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1 Introduction

The strong nonlinearity of the Navier-Stokes equation for high Reynolds numbers
makes the theoretical description of developed turbulence very difficult. From the 70-
ties there has been a significant increase of interest in the theoretical investigation of
the statistical hydrodynamic models, where the phenomenological statistics of exter-
nal random forcing has been used for the modelling of very complex flow instabilities.
In the present paper we have discussed the stochastic variant of Navier-Stokes and
MHD equations in the case when the axial symmetry of external random forcing
has been taken into account. Let us note, that stochastic differential equations can
be solved directly by using numerical schemes {1]. Instead, in this paper we have
applied the analy .ical approach leading directly to the approximate expressions for
correlation functions.

The possible deviation of the fully developed turbulence from the isotropic statis-
tics of velocity fluctuations was confirmed by a number of experiments and computer
simulations [2]. The contribution of dominantly oriented fluctuations developed as
a consequence of large scale anisotropy is a permanently discussing aspect of the
turbulence physics.

This deviation may be induced by a presence of specific initial or boundary condi-
tions, interactions of fluctuating fields with a mean flow gradients or external fields.
In the context of measurement it is known, that the turbulence behind grid tends
to be anisotropic with streamwise component slightly larger than the cross-stream
components [3] and anisotropy contributions could be relevant for the experimental
crrors in determination of the turbulent energy dissipation [4].

The fundamental theoretical study of the kinetic energy spectra splitting induced
by the presence of axial symmetry has been given in the comprehensive paper of
Herring {5], where applied direct interaction approximation could be considered as
an important starting point for development of this particular scientific region.

Many authors incline to the opinion, that the Kolmogorov local isotropy postu-
late, with the assumption that developed turbulence of the inertial range is indepen-
dent of the viscous cutoff (also shape and integral length characterizing the boundary
conditions), creates only the rough basis for the satisfactory understanding of tur-
bulence complexity. Therefore, the advanced statistical hydrodynamics tries to give
more accurate answer on the validity of the classical Kolmogorov phenomenology,
which ignores the effect of anisotropy inside the inertial subscales. The results of
renormalization group (RNG) analysis, which are presented in this paper hopefully
sheds some more light on this problen. , .

An initial important motivation of the present work comes from the study of
weakly anisotropic stochastic magnetohydrodynamics (MHD) [6]. It shows that even
small driving anisotropy of the forcing leads to an asymptotical increase of large
scale effective Lorentzian terms. It was found that the presence of the latter is
crucial for suppression of the Kolmogorov scaling invariance (called the instability of
critical regime in this paper). The present work, which sufficiently complements the

. .
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calculations of Rubinstein and Barton [7), tries to give a proposal how to modify the
stability of critical regimes of stochastic axisymmetric MHD.

2 The stability of anisotropic
hydrodynamic theory

We start with the description of the random velocity flow 4(Z,t) (¥ and I are d-
dimensional vectors ) the evolution of which is governed by the randomly forced
Navier—Stokes equation (meodified from [8])
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The explicit form of the anisotropic dissipation force f""'"' (as a consequence of
symmetry of f*) will be specified later. Here we continue the generalization of
the traditional turbulence models based on the assumption of the presence of large

scale random forcing f"(:l: t) with the Gaussian statistics completely defined by the
averages

(f,") =0, (f,-"(z’l,tx)f;”(iz,tz)) = Dj. (51 — Iyt — tz) . (2)

The two-point correlation matrix

Du(3,t) = 6(:)/ oy DiBrexp [ik] (3)
can be parametrized as (7, 9]
D;:(E) = g'”a Al pt-d-2 ([1 + al'&] R,,(.k‘) + GQR,,(;)) T 4)

in d-dimensional and anisotropic case. In expression (3) vector £ denotes the wave
- number and vector 7i(|ii| = 1) determines the anisotropy axis. The solenoidal P, R
and longitudinal PY operators are defined by relations

P = Bk by =6 P,

k2 i

R, (k) = (":‘ —'&%‘) (ﬂ. - fk%) » b= -—k—ﬁ

The most general parametrization of the non-helical D;, tensor (dependent on the
undimensional free parameters a; and a; (a1 > —1,a; > 0) is constructed to main-
tain the requirement of the incompressibility. We emphasize that in contrast with
the stimulating paper {7], these parameters are not considered as strictly small in
the presented wark. The parameter A with the dimension of wave number is the




scale setting parameter having the size from micro-eddy region; g, is the positive
undimensional constant. The usual assumption of stochastic theories exhibiting the
Kolmogorov scaling behavior is that the forcing to be localized around the zero of
wave number. and physical value of ¢ parameter is ¢ = 2. '

