nonvanishing VEV.

However, she should keep in mind that the same holds true
at T=0; the point is that the symmetry breaking patterns at

a
a2 2 _ 72
+5vivalcoss— 4", @ high and lowT are equal.
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One can hope that the potential in Lee’s model, being of a 5 5 _ p a B a p
similar form as Eq.(6), will exhibit a similar behavior, al- vi=pi1—0, v;=p,—o, With o= 276 §—§<§-
lowing both VEV's to remain nonzero at high temperature. (16)
Unfortunately, it is readily found out that it does so at the
expense of having the phagegoing to zero, thus restoring Requiring »?, ¥2<0 will give p;p,<ao?<p?/4, which con-

CP, as we now show. tradicts Eq.(15).

The high temperature corrections to the effective potential Considering only thed-dependent part, we see as before
for a model withN Higgs doublets can be found by gener- that there is a minimum fo¥=8(T). However, it is not
alizing Weinberg’s formuld1] for complex doublets. Write  difficult to see that with only one mass term negative, both
the most general potential fot complex doublets as VEV’s cannot be nonzero at high, due to the fact that the

mass terms now depend on the coupling constants. Taking
N N v§<0, the requirement that; be real gives
V:_'zj_ m|2<1>,T(I>,+ ; L )\Ijqule(I)Jq)lq)l . (10)
1= L],K 1=

2P 2
Vol =>v 1
Then the highT correction is Ie 2 1P2 (17
together with Eq(15), this is also enough to ensure thatis

NooT2 real. Substituting fon? and v one gets

T t
AV(T):ijzk:=1€(2)\ijkk+)\kijk)q)iq)j- (11

o plp p p
For the two doublet modeP), this gives 5127 P2 >§(‘7_ P2)>(P1=0)P2>| P1— 2/ P2:
(18)
2
AV(T)=—| (6N ;—2a— B)P 1D+ (6N ,— 20— B) DD, which again impliep,p,< p?/4, contradicting Eq(15).
6 We conclude then that the only way to have both fields
with a nonvanishing VEV at high temperature is to set the
) (12 phase6 to zero. In other words, the field with a negative
mass term can “force” the other to acquire a VEV, but it
) . . drags it in the same direction in() space.
The potential at higi can then be cast in the same form  Nptice that in[2] the fact that both VEV's can be nonzero

_|

3
+§(b+c)(q>{q>2+ H.c)

2 2 ) ; .
(4), where now the masses;” are replaced byn(T), was overlooked, but it was still concluded correctly that with
two doublets onlyCP would become a good symmetry at
« b(b+c high T.
m2(T)= —mi+ 272 n,— S B _POFO) o
3 6 16a .
B. CP and natural flavor conservation
8 c(btc) A common feature of models with two Higgs doublets as
a . ) 2
mg(T)= _ m§+2T2 Np— = —o— ~2T2,2, the one in the previous section is that they allow for flavor-
3 6 16a violating interactions in neutral current phenomena. As

(13)  shown in[20—27, the minimal model for spontaneo@P

violation involving doublets only that conserves flavor, re-
for T>>m; and § becomess(T): quires three of them.

To see why, consider a Lagrangian with two complex

S bv§+cU§+T2(b+c) y giggs doublets as in Eqgl), (2), and an extra symmetry
( )_ B 4aU]_U2 ' ( ) !
Again, as in the simpler model, one can have one and 1= =Py, Ur——UR (19
only one mass negative at high due to the condition analo- (whereu,g are up quarks and hereafterb, . .. are flavor

gous to Eq/(7), i.e., indices. The Yukawa interactions are written now

2 — —— )
p1p2>pz, (15) Ly=(ud)2hl,®,d%+ (ud)2h2,(im)d3us (20

so that flavor violation through neutral Higgs exchange is
since now avoided. However, now the symmetry prohibits the terms of
the type@ICI)l(DIdDZ in the Higgs potential, and therefore at
the minimum we have the phage=0 or /2, both leading to
*Obviously we do not worry about the potential being Hermitian. CP conservation.
Needless to say, the reader should take care of this in choosing her The way out is to have three doublets, and an additional
potential, and then safely proceed to use our formulaAfdg(T). symmetryD, that prevents it from coupling to the quarks:
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®,— — D4, with other fields unchanged. The most generaland analogous expressions foy, ps.
potential invariant under S@) X U(1)XD,XD, is Once again, we are interested in whether@fe symme-
try can remain broken at high temperatures. It is straightfor-

