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1 Introduction

The quantization of non-Abelian gauge theories in the noncovariant Coulomb

gauge,
~∇· ~Aa = 0, (1)

has perplexed theorists for decades [1]. Despite numerous analyses and in-

genious attempts over the past 30 odd years [2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16, 17, 18, 19, 20, 21], the Coulomb gauge has remained an

enigma, especially for non-Abelian gauge models [22, 23, 24, 25, 26, 27]. This

assessment may come as somewhat of a surprise in light of the progress made

for other ghost-free gauges, notably the light-cone gauge n ·Aa = 0, n2 = 0

[28, 29, 30], and the temporal gauge n·Aa = 0, n2 > 0 [31, 32], nµ being an

arbitrary, fixed four-vector [1, 33].

Our understanding and technical know-how of these axial-type gauges

make it particularly hard to understand why quantization and renormaliza-

tion in the Coulomb gauge (also called the radiation gauge) should have been

so elusive [34]. Could it really be that this gauge is endowed with character-

istics that defy proper definition? To answer this question, and in view of the

tremendous range of applicability of the Coulomb gauge in physics generally

[1, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55],

we have decided to take another look at this baffling gauge.

It almost goes without saying that the spurious singularities in the Coul-

omb gauge arise specifically from the three-dimensional factor (~q 2)−1 in the

gauge propagator Gab
µν(q),

Gab
µν(q) =

−iδab

(2π)4(q2 + iε)

[
gµν −

(
n2qµqν − q ·n(qµnν + qνnµ)

−~q 2

)]
, (2)

ε > 0, µ, ν = 0, 1, 2, 3, nµ = (1, 0, 0, 0),

where diag(gµν) = (+1,−1,−1,−1). Although we could express (~q 2)−1 in

covariant form, i.e.

1

~q 2
=

1

(q ·n)2 − q2
, q2 = q2

0 − ~q
2, (3)

we shall refrain from using the above notation, since it deflects attention from

the crux of the problem, which is: how do we compute integrals such as∫ d4q

[(q + p)2 + iε]~q 2
, (4)
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where the 0-component of q is absent from at least one of the propagators:

1

−~q 2
=

1

0q2
0 − ~q 2

? (5)

To be clear, our goal is to find a prescription for (~q 2)−1 directly, rather

than in the limiting form

~q 2 = lim
λ→1

[λ(q ·n)2 − q2]. (6)

Accordingly, the purpose of this article is three-fold:

1. To propose a new procedure, called split dimensional regularization,

for computing Feynman integrals in the noncovariant Coulomb gauge.

2. To apply the new technique to the one-loop Yang-Mills self-energy Πab
µν.

3. To check the appropriate Ward/BRS identity, and hence the value of

Πab
µν.

Our paper is organized thus. In Section 2 we summarize the Feynman

rules and state the unintegrated expression for the gluon self-energy to one-

loop order. The new procedure for evaluating Feynman integrals is explained

in Section 3 and illustrated there by several examples. The computation of

Πab
µν is discussed in Section 4. In Section 5, we examine the ghost contribu-

tions and verify the appropriate Ward/BRS identity. The main features of

our calculation are summarized in Section 6. Finally, we enumerate in the

Appendix some of the integrals needed for the determination of Πab
µν.

2 Feynman Rules

The Lagrangian density for pure Yang-Mills theory in the Coulomb gauge,

~∇· ~Aa = 0, ~∇ ≡

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
, (7)

may be written in the form [56]

L′ = L −
1

2α

(
Fabµ A

bµ
)2
, α ≡ gauge parameter, α→ 0, (8)

where

Fabµ ≡

(
∂µ −

n·∂

n2
nµ

)
δab, µ = 0, 1, 2, 3,

Fabµ A
bµ = ~∇· ~Aa, nµ ≡ (n0, ~n) = (1,~0), n2 = n2

0 = 1,
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and

L = −
1

4
(F a

µν)
2 + (J cµ + ωaFacµ )Dcbµωb −

1

2
gfabcKaωbωc,

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν,

Dabµ = δab∂µ + gfabcAc
µ.

Here, g is the gauge coupling constant, fabc are group structure constants,

and Aa
µ denotes a massless gauge field with a = 1, . . . , N2 − 1, for SU(N);

ωa, ωa represent ghost, anti-ghost fields, respectively, while Jaµ and Ka are

external sources; the quantities Jaµ , ω
a, ωa are anti-commuting. The action,

S =
∫

d4xL, is invariant under the following Becchi-Rouet-Stora transforma-

tions [57]:

δAa
µ = λDabµ ω

b,

δωa = −
1

2
λgfabcωbωc, (9)

δωa =
1

α
λFabµ A

bµ,

λ being an anti-commuting constant.