As usual. the measurable quantities in the study of the strong turbulence are
considered the statistical objects represented by N-th order velocity correlations
functions defined by means of functional integral

N A
(T v 0 H/[d"f-] 1(14{?] vl F, ) PET). me L2.d.  (5)
=1 -

)=
The conclusions of [10] cnable ns to write the probability distribution in form

P =norm x exp[S] with the action

il
S = / d? Fdly & Fadity 5 FEL LY DT = Facly — 82) 0(F2u 1) ]

LL

+ / " Fdi {i"(.i’.l)[ — i — (F‘:’)f" + oV 4 f'\""” ](r_.')} . (6)

where auxiliary incompressible field  was introduced along the way of transforma-
tion of (1) into the functional form. The RNG method here provides the correct
description of the large scale behaviour of the correlation functions (5).

In order to obtain power - counting renormalizable theory [10. 7} we need to
introduce terms proportional to nonzero parameters ( they will be denoted here
X1, x2 and xa). These new parameters, which are required to bring the cancellation
of diagram divergences are viscdus tensor components representing the orientational
redistribution of encrgy dissipation. 'The force of anisotropic viscous dissipation has
the explicit form ‘

iA-I'u-v =v [Xl(ﬁ-é)z'?“" XQﬁﬁz(ﬁ-ﬂ) + x,ﬁ(ﬁe)z(ﬁ'.a)] . ' (7)

From the methodological point of view at some stage of RNG procedure the
correlations (5) are expressed in terms of scaling function containing the continuos
effective variables §(s), X(s), which arc the functions of rescaled wave number « =
k/A. The scale dependent effective variables are governed by the set of differential
equations [L1]: ’

dg, _ ' .
3_5‘% = ﬁ!- (gw X;s ﬂb',z.d) , 1= 1,2,3,

dx, S
s—J—:'- = By, (3. %5 mad), selol] (8)

with the initial (:onditi()l#
§..|(.=l) = oy “Y)I(.:I) =X ' (9)
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d Q'.'Ile.mzo Q]Ilma;:()

(2.7 {0:0.00022 (<017, 0.05)
{28 {0:0.0034) (—0.51.0.18)
2.9 { )
3 { )

(0:0.0096) (-0.72:0.33
(0:0.018)  (—0.85.0.49

[

Table 1: The imits on the select 1on of free parameters oy  and d necessary (o create the conditions
for formation of the stable kinetic fixed point. The wvestigation of stability was made in two cases
a; = 0 and oy = 0 We found that the size of stable regions of o — d parametric space increases
with the increase of spatial dimension for 3 > d > d.. For d = d, the destabilization occurs in the
zero antsotropy limit

The large scale limit of statistical theory is described by the fixed point parameters

of RNG

Tismv) 7 90 Ny T X (10
‘jgb‘g:-\:'“l,lvd) = 0 ."ixj(y:,x;,ol'z,d)zo.

The explicit form of complicated 8, and B, functions obtained from one loop
diagram is presented in Appendix !I. Because of complexity of (8) only the numer-
ical study of RNG flows can clarify for us the selected aspects of strong anisotropy
problem.

The numerical investigation confirms the existence of the universal kinetic scaling
regime corresponding to st ible fired point of RNG. The Kolmogorov spectral index
of this fixed point remains fixed and insensible to d value.

The various aspects of axisymmetrically driven turbulence were discussed by Ru-
binstein and Barton [7].. The presented study reflects a preliminary effort at analyzing
of improved version of their model. A key step of a new formulation is recovering of
the relevance of the term y;v7(i.V)?(#.5) missed in the consideration [7). Accord-
ing to our investigation of (1) in small anisotropy limit, the existence of nonzero X3
parameter is irrclevant for the stability of theory at d = 3. But, as it will be shown
later, to achieve the correct theory near some dimension d — d. < 3 (where even
a small driving anisotropy destabilizes the inertial scaling) the incorporation of x;
term turns ‘out to be necessary.