> ward using Eq(11) to calculate the masses at high tempera-

=2 [-m2d[d+ (0D

< ture
T T T T T? T?
+i2<j [~ aij (P D) (P D)) — Bij (P D)) (P D)) m; (T)——m2+ 6p;— 2 (2aj;+ Bij) } gviz.
26
+ (P ;DD +H.c)l. (22) (26)
It can be showr{20—23 that choosing;;,y;>0, the Because of the high degree of symmetry of the potential,

temperature contributions are independent of the phases, so
equationg23) are the same.
1 0 For the potential to be bounded from below, a set of con-
( i0 ) (22)  straints analogous to Eg7) has to be imposed on the cou-
plings: namely,

above potential has a minimum at

q"ﬁ

where only two of thef; (say, #; and 63) are relevant. Ex-
tremization with respect t@ yields[21]

vie'i
pi>0, pip;>a; foreachi<j, (2739

Y1038iN2601+ y1038in2( 6, — 62)=0, (238 P1P2P3— P183;— P2a%s— Psdls— 2a1221:805>0,

(27b)
Y130 3SIN2( 01— B3) + Y0 55iN205=0. (23b
. L with aj;=a;; + B;;, and we choose;;>0, soa;;>0.
Notice that to haveCP violation, we need all three; and It is easy to prove that E278 prevents us from taking

both 6, ,65 to be nonzero. o _ all three of the mass terms negative at higghas we could
It can be show22] that theC P-violating solution of Eq.  5ye expected. Necessary conditions would be
(23) is indeed a minimum. When the phases take this value,

the remaining potential is
> a;>3p;. (29
m (@i + Bii) j#i
V(v))= E (——' a .“) > B e,
=1 2 4 i<j 4 L . . .

(24) Multiplying these equations by pairs and adding them re-

sults in a contradiction with Eq273. But it turns out that
where with only two negative mass terms, all three VEV's cannot
be nonzero at arbitrarily high temperature. Take for example
D=Ay— Y12Y13 (25) v2>0, v5,v5<0. We need, to be real, that is, minimizing

Y23 Eq. (24),

2 (T_Z) —vi(pops—aly) + Vz( P31zt @xsfsa) + v3(Poasat a236112) (29)
3

U =
! P1P2P3— Plazs Pzals Psalz 2a;21393

We have already required the denominator to be positive. Inserting Eq.(30) in Eqg. (31), one gets
For the numerator to be positive also, necessgtiryugh not

sufficiend conditions are
—2p,p3(@ot a3 —azs(Praist Psain)

v,2(Paaiot xd13) + va?(Praist ads))
(30) >P1P2P3— p1a§3_ pzais_ psaiz
—2a3,2;583+ 2P1(P2P3— 85y, (32

> —,2(poPs—a3y),

where
_2=3 —A1o— A12< 2 . . . . g
141 P1— a1~ &13< 77, which in view of Eq.(27) cannot be satisfied.
— ) Thus, once again, th€P-violating phase disappears at
vo©=ayptag—3p> s, high temperature. As in the two-doublet case, here too the

— ) problem is thaC P violation is achieved through the relative
v3“=agta—3pz> ;. (31)  phase of the VEV's of the doublets.
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C. CP with a singlet field T2

2TV 24 _
It should be clear from the previous examples that when mg(T) =~ M+ 24(12}\‘1’ @),

the CP phase is related to the relative phases of doublet

fields, high temperature effects will make it vanish. We 2 2 9

therefore look for models in whiclEP violation is broken ms(T) S m_3+ T_(3)\ —2a) (36)
spontaneously by the VEV of just one field, which may be 2 2 24778 '

easier to keep at high temperature.