The Feynman rules may be summarized as follows. The gauge boson

propagator in the Coulomb gauge has already been listed in Eq. (2) as [1]

Gab
µν(q) =

−iδab

(2π)4(q2 + iε)

[
gµν −

(
n2qµqν − q ·n(qµnν + qνnµ)

−~q 2

)]
, (10)

ε > 0, with components

Gab
00 =

iδab

(2π)4~q 2
, Gab

i0 = Gab
0i = 0, i = 1, 2, 3,

Gab
ij =

−iδab

(2π)4(q2 + iε)

(
−δij +

qiqj

~q 2

)
, i, j = 1, 2, 3. (11)

The three-gluon vertex [1, 30] reads

V abc
µνρ(p, q, r) = gfabc(2π)4δ4(p+ q + r)

·
[
gµν(p− q)ρ + gνρ(q − r)µ + gρµ(r − p)ν

]
, (12)

and the scalar ghost propagator (cf. Eq. (3.2) of [56]),

Gab
ghost =

iδab

(2π)4~q 2
. (13)
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Figure 1: One-loop gluon self-energy diagram.

The unintegrated expression for the one-loop gluon self-energy (Figure 1),

in four-dimensional Minkowski space, is then given by:

Πab
µν(p) =

iCab

2

∫
d4q

[
gµα(q + 2p)σ − gασ(2q + p)µ + gσµ(q − p)α

] 1

(q + p)2 + iε

·

[
gαβ −

(
n2(q + p)α(q + p)β − (q + p)·n[(q + p)αnβ + (q + p)βnα]

−(~q + ~p )2

)]

·
[
gβν(q + 2p)ρ + gνρ(q − p)β − gρβ(2q + p)ν

]
·

1

q2 + iε

[
gσρ −

(
n2qσqρ − q ·n(qσnρ + qρnσ)

−~q 2

)]
, ε > 0, (14)

where we have defined facdf bcd ≡ δabCYM, and Cab ≡ g2CYMδ
ab/(4π2). Ex-

pansion of the integrand of Eq. (14), followed by a Wick rotation to Euclidean

space, gives rise to about 40 noncovariant integrals of the type∫ d4q f(q)

q2(~q + ~p )2
,

∫ d4q g(q)

q2(q + p)2(~q + ~p )2
,

∫ d4q h(q)

q2(q + p)2~q 2(~q + ~p )2
, . . . .

We describe the methodology for computing these Coulomb-gauge integrals

in Section 3.

3 Procedure for Coulomb-gauge integrals

By a Coulomb-gauge integral we mean any Feynman integral containing one

or more three-dimensional factors such as

1

~q 2
,

1

(~q + ~p )2
, etc.

These noncovariant propagators give rise to spurious singularities which nec-

essarily complicate the integration. In this section, we propose a new method
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for evaluating Coulomb-gauge Feynman integrals. We shall illustrate our

technique by calculating the integral J0 in Euclidean space, where

J0 ≡
∫ d4q q2

4

(2π)4q2(~q + ~p )2
. (15)

The integration proceeds in four steps:

1. It is convenient, although not essential, to begin with Feynman’s for-

mula
1

AB
=
∫ 1

0
dx [xA+ (1− x)B]−2, (16)

so that

J0 = (2π)−4
∫ 1

0
dx
∫ d4q q2

4

[xq2
4 + ~q 2 + 2~q ·~p(1− x) + (1− x)~p 2]2

, (17)

and then apply exponential parametrization to the denominator:

J0 = (2π)−4
∫ 1

0
dx
∫ ∞

0
dααe−αG

∫
d3~q e−αU

∫ ∞
−∞

dq4 q
2
4e−αV , (18)

with

G ≡ (1− x)~p 2, U ≡ ~q 2 + 2(1− x)~q ·~p , V ≡ xq2
4.

Two points are worth emphasizing:

(a) While V in this example is purely quadratic in q4, in general V

may also contain a term linear in q4. Hence, it is necessary to

complete the square in q4 before proceeding with the integration.

(b) In contrast to the covariant-gauge case, the coefficient of q2
4 (in V )

differs from that of ~q 2 (in U).

2. The second step in the computation of the integral (15) is to introduce

two distinct dimensional regularization parameters, ω and σ, for the ~q-

and q4-integrals, respectively:

d3~q = d2ω ~Q ω→3/2 ; dq4 = d2σS σ→1/2 , (19)

with the limits ω → 3
2

and σ → 1
2

to be taken after all integrations

have been completed. In this context, the three-dimensional ~p-vector

is replaced by the 2ω-dimensional vector ~P . Accordingly, Eq. (18) be-

comes

J = lim
ω→ 3

2

lim
σ→ 1

2

1

(2π)2ω+2σ

∫ 1

0
dxD, (20)
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with

D ≡
∫ ∞

0
dααe−αH

∫
d2ω ~Q e−αA

∫
d2σS S2e−αB ,

H ≡ (1− x)~P 2, A ≡ ~Q2 + 2(1− x)~Q· ~P , B ≡ xS2.