Even a preliminary calculations have suggested us that qualitative changes of
anisotropicaly driven turbulence can take place at dimensions somewhere between
two and three. We found the value of critical dimension

V1T -7
d, = 3—‘/}:2—- ~ 2.6846584384 , (11)

below of which the incrtial range (kinetic regime) cannot exist under the conditions
of nonzero anisotropy. The numerical studies of equations show that for d > d,,
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the values of parameters «,; must be limited in the stable scaling regime. The
numerical studies focussed on selected dimensions d = 2.7, 2.8, 2.9, 3.0 show that
the range of kinetic regime stability in a— parametric space increases with dimension
{sec table (1)]. For d = 3 the cquations (8) enable to find a stable solution when
{1 ) min < @1 < (@) )mar and 0 < a3 < (Qz)maer for extremal values

() Jmar = 0490 {ay)min =~ —0.85,  (Q2)mar >~ 0.18. (12)

3 The effect of the induced anisotropy on the
effective Kolmogorov constant

The basic parameter aracterizing the properties of the inertial range energy cascade
is the Kolmogorov constant C,. Here we discuss the anisotropic case, where the
effective C; depends on the parameters a,, a;.

In the anisotropic case the equal time two point velocity pair correlation function
can be expressed in the form

S B dd]; Syr ro( = =
(e, (Tt v (Bt Mz = @$ !,,.Js(lc)exp[zk.(zl - 12)} (13)
with Fourier transformation
GR(K) = 85 K74 Y | P(R)wi (6, 0) + Rys(k)w (6,0) ] , (14)

containing desired lar ge scale. asymptotic k4% and satisfying constraints based on
RNG symmetry. The parah]eters Ca, Sq are

)
N 2(27)%/2q; ’ 2xd
Ca = ( Sd ) 3 Sd (15)

(d—1)(1+=F2) BOK

where I'(r) is the standard gamma function. The explicit form of w} and wj functions
taken in this section at kinetic fixed point g}, x;,7 = 1,2,3 is presented in Appendix 1.
We expressed parameters g,, v via measurable dissipation rate € by the relation

- 1 dT sty 3 Sd A4 ) o + ap
Ey?(?vr)‘*/,:dd kD:(k)=gov 2(21)‘4—2e(l+ p] ), (16)
which follows from the energy balance equation.

In the following text one can find how the Kolmogorov constant may be reached
within the RNG approach using the numerically determined fixed point parameters.
To better understand the consequences of anisotropy presence we suggest to separate
the longitudinal and transversal part of radial spectral tensor E;,(k)

Ej'(k) = 2(21',)4 k4 / dnf Gﬁ(-k.)v (17)
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~ where dQ; denotes the integration over the angular coordinates of k space for the
fixed amplitude |k}, in agreement with formula

1

P}*(k\ d

(ClP,,(ﬁ) + (J“P,",(ﬁ)) -l aka (18)

Using P(7i) and P!(7i) operators and expressions (17), (18) the scalar amplitudes
Cj and Cy can be expressed after some algebraic calculations as

G = cb/ dE (1 - €)% [wi(£.0) + (1 - E)w3(€,0))
(19)
Ch

Ci = 577 / de (1~ )5 [(d - 2+ E)wi(£,0) + € (1 - £) w3(£,0)]

where ¢, = ¢,54_1d/(2x)*. The comparison of traced (18) with the energy spectrum
definition

tr(E,,(k)) = CkESk™% (20)
gives
d-1)C. +C
O, = L_)d_*t_"_ (21)

4 The implications for MHD stochastic
dynamics, géneralized anisotropic resistive
and Lorentzian forces

For completeness we should mention that there are many mechanisms throughout
which the MHD turbulent media becomes anisotropic. The anisotropy can be arise
from the presence of an uniform background magnetic field [13, 14], macroscopic
polarization of the turbulent media or may be induced by specific random forcing
[9]. The last examp'e of the paper deals with problem how the anisotropic forcing
affects the inertial properties of MHD with high magnetic Reynolds number.

The micromodel of stochastic anisotropic hydrodynamics is used to construct the
renormalizable statistical theory of randomly driven anisotropic magnetohydrody-
namics in this section. The governing equations of the anisotropically driven MHD
fluid {9] may be written as

B + (BV)5 — vV — o 4 BV 4 friee =
b + (G.V)b— (595 — w3 — froee =
Vi = Vb=V.f=V.f* =0, (22)



[¢7] a, g’ \I ’ \3 \3 ('k UI!..L Gx’smr
0001 267 0027 002 —0.181 2990 03 038
00015 268 0.045  0.042 ~0.309 2992 1.2 1.5
0 001S 272 0.066  0.06] ~0.460 2995 16 25
0.8 006 012 0319 —0.662 2966 14 7.2
—0.5 04T 0065 0132 ~0.183 2982 28 19
—0.0° YoCul 0000 0.001 -0.000072 2988 0.1 0.1
0.0! 267 0.000 0.00] 0.00035 2988 —0.1 0.
02 0o §.030 -0.027 ~0.030 2987 —1.0 —0.2
019 0 2300 0008 -0.029  -0321 2987 —18 02