The simplest such model is a minimal extension of thewe can haven2<0 always by requiring >3\, and thus

standard model witl{a) a real singlet fieldS which trans- ;=0 at any temperatureThe only further restriction is the
forms underCP as S——S and (b) an additional down ygyaln 4> a?/s.

quark, with both left and right componerils’ and D sin- It seems then that in this model, one can h@w broken
glets under SK2). at any temperature. Remember however that up to now we

The interaction Lagrangian for the down quarks, symmethave only considered the leading order contributions to the
ric underCP, contains the terms effective potential in calculating the mas$86). A complete

— — b — — . analysis should include the next-to leading order corrections,
Ly=(ud)(ha®Dg+ (ud)(hap®dr+MpD DrtMa(DLdr  as we already mentioned in the Introduction. We can antici-
. e . ~a_a pate that for a singlet field these effects will not change the
+H.c)+ifpS(D Dr—DrD.) +if,S(D dr—drDy). picture much, but we leave a detailed analysis for a separate
(33)  section.

Clearly, whenS gets a VEV(at a scalec much bigger
than the weak scal®l,,) CP is spontaneously broken by the

terms in the last line. A model of this kind was developed by SpontaneouB violation has been already discussed in the
Bento anq Branc$23], in the version where the §inglet is a second paper of Ref2], mostly in connection with strong
complex field and gets a complex VEV, and with an addi-cp yiolation. It was concluded there that in the minimal
tional symmetry under whicl$ and Dr are odd, all other models of spontaneouB violation, left-right asymmetry
fields even. _ may persist to high temperatures. The analysis however was
We will for simplicity keepS real (and impose no further carried out without considering carefully the role of the
symmetriey noting that the analysis goes over the SaMe&yauge couplings, which is now known to be fundamental
lines as in[23], and referring the reader there for details.[15], and which as we will show may invalidate that conclu-
Suffice it to say thaCP violation is achieved by complex gjgn.
phases appearing in the Cabibbo-Kobayashi-Maskawa | et ys recall the salient features of the minimal left-right
(CKM) matrix through the mixings ofl and D quarks, symmetric theories[24] based on a S@), X SU(2) g

which are of the ordev/Mp . These phases remain in the » (1), |, gauge symmetry. The fermions are in doublet
limit Mp, o— when the heavy quarks decouple. This yapresentations

should not come as a surprise, since in the decoupling limit
the theory reduces to the minimal standard model, which in
general has complex Yukawa couplings and a complex CKM ( u) ( u)
matrix. Also, flavor-violating currents are suppressed by L’ R’
powers ofM /o, disappearing in the decoupling limit. Thus

the measure of the departure from the standard model is the

[lI. SPONTANEOUS P VIOLATION AND HIGH T

dimensionless parametdt,,/Mp, and for the theory to be v v 37)
experimentally testabl® , should not be much bigger than e/’ e/,
1 TeV.

To leading order, the high-temperature behavior of the
® — o system is very simple. The most general potential carb_
be written as !

The minimal Higgs sector of the theory consists of the
doublets(one or mor¢ ® needed to provide Yukawa cou-
plings and fermion masses and two multipldts and Ag

m2 N which may be either doublets or triplets under(3\y and
V(®,9)=—mZD D+ \g(PTD)2— 7SSZ+ ZSS“ SU(2)r, and which are in charge of breakirig) spontane-
ously.
a For the sake of completeness, we remind the reader of the
—Edﬂrbsz (34 essence of spontaneoBsviolation and we do it in a simpli-

fied toy example which has all the relevant features of the
theory. More precisely, we takd, and Ar as real scalar

and it has a minimum at fields and assume a left-right symmetric potential

@wy=—(°], (s-+o. (35
V2\v

2According to Eq(33) the Yukawa couplings also give contribu-
tions to the high-temperature mass of the singlet. However, in these
At high T, the masses are replaced by kind of modelsf, andf; can be naturally taken to be small.
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m? A '
V=—— (AE+A§)+Z(A‘L‘+A§)+—2 AZAZ
m? \ N
== S (AP AR+ (AP+ AR+ ——APAR