Table 20 he exammples of numerieal values of the parameters associated with the kinetic fixed
point of RNG obtamed for vanous oy, ay and d = 3 The importance of A3 term as compared
with x7 and v 18 aninteresting feature of theory with strong amisetropy. The spectral properties
of strong turbulence characterized by the amplitudes Cy, OV and €4 are also deduced from RNG
Consequently, the relative measures o4 and 0'*° of system deviation from 1sotropic state can
be constructed in the form o+ = 107 ~ (¢ = CLY/C, and @0 = 107 x (Ce = CPom) fOp2err
where C}*°7 = (%n)l‘ ~ 29876 1s the Kolmogorov constant of the isotropic RNG theory. From
presented data we find hmitations {al-4] < 4.4 and |¢**9"| < 7.2. The principal conclusion is that
Ci{m, az2) is not very sensitive to a5 vanations

where u is dimensionless magnetic Prandt] number, (7. 1) is realization of fluctuating
magnetic field. The maguetic forcing correlations satisfy the standard assumptions

(SUF0) JUFnty)) = 0, (23)
(FFEG0) [H(F2 1)) = Dy (F) = Faty — 1)

Jr—gp. 1 —az.a—gg—c

adapted from (3) and {9]. In expression (23) o3, a4 and exponent ¢ are additional
frec parameters, g, is a new coupling parameter. The maguetic forcing anisotropy
needs the suitable inclusion of terms with lower symmetry ( not appearing in the
standard MHD equations). The anisotropic magnetodissipation force analogous to
(7) is

Fraes =y [x4(17.6)25+ VTV + yii(7. V) (8] | (21)

where x;,7 = 4,5,6 arc new parameters. Performing the systematic RNG process.
which complements the initial results [9], new terms are generated with A, paramceters
coming into definition of modified Lorentzian force

— -

frreee = MBSV + Aii(i1.V) B (25)
+ i (6. V)(7.8) + Agri (. BY(71.V)(7.5) .

In the work [9] the renormalizable variant of the MHI) theory with simpler forces

fAtoreata fA-du v
Ag—0 J

vi—0e—0 has been studied in detail. This consideration has been



limited by the fact that anisotropy ( i.c. frec parameters ap. { = 1,2,3.4 and cou-
sequently fixed x;,7 = 1,2,1,3.A7,1 = 1,2,3) arc small. It was shown that the
investigaticn of MHD in the weak anisotropy limit leads to the Kolmogorov’s spec-
tral prediction only ( for the kinctic and the magnetic cnergy spectra) if the forcing
exponents satisfy inequality ¢ < 0.65¢. Now the results achieved in the hyiredy-
namic theory allow to speculate about the consequences for MHD and MHD possibile
stabilization by means of symmetry and completencss requirements.

We believe that the presence of yg magneto - dissipative term, analogous to
previously discussed viscous 3 5 term wiil have also an immediate implication tor the
large scale cffect of frtems and therefore will play an important role in stabilization
{ eventually destab’lization ) of critical scaling in MHD.

5 Conclusion

This paper deals with the RNG study of anisotropically driven hydrodynamic and
MHD turbulence. It examines the Kolmogorov scaling regime. The principal con-
clusion of paper is that the scaling can become unstable throughout ‘the spatial
dimension changes or eventually by anisotropy variations. In this context the rele-
vance of x3 term has been discussed. These results lead us Lo hypothetical build up
of the improved anisotropically driven MHD theory.

The authors wish to thank Dr. 1.Ts.Adzhemyan for useful discussions. M.H.
and D.H. are grateful to D.[.Kazakov and to director D.V.Shirkov for hospltahty at
the Laboratory of Theoretical Physics, Jinr, Dubna.

This work was supported in part by Slovak Grant agency for science (grant
2/550/93).