(39

A simple inspection ofV is enough to convince oneself

that form®>>0 and\’—\A>0, the global minimum of the
theory is obtained for

2

(A)?=0, <AR>2=mT (39
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If we now useg’?=g?/2 and takeg?=1/4, we see that
nonrestoration oP requiresh>1 in conflict with pertur-
bation theory. Including other couplings does not help, since
new conditions on the couplings coming from the mass ma-
trices have to be imposddince it is not illustrative, we omit
here the numerical analysis required to prove)this

Although physically less attractive, one can in principle
use doublets to breaR spontaneously. This is actually the
case studied ifi2]. It is easily found that with doublets the
condition equivalent to Eq43) is down by a factor of half.
Thus this case may be considered borderline.

Now, for the implementation of the see-saw mechanism
in its minimal form, it turns out that a parity odd singlet field
is needed26]. The singlet fieldS will couple to theA fields
with a left-right symmetric term

or vice versa. Thus the left-right symmetry is broken spon-

taneously. Of course in realistic models, besidés being

MS(ATA —ALAR). (44)

nontrivial representations under the gauge group, we do need

a field ®. One can then try to take one or more of the cou-
pling constants betweeh and theA’s negative, thus achiev-

ing a negative mass term for thes at all temperatures.

Let us concentrate in the version of the theory which in-

corporates the see-saw mechanism with and Ag being
triplets [25]. Since we wish to keepAg) nonzero at high
temperature, it is enough to look at the,—® system and,

as in[2], consider a simplified model in which the potential

is written
V=—miALAR+T NA(ARAR)Z+ —m3TrdTd
FAp(Trd )2 —2aTrdTDALAR, (40)

whereAg is a triplet under S(2) 5, hasB—L number 2, and

Without the lower bound imposed by the gauge cou-
plings, the situation in this case goes along the same lines as
that of Sec. Il C: the VEV of the singlet can be kept nonzero
at high temperatures with the aid of the bidoublet fiéldor
even of theA’s. Exactly as it worked witfCP, now P may
remain broken at high temperature, and the presence of more
fields coupled tds than in theCP case only makes it easier.

IV. STRONG CP PROBLEM AND HIGH T

The strongCP problem arises in QCD when nonpertur-
bative effects, resulting from the existence of instanton solu-
tions, induce effective terms in the Lagrangian that violate
CP. The resultingCP-violating phase is

0=0+argdetM), (45)

other couplings are taken to be small. The high temperature

masses afe

2 2, 12| 2 1 3.
mg(T)=—mg+T g)\¢_§a+l—ﬁg , (41a

m3(T)=—m3+T?

12 3 L
> A—§a+§(9 +299) ¢,
(41b)

whereg’? is the U1) gauge coupling and? is the SU2)s
one. We have to keem3(T) negative at highT while pre-
serving the boundedness conditiag\ ,> o?; thus we ar-
rive at

a2

\ 91}\ 3 24 og?
¢>E>Z > A+§(g +299)|.

(42)
A¢ as a function of Ay, has a minimum at\,
=(3/4)(g'%+2g?), so we must have

27

(N2 2
No>T5(0'2+207). (43

SWe use the normalization Tr'®d =, ,/2; AtAR=AZAR,
wherea sums over six real fields.

where ® is the coefficient of@esaﬁngﬁFg” term, and
M is the quark’s mass matri@ is constrained experimen-
tally to be zero to a very high precisio®& 10~ °), giving
rise to a “naturalness” problerf27].