6 Appendix I: Renormalization of anisotropic
viscous dissipation

The renormalization of the f**** force has been performed after the terms (singular
in the limnit ¢ — 0) of the order

O (K6ufc1 O ((Riow/e). O (Knansfe), O((E.ﬁ)zn,nb/e) (26)

were extracted from the one loop irreducible Feynman integral

reE) = /(% / dt Aap(F,t)Ans(k — B, t)Vaar(K)Visg(k — )  (27)

in agreement with quite standard rules of ininimal substraction scheme (15]. From the
bilinear terms and triplc 530 part of the action (6) the basic elements (propagators
and vertex) of the perturbation analysis have been obtained. The propagators A, A
and the symmetrized vertex V are written in k. ¢ (for t > 0) representation as

Aoplk,t) = %!VQ/\z‘kZ”d_z' {wl(ékvﬂ)f’au(ir-')+W(fk,Tk)Raﬁ(E)},
Boplk,t) = 0(8) {ws(€r,74)Pap(B) + w6, 70) Raa(B) }
VarrlB) = i { Pas(B)ky + Pun(Rks }

where
w, = e“”‘w(,-_,) + e"’Bw(j';),for J=12 (28)
with coefficients
1 4+ a2
Wy = y\ L , wagy =0, . (29)
1 M(l +0| +(02—01)(1 —fz))
Wa1) = A Qz — (B A) )
M ( 2 - th
'w(2.2) = ——E(-—B—-—-A—)- (l + g + (02 - 01)(1 —{ )) s T=V N
wy = e-—‘rA’
M
wy = _B—A(C—TB_C—rA),

A = 1+x0€, M=x2+xf, B=A+(IT§2)M-



7 Appendix II: The derivation of 3 functions

In order to clarify the calculations and reduce the number of the terms under inves-
tigation of (27) through the analytical computational stages as much as possible we
have made some preliminary identities and relations. At first, we specify the form.
in which the functions w3(€_,, 74_,), wa(ék- > Tk-p) and also operators P( —p) and
R(k p) will be expanded into the Taylor series in powers of k [ the external wave
number of integral (27)]. Using the fact that Vw,(k) ~ k, the final extraction of
quadratic terms (26) needs the Taylor expansion of product As(k - 7. )Vara(k — p)
up to the first order in k only.

If we definc the coefficients W), 1 = 0,1,2.3 (dependent on scalar £,) as the
first order derivatives [at zero of scalar products k.7 and Eﬁ]

Jw;
in(l;.i{;l;.ﬁqO)’ Wiy =p 6(1; 7) l(l?AvT;I?.x?—‘O)’

Ow, |
6(Eﬂ (kA8 57-0) 1

W(J-O)
Wiay = i

then the mentioned expansion of ws, w, looks like

k.p ki ‘
W(Jo) + W(, 1) (pzp) + W(J'g) ( pn> , for 1=3,4. (30)

To perform the differentiation of w; and w, according to (30) we use the identities

p’ a'w(A(fk—p)v B(;:;‘;),; M(fk—r): Tk-r) '(E.i.‘-l’—*o) (31)

. a
= %:VAMBP - 2TPaT ] .w(APv BP» Mr» TF)
r

_9w(A(fk—p), B(&x—p),
HE.7)

M(&- - '
(Gu-p)) I(E_;c_i.;_.o) = =2, Vamsy w(A,, By, M),

with operator

a a , 8 s
VAMBp X’BA +X33M Bpﬁ, B=xa+(1-Exa— M,

where w is either of function (w3 or w,). The further computational purposes mo-

tivate us to separate T dependent terms writing algebraic structure of W(z,) in the
form .

W(J",) = ¢4 W("',‘l) + 8'7BW(J",_3) (32)
Te-“‘w‘j',”-,) + ‘re"'BW(_,-.,A).
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‘The expressions (297 and (31) allow the explicit derivation of coeflicients appearing

i (32)

W(rx.u.x) = 1 W(:;.o.z) = W'('J‘o.sy = H”(u.o.n =0. (33)
W(:;,:.u = W(x 12y = W(x.l.q) = 0. W(s.x.s) =2(A - fz\l)v

W(a,z.l) = W(J_;,z\, = W(u,u) = 0. ”'(3.2,3) = 2x1.

W'(m_n i '(4.0.2) =M/(B - A), “'(440.3) = "“'(4.0,4) =0,

Waiy = Wuip = —EW (420

Wiy WiaonWaaa. Waie = 2“"(4,0.1)(8'{2 - B).
Waan = - Woaag = 26(8'°M = My + Avs — By)/(B - A
W(u,.z) = W(a.u‘n)”’l(:;‘z.;w ”"(4.1 ) = 2W (4.0, l)fH

H

For the operators #2 and R at wave number & — p we find simply the. expansion
rules

Py (E - ﬁ) = PL(p)-2p7" (Eﬁ) pips + 070 (kap, + kypa).
Ru(F=p) = Ru(P (31)
+ (n, = p7 p)) [p" Epks 4 p i kbps — 276, (k.ﬁ) ,,,]
+ (n - p & Pa) {P—I &k + pik&p, - 276, (ii") Pj] .