A. The invisible axion solution

The most popular solution to the stro@P problem is
the Peccei-Quinn mechanigihO], in which the phasé® is
identified with the pseudo Goldstone boson resulting from
the spontaneous breakdown of a global symmet(¥) k.
Observational constraints require this breakdown to occur at
a scaleM po much bigger than the electroweak scale, making
the axion “invisible” [28,29. Besides the axion field, the
breaking of Ul)pg produces a network of global strings
[30]. As we go around each minimal string, the phase
®=a/Mpg winds by 27. Instanton effects appear later,
when the temperature has reached the QCD sdgjgp.
Their effects in the Higgs sector can be mimicked by an
effective term

AV=Adcp(1-coNO), (46)

whereN is the number of quark flavors. It becomes energeti-
cally favorable for® to choose one out of the discrete set of
values 2rk/N (k=1,2,...,N). But since we must have
A®=27 around a string, this results in the formationNf
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domain walls attached to each strif@l]. For N>1, these The mass term of the singlet at high temperature will be
domain walls are stable and therefore in conflict with stan-
dard cosmology.

Clearly, without the global strings no walls will be , ) T2
formed: aboveT=A ocp, ® would be aligned having some mg(T)=—ms+ = (As= 71~ 72), (5D
typical value®, which after the QCD phase transition would
relax to the nearest minimum. We wish then to study in
detail the high temperature behavior of the invisible axionsg that imposingy; + y,>\g, we get the 1) po SYmmetry
mechanism, well above the scadlenq. broken at all temperatures. We already know that at Righ

For concreteness we concentrate on the minimal extefsne cannot have all three VEV's nonzero, and notice that

sion of the original Peccei-Quinn modegl9]. The potential because of the linear terms in havingu <+ 0 forces
for the PQ model with the doublets; (i=1,2) both having b1 ,0, 10 vanish. B4, 9us

Y=1 and a S@)xU(1) singletS may be written as Up to this order then, it seems quite natural to keep the

m2 \. o VEV of S nonzero at highl; again we leave the next-to-
Vpg= 2 — 7I¢iT¢i +ZI(¢iT¢i)2 — E(¢I¢l)(¢;¢2) leading olrder qonsiderations for the next sessioq. The qurned
i reader will notice that the same holds true for Kim'’s version
2 [28] of the invisible axion idea.

mS )\S
NI AL

B. SpontaneousP or CP violation

¥i
-> (El(f’r(ﬁi)S*S_ M( ]S+ b3h1S*). (47) Another well-known solution to the stror@P problem is
' based on the idea of spontanedd® or P violation [6].

In addition to the S2)_ X U(1) local gauge symmetry, Here, the_symmetries can be used to 8gt.~0 and the
Vpo has a chiral (1) po Symmetry @, couples to say down effective ® is then finite and calculable in perturbation

quarks, andp, to up quarks theory, and in many models small enough. The high T be-
havior of these theories is completely analogous to the one
b1—€%,, P,—e %, S—e??S. (48  discussed in Secs. Il and lll, and thus we can conclude that
the solution of the domain wall problem favors models with
For >0, the minimum is found at singlets. However, beforée model is found we find it fruit-
0 less to study this question in detail.
<¢‘>_(Ui » (S)=vs. 49 V. NEXT-TO-LEADING ORDER CONTRIBUTIONS

To have U1) pq broken at any temperature, it is enough to In a series of recent papers, Bimonte a_nd Lozgin12 .
have addressed the issue of next-to-leading order contribu-

keep the VEV of the singlet nonzero for al. From our . . . :
analysis of the previous section for a potential with threglions to the effective potential. As was already pointed out in

doublets, one can already expect that keeping the VEV oft9 in @ theory with a\¢* potential, the next-to-leading
only one field nonzero will not be difficult. In this model ©rder contributions to the massre of order

then the conditions on the potential parameters cannot be an

obstacle for nonrestoration, but we present them here for the ) P

sake of completeness. Taking>uv;, the conditions over m?(T) A *2T2, (52
the couplings are, to leading order

while higher loop corrections do not contribute significantly.