Using these cxpressions and (30) we find the quadratic part ‘of kernel (27) in the
form '

Bop()Bas( = 5)Vars(F)Vira(K — ) _ (35)
= Aop(B) DA Vaar E)Vara(R) + Bap(PVhr Ar(5)Waery (F)Visa(—5)
+ nonquadratic in k part, '

where we have used decompositions
Ass(E = ) = AgslP) + kAl B), (36)
B = mnld@) + SAZ),
A_-(,? = 85Wpany + nynsWian + p~ (s + 1P (Wiao) — EWan)
+ P pps(— Wy — 2% Wio) + EWiany),

AY) = 5,sWing) + nynsWiaz) — &7 (1495 + 15py)(2Wia0) + W)
+ P pyps(—2Wia0) — Wiaa) + 16 Wi + EWiea)-

In the following we present procedure, which considerably reduces the computa-
tional effort and replaces the integration with d? 7 measure by single |nt¢grllro~er




the £ variable. i he integral can be calculated numerically. If an arbitrary function
of p.ii/p = &, argument is denoted by W(-), then the following rules for the extraction
of 1/¢ poles (right hand side of the following identities) have been derived from the
minimal subtraction procedure [15] :

d‘p ik s Por |
/ (TZ;)]‘*V(:;:) A;‘);J”’ ey [ll(“,{\ll}n,ujn,um
1 IMJ){W} (n'”JéJm + nlnﬂéjnl

+ MmNyl + 0N, + n,n,,,éu)

t IM.IU{W} (6116."71 + 6136]"1 + 6xm651) 1

d4p Dy Ps I
/ {27_.)4\1’ t&p) PRERISE - 2 [I(J,l){‘v}n.“,n,
+ IfJ.ZJ{W}(”'lé]s +n)6ns +nsbu)J
d’p pp, l
[ S - leulvinm, + Taatv)s,)
d'p Py ]
(27) 1$p) i+t T2 n o n{v}

dp 1 1
[ amvie) s = bty

With minimal subtraction scheme, there is no contributions from finite (for ¢ — 0)
part of integrals. All lincar in ¥ funcuonals I(x.y){¥} are connected with the basic
functional defined as

S / de (1-€9)T w(e) 37

lo{¥} = loog{¥} = e /.,

by means of relations

1(4,;)(\11} = (!14d2/o{\ll{ } - 6d2]o{\Pf }+ 310{\1'})(d2 I)_l ,
Tap(¥) = (- dalo{W€'} + dalo{WE*} — Lo{W})(d* - 1)"
Tan{¥} = (io{ €'} — 200 WE*} + Lo{WE*})(d? - 1)~

Ton{¥} = (l{¥€'}dy - 3lo{WE})(d-1)",

Ian{¥} = (- 1{¥€} + L{¥E})(d_y)™",

Ian{¥} = (lo{¥€'}d - L{¥})(d-1)™",

Ipa{¥} = (lo{¥} - l{¥&*})d-)",

ITan{¥} = hL{¥¢},

where we used the notation



The renormahized action

- — 1 ~ - — — -~ —
SR == / dd,l‘l(“] ddl‘gdtz {5 UJ(Ix,t])DJ,(.’L‘] - Iz,tl - tg) v.(Ig,tz)

4+

d'Fdt {{r(f,z;[ ~ 00 — (TV)F

bl AV 2y (V)T + L x oV (.5)

o~

b Zaxani(n VA D) } (38)

corresponding to (6). includes Z, (~ 1) terms (12, 16] providing the cancellation of
the divergences in (38). They can be obtained equating of corresponding coeflicients
of divergent part of integral (27), (35) with expected form

PR = vk (1 = Z4) ~ v(k.7) 260 (1 — Z)
vkirnang (1 = Z3) - v(k.i)nany (1 — Zg)

. . dd- o . . .
Voo BVasl) [ 5 [ at a5, 0B (5,0
d =

b b Vaas() [ (—;‘,—’)’— /Omdt Aol A o5, )Vira(—).  (39)

In order to keep the number of terms in Z; as small as possible it is usefull to
define the following J,,4,6,8,c,c, tensor

Jal aybybrcie; — Z_: 1(a1,a;){ {bl '/0 dr wh(év‘r)w(c:.q)(f’ T)} (40)

After the substitution of (32) into (40) it is simple to show that integration over the
T gives .

9 3 -
Javarbibye . = ?1(01,02){72 [(214) Wiere.20-1)W0a,. 1) (41)

s=1,2

+

(A+ B)[W,, 2 2s-1)W(sy,2) + W(c,,c,.z.)w(b,.x)]

(2B)™" W, .01.2-)w(h.2)] }

-+

In this expression only the single integration over the ¢ variable remains (note that
A, B,Wx v,z) are understood as the functions of ¢ variable here ) and this problem
is possible to solve numerically. :
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The expressions (30) and notation (40) have been used to brought the coefficients
Zy,...Z4 into the compact forms

2, -1 =
+

Z;—1 =
+

Zz—1 =
+

+

Zyi—1 =
+

IA +

+

+

~Jazaia0 — J222240 + J224210 — 2Jaz0130 — Jasora2
4daa2140 + Jasziaz + 2032200 + Jaszess + 2Ja32040 + Jiszza2

YJaza290 — Jana2a2,

~Juna - Jamzn — Jazza — 2J222000 + Janzua

Jazorar — 3Ja21140 — Jazinaz — 2321230 — Jazizaz — Ja21200
Tanzaz + Ja2nar + Jaezam + Jazzza + 5323240 + J323242
Jazazar — 2Jazora0 — Jazo132 + 4Jazane0 + Jazaraz + 2Jaz2230

Jaamazz + 2Ja22240 + Jaroaz — 4Jaze200 — Ji2a2a2,

Ji21e0 + 2240 — Jiraz40 — Jna1e0 — J212240

Jar4240 — Jazzae0 — 3Ja1140 — Jaariaz — 2J321230 — Jazizm
2321240 — J321242 + 5Ja23240 + Ja33242 — 2020130 — Jazor32
42140 + Jazanaz + 2Jaz2230 + Jazzzmz + 2Ja2a240 + Jazn2a

4J a0 — Jaaa,

—Jootmog+ Juna + Jizn + Jinza + 5Juzme

Jusaar + 2Jn010 + Jaora + 2J210200 + Jnoa + Jnoe
Jaozz — 2ana — 202 — 2Jaza — 10013240 — Jana
2013201 — Jaom — 653110 — 2Jmna — 4Jn1z3 — 2031123
3Js11200 — 20311242 + Jmnar + Jazms + Jaina + 10313200
2313242 — Jsrazar — 20 — Jaos + 4Jaanee + Jana

2 Ja2230 + Jaazn + 2Jaze + Juna — 4Jaaae

J4142A2 .

In the construction of beta functions appearing in (8) (for details see [10, 16] )
the one loop connection of Z and J functions can be easily derived

%:mdﬂ%“,%:nﬂ%rmyjﬁli

14
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IpuHKMMaeTCS MOAMHCKA HA IPENPHHTHI, coobulernus OObeaMHEHHOTO HHCTHTYTA
AACPHBIX HccaeaoBanui M «Kpatkue coobutenus OHAH».

YcranoBnena cheftylomlas CTOMMOCTL NOANKWCKKH Ha 12 mecsuep Ha H3AAHMA
OHSIH, Bxiouas Nepechuiky, Mo OTACAbHHM TEMATHYECKHM KaTETOPHIM.

Hunexc Temartuka liena noanucky
Harog
1. DkcnepuMetTaibiad (PUIMKA BbiCOKHX IHEPIHH 22600 p.
+2. TeopeTndeckas HU3IUKA BHICOKHX 3HEPIrUM . 59200 p.
3. DKCREpHMEHTAIbHAA HCHTPOHHaR (u3uKa 7800 p.
4. Teopernueckad GH3IHKa HUIKUX IHEPrHA o 23400 p.
5. Marémarurka 14800 p.
6. SincpHas CMEKTPOCKONHS H PAaIHOXHMHUS 12000 p.
7. ®u3vMKa TAXEAbIX HOHOB 2200 p.
8. Kpuorenuka 1400 p.
9. YcxopHrenu ' 12200 p.
10. ABTOMaTH3aUMS 06paGOTKH IKCNEPHMEHTAIbHBIX AAHHBIX 12200 p.
11. BHUHCNHTENbHAS MaTEMaTHKA H TEXHHKA 14300 p.
12. Xumus 1200 p.
13. Texuuxa GHIHYECKOrO IKCNICPHMCHTA 21300 p.
14. HiccnenosaHus TBCPAKX TCH H XHAKOCTEH ANCPHHUMH METORAMM 7200 p.
15. DxCnepUMEHTAIbHAS (PHIHKA SACPHMIX PCAKUHH
NpPH HU3KHX FHEPrHIX ' 2600 p-
16. losumeTpis H HHIHKA JMUATH . 2200 p.
17. TeOpHS KOMACHCHPOBAHHOIO COCTONHHSR 12200 p.