The point is that in a theory with two fields where one of the
(508 self-coupling constants is required to be larger than the other

(as we did to avoid symmetry restoratjphe larger con-

Ai>0, As>0, AMAs>92, AAp>(a+p)?,

Uf vg stant will enter in corrections to the other field’'s mass. Thus
Mg —=(AAs— %) +—(AAs— ¥5) — 2010 [ As(a+ B) one has to make sure that the results to leading order are
v2 Y1 maintained when including such terms.
In fact, in the case of gauge symmetries, it was concluded
+y172] |+ 030 iva AN g N1 Y5 —No¥2 [12] that the inclusion of these effects can alter significantly
the phase diagram of the theory. This is mainly due to the
—Ag(a+B)2—2y,y,(a+B)]>0. (50p  fact that in the gauge case the coupling constants cannot be

as small as one wishes, but are bounded from below by the
It is easily proven that Eqg50a imply that the first line  value of the gauge coupling. In the case of singldt$],
of Eq. (50b) is positive. A sufficient condition for bounded- although the effects are not so dramatic, they do alter the
ness will then require Eq503 and the second line of Eq. parameter space for symmetry nonrestoration. Since in this
(50b) to be positive, the same conditions that were requirednvestigation the models that allow for nonrestoration at high
in the three-doublet model of Sec. Il[Eq. (27)]. T were based on singlet fields, we will only consider here the
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next-to-leading order corrections in the case of global T S N A A R
Symmetr)/} 10 X X X R B 8 ® @ &
We begm by reviewing briefly the gontrlbutlon_s of next- X X ® R0 O 8 &
to-leading corrections in the effective potential of an I |
O(N) X O(N,)-symmetric model, although we refer the 8l XX B0 8 8 & ®4
reader td11] for details. Take two real fieldg,, ¢,, trans- 1
forming as vectors under ©),O(N,), respectively, and i X X R e 8 Q0 8 8
write the potential L x x x 8 8 @ ® ®@ ® ®
) |
m; N « o i
V(b1 42)=3 (—7'|¢i|2+z'|¢i|4)—5|¢1|2|¢2|2. £ 0 0P e e e s oo
(53) X X R0 ® K Q0 8 ®
The temperature contributions to the effective masses are - © 8 8w o088 008 ]
calculated to leading order to be X 0 0 R0 0 @ 8 @ -
2+N;\ N ]

2012, 2_ 12|y 1) N2 X RO B 8 0 8 & 8 ¥
Amy(T)=T»i=T [)\l 7 29 (54 | | | | B

(and a similar expression fa&xm,) while to next-to-leading, ° ’ * N ° ’ °

Am;=TYx; is found by solving the coupled pair of equations
FIG. 1. Symmetry nonrestoration in a model with

5 o [24Ng N, O(N;) XO(N,) symmetry. Points indicate the valuesN{f, N, for
X1=vi— P 7\1X1+Eaxz, which the VEV of the ON,) vector can be kept nonzero at high
temperature, for fixed values of the potential's parameters: circles
21N N correspond ton;=0.1, «=0.03, \,=0.01, crosses to.;=0.1,
2= 12— | 2|\ Xo+—ax,. (55  @=0.01,1,=0.001.
41 47

leading order, it is always preferable to keep nonzero the
Symmetry is restored when such solutions are real anEV of the field in the smallest representation _
positive. The conditions under which those solutions do not The ON;) X O(N3) toy model can mimick models with

exist, and therefore the ®) symmetry isnot restored can More complicated symmetries involving two fields with
be found to be and N, real components, in the approximation where their

interaction is just of the typer| ¢,|%|#,|?. In particular, no
approximation needs to be done in the doubkhglet case.
)[1— f(N1,@)]>N,, (563 In Fig. 1 we show how symmetry nonrestoration depends
in the number of fields when the next-to-leading order effects
are included, i.e., we find the valuesf andN, for which
the conditiong56) are satisfied when the parameters of the
potential are fixed. The plot shows the situation for two sets
of ratios of the couplings:\;:a:A,=1:1/3:1/9 and
1:1/10:1/100. Notice thalN,<N; is still preferred. As the
ratio N, /N; increases, it becomes necessary for nonrestora-
tion to take smaller ratid., /A .
N 12 The cases d; =4, N,=1 (a complex doublet plus a real
A — 2 a)) —\; (57)  singlet, as required fo€P violation in Sec. Il G, that of
2+N; N;,=8, N,=2 (two doublets and one complex singlet, as in
. ] _ the invisible axion model of Sec. )Vand that ofN,;=8,
IS a funCtlon that can take Va|ueS from 0tol. The Iead|ng\|2=l (tWO doub|ets and a Sing'et, as in the parity-vio'ating
order conditions are Eq$56) with f=0. One can see then model of Sec. Il lie in the nonrestoration region.
why the parameter space is reduced: it gets more difficult to The relevant question is how big is the region in param-
fulfill Eq. (568. The behavior with the number of fields also eter space where nonrestoration occurs. In Fig. 2 we show
becomes nontrivial, since (1f) is a decreasing function of that region for the case of tHeP violation with a real sin-
N,, and the two factors ofr in Eq. (568 compete(up to  glet, in\4 ,a space, when g is kept at a fixed value. Vary-
ing A g basically “rescales” the whole picture in the axis.
The corresponding region with only leading-order effects is
“We thank G. Lozano for calling our attention to the fact that thealso shown. Although the parameter space is reduced by
gauge coupling does play a role, even when the field causing thbigher order corrections, the difference with the leading or-
nonrestoration is a singlet. The reason is that the equations for théer case is not dramatic.
high temperature masses of the doublet and the singlet are coupled. For the Peccei-Quinn model, the next-to-leading order
The effect is nevertheless sméibr a gauge coupling®=1/4 we  calculations are only approximated by an O¥x8)(2)
found an error in our estimates of less than around,3%we have model, in the limit where in Eq(47), Ai=A,=2a=\y,
chosen to keep our discussion to the global case for simplicity. B=0, andy;=vy,=7.

N1
2+N,

a

)\1)\2> az, (56b)
where

1672

3(2+N;)
O (e

8772 1

X
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FIG. 2. The region of symmetry nonrestoration for the model of k15 3. The region of symmetry nonrestoration for &80

CP with a real,CP odd singlet, for two values of the singlet's x o(2) model, an approximation of the Peccei-Quinn model.
self-coupling constank as indicated. When only leading order
effects are taken into account, the region extends up to the dotted Domain wall problem
line.

Avoiding the phase transition is not enough to solve the

L . domain wall problem, since thermal fluctuations are in prin-
Under such approximation, the region where nonrestora:

tion is allowed is presented in Fig. 3, for the same range oFlple able to produce topological defects at any time. As was

S : . . : shown in[9], thermal production of domain walls and strings

parameters as in Fig. 2. It is evident comparing both figures : .

that nonrestoration does not depend only on the ratio. o b.e naturally suppressed. We briefly §k_etch how this Sup-

N. /N pression occurs for the two models admitting nonrestoration
2 1-

L . . presented here, and refer[@] for details.
As for the model ofP violation with a singlet of Sec. IlI, - . . .
it can be imitated by a O(8) O(1) modelgif the quartic Consider the nucleation of a large spherically symmetric

coupling with the two doublet fields is taken negative. Onedomam wall or a closed loop of string. The production rate

can also choose the couplings with the bidoublet negativéoﬁlrerl:nl;t [térg]e per unit volume at a temperaturewill be