18. Hcnonsiosaune PEIyIbTATOB, : ) -
# MCTOOB JYHAAMCHTARBHBIX (PHIHUECKHX HCCCAOBAHHI

B CMEXHMX of/IacTaX HAYKM H TCXHMKH 1800 p.
19. Buodusuka ' 4 1800 p.
«Kparxue coobuteuns QHAH» (5—6 BHITYCKOB) i 15000 p.

Moanucka Moxer 6uTh odopmicHa ¢ moboio Mecsua rona.

OpraHM3alMaM W JIKUAM, 3AHHTCPCCOBAHHMWM B MONYHCHBUH uwinaunit OMAH,
cnieqyeT nepesectd (WiM OTHPABHTS MO NOYTE) HEOGXORKMYIO CYMMY HA PacueTHbiit
cuer 000608903 JiyGneucxoro umians MMKBE, rJiy6us Mocxoscxoll ‘ofnactu,
/nia. 141980 MO 211844, yxasas: «3a NOANMCKY Ha RUAHHS OUSi»,

Bo uibexanue HeopasymeHult HCOGXORUMO YBEROMHT Bgareasckuil oraen 0
npou3ssejicHHOA omiate ¥ sepHYTh «KapTouKy NOMINCIRKAN, orseTus B el HoMepa
H HAIBAHHS TCMATHYECKHX xa'rcropu'i,_ Ha KOTOphic OGOpMANETCE TORRECKA, 1O
agpecy:

141980 r. Jly6ua Mocxoscxoi oGu.
yn.Xonuo Kwopst, 6
OHAH, mareascxuil oTAen



Bywa 5. u ap. E17-95-348
HeycToiuKBOCTH B pa3BUTONH TYpOYAEHTHOCTH
C aHU3IOTPOIHOW HAKAYKOH d-MEPHOM Cliyyae

B nactosulei paboTe paccMarpHBaeTCA CTOXACTHYECKas MOAE/b PaAIBMUTOI
OAHOPOAHOI TYPOYNEHTHOCTH C CHIBHOI aHH30TPONMEi. Bblia BHUHCIEHA KOHCTaH-
ta KosiMoroposa M HaiiieHa ee CBA3b C AMIVTHTYAAMH CREKTPANbHBIX NPOEKLHii
(napayniesibHbie H MEPNENIHKY/IAPHBIE I0TOKY KOMIIOHEHTH) B CAY4ac KOraa KOH-
KYPHPYIILEE BIAHMOACHCTBHE MEXAY aHM3OTPONHKEH BHEWHEH HAKAYKH M JHHAMK-
KOii, onucuisacmoili ypasHeruwem Hasbe CTOKCa, MOXET OKa3nBaTh BIHSHHE
Ha cTabWILHOCTL KOJIMOTOPOBCKOTO pexuma. Mccnenyerca Ttakxe Gonee cnoxhas
CTOXaCTHYECKAs MATHHTHAR IMAPONHHAMHKA.

Pa6oTa Bmnosnnena s Taboparopun Teopetiueckoi dusuxit 1m.H.H. Boromobo-
ra OUAH.

Npenpunt OGLeMHCHHOM INCTITYTa micpHMX Heehesosannii. JyGua, 1995

Busa J. et al. 'E17-95-348 |
The Instabilities of Amsotrop:cally Driven Developed Turbulencc
in d-dimensional Case

lnﬂ\ep(mmmpermestochawcmodelofmehomwmdeveloped
turbulence with strong mmwpyumwd The olhoO - constant has
been calculated and its celation with smplitudes of spectial projections (streamwise
and cmmmmwmm)ﬁkm stablishe mﬂ\esntwions. where’

the competing mechanism Letween anisotropy of external forcing and dynamics
governed by Navier-Stokes equation can have influence on the stability
of the Kolmogomv regime. An extension to more complex stochastic magnmc
hydrodynamics is also considered. E

oy

The investigation has been perfotmed at (he Bogolmbov Labora(ory
of Theoretical Physics, JINR.
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