and then consider an approximated model with some of thg y

self and mixed couplings small. The nonrestoration region is S; |32

clearly bigger than in the weak or stro@ cases. F=T4(ﬁ) e ST, (58
Notice that in Ref[11] the authors do find a considerable m

reduction of the nonrestoration region for the case they con- ) ]

sider, that of an O(90¥ O(24) symmetry and a large cou- wheresg_ |s/tThg energy of the closed.defect.'The suppression

pling constani~ 1 [relevant for the discussion of nonres- factor € 5 _ is readily calculated in the limit where the

toration in SU5) gauge theorids Of course, in the global defect’s radius is much bigger thanllts vyldth..For thg domain

cases we are interested in here, one can lakas small as walls produced in the model @ P violation with a singlet,

necessary to reduce the next-to-leading order effects. we get
Sy_ 16m V2a—3)s o
VI. OUTLOOK AND CONCLUSIONS T 3% s (59

In this paper we have studied the phenomenon of symme-
try nonrestoration at high temperature, focusing on some Analogously, for the Peccei-Quinn model the thermal pro-
minimal models of spontaneodsandP violation. We were  duction of large loops of strings is suppressed by
motivated by the fundamental role that these symmetries
play in nature and by the possibility of using them in solving

the strongCP problem. We find that symmetry nonrestora- %>4W2—”’1+72_)‘5_ (60)
tion seems to require singlet fields and that it seems to work T As

in accord with perturbation theory. This provides the hope

for solving the domain wall problem and having baryogen-

esis operate at very high temperature as we now discussWe note that the normalization of the kinetic term we use here
briefly. differs from that of[9].
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We see that in both cases, it suffices to take the singlet's
self-coupling\ 5 small to avoid significant thermal produc-
tion of defects. The issue of baryogenesis in the context of broken sym-
The considered models with singlets involve a high scalgnetries at highl has been discused [83] with emphasis on
My much bigger than the weak scald,,, and it is note- the theories where the $2) X U(1) gauge symmetry of the
worthy that the smallness ofs is intimately related to this standard model never gets restored. This implies massive
hierarchy. Strictly speaking one could just fine tune the comfermions at highT, but it can still be shown that baryogen-
bination ofm3 and Agv2 to be small, but this is not stable esis may take place along the usual lines of the out-of-
under radiative corrections. It is maybe more natural to takequilibrium decays of superheavy lepto-quark gauge and
all the mass parameters of the modgj andmg to be small,  Higgs bosons.
i.e., of orderMyy, and the singlet’s self and mixed couplings  Now, in the examples we have discussed both Withnd
of order (My,/vg)®. In such case it is obvious that both Eqs. Cp violation at highT, and including the Peccei-Quinn
(59 and(60) become enormous, suppressing completely thenechanism, the S(2)x U(1) symmetry gets restored as in
production of defects. Of course, the nature of the fine-tuning,e more conventional scenarios. Thus fermions become
is finally a matter of taste. However, the second possibility,5ssless and the creation of baryon asymmetry proceeds as

has the clear prediction of keeping both Higgs doublets "gh(%sual. Of course, this implies embedding of the models dis-

glx:)r;erir:?e\:/éstfl:)e/ \?;(rli?irz;t:reOdeL as is commonly assumed an ussed into GUT'’s, a task beyond the scope of our paper.
Of course, all the above still does not guarantee the ab- Note AddedWe have left out the issue of supersymmetric

sence of domain walls. One needs to assume initial Condﬁeones. Herg E'nfger[tgz]aterlly vr\]/e the;ve ?hn?'.g? the?rem due to
tions in which the singlet field has a uniform value over a angano and na which states that internal Symme-

region of roughly the comoving size of the present horizon.tries in the context of supersymme{(§USY) are necessarily

This is equivalent to assume that the so-called horizon prog€stored at high. The issue has been revisited recently in

lem has been solved, for example, by means of a period dhe context of nonrenormalizable SUSY theorie$36], but
primordial inflation. the theorem seems to be valid also in those cE3&ls

Baryogenesis
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