3. Since ~Q2 and S2 have unequal coefficients (see comment (b) in Step 1),

we re-scale the 2σ-dimensional S-vector,

B = xS2 = R2, d2σS = x−σd2σR, (21)

to obtain

D =
∫ ∞

0
dααe−αH

∫
d2ω ~Q e−αA

∫ d2σRR2

x1+σ
e−αB,

=
σπω+σ

x1+σ

∫ ∞
0

dα

αω+σ
exp [− αx(1− x)~P 2], (22)

since∫
d2ω ~Q exp

(
− α[ ~Q2 + 2(1− x)~Q· ~P ]

)
= πωα−ω exp [α(1− x)2 ~P 2],∫

d2σRR2 exp (− αR2) = σπσα−1−σ.

4. Performing the α-integration from Eq. (22), followed by the x-integra-

tion from Eq. (20), we find that

J = lim
ω→ 3

2

lim
σ→ 1

2

σΓ(1− ω − σ)Γ(ω − 1)Γ(ω + σ)

(4π)ω+σΓ(2ω + σ − 1)
(~P 2)ω+σ−1, (23)

or, finally,

J0 = −
2

3
~p 2I∗1 , (24)

where I∗1 is defined appropriately by

I∗1 ≡ divergent part of
∫ d2ω ~Q

(2π)ω

∫ d2σR

(2π)σ
1

q2(q + p)2
, (25)

= divergent part of
Γ(2− ω − σ)(p2)ω+σ−2

(4π)ω+σ
, (26)

=


i

(4π)ω+σ(2− ω − σ)
in Minkowski space,

1

(4π)ω+σ(2− ω − σ)
in Euclidean space.

(27)
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The α- and x-integrations between Eqs. (22) and (23) require Re(ω +

σ) < 1, and {Re(ω + σ) > 0, Reω > 1}, respectively. Hence, there

exists a region in the complex ω-plane where the α- and x-integrals are

both defined. Performing the ~Q- and R-integrations in this region, we

then analytically continue the result to four-dimensional space (ω → 3
2

and σ → 1
2
, in either order). Notice that the value of J0 in Eq. (24)

depends on ~p 2, rather than on p2.

The evaluation of J0 in the preceding example hinges decisively on the

use of two complex regulating parameters ω and σ, a drastic departure from

conventional dimensional regularization with its single regulating parameter

ω. The conventional approach was actually applied to the same integral J0 a

couple of years ago by one of the present authors. Although the final result

for J0 looked quite reasonable, its validity was questioned by J. C. Taylor [58],

who noted that the integrals over the α and x parameters were ill-defined.

The next example will serve to illustrate the nonlocality of certain Coul-

omb-gauge integrals. Consider the integral I , containing two covariant prop-

agators, and one noncovariant propagator:

I ≡
∫ Mink. d4q

(2π)4(q2 + iε)[(q+ p)2 + iε](~q+ ~p )2
, ε > 0,

= i
∫ Eucl. d4q

(2π)4q2(q + p)2(~q + ~p )2
, q2 = q2

4 + ~q 2. (28)

Recalling the formula

1

ABC
=
∫ 1

0
dx
∫ 1

0
dz z

∫ ∞
0

dαα2 exp
(
−α[C+ z(B−C) + zx(A−B)]

)
, (29)

we may write Eq. (28) initially as

I =
i

(2π)4

∫ 1

0
dx
∫ 1

0
dz z

∫ ∞
0

dαα2e−αG
∫

d3~q e−αU
∫ ∞
−∞

dq4 e−αV , (30)

with

G ≡ (1− zx)~p 2 + z(1− x)p2
4,

U ≡ ~q 2 + 2(1− zx)~q·~p , V ≡ zq2
4 + 2z(1− x)p4q4,

and then complete the square in q4 (see comment (a) in Step 1), so that∫ ∞
−∞

dq4 e−αV = exp [αz(1− x)2p2
4]
∫ ∞
−∞

dQ4 exp (− αzQ2
4). (31)
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The next step is to define the ~q- and q4-integrals over 2ω- and 2σ-space,

respectively:

d3~q = d2ω ~Q ω→3/2 ; dQ4 = d2σS σ→1/2 , (32)

in which case Eq. (30) is replaced by:

I = lim
ω→ 3

2

lim
σ→ 1

2

i

(2π)2ω+2σ

∫ 1

0
dx
∫ 1

0
dz D, (33)

with

D ≡ z
∫ ∞

0
dαα2e−αH

∫
d2ω ~Q e−αA

∫
d2σS e−αB,

H ≡ (1− zx)~p 2 − zx(1− x)p2
4,

A ≡ ~Q2 + 2(1− zx)~Q·~p , B ≡ zS2.

Executing Step 3 now by re-scaling the S-vector according to

zS2 = R2, d2σS = z−σd2σR, (34)

and integrating over d2ω ~Q, d2σR, and then dα, we readily obtain

D =
πω+σ

zσ−1

∫ ∞
0

dα

αω+σ−2
exp

(
− αzx[(1− x)p2

4 + (1− zx)~p 2]
)
,

=
πω+σ

zσ−1

Γ(3− ω − σ)

(zx p2)3−ω−σ

[
1− x

(
p2

4 + z~p 2

p2

)]ω+σ−3

, (35)

where the same lower case ~p has been used for convenience for both the three-

vector ~p and the corresponding 2ω-dimensional vector. In order to complete

the remaining integrations from Eq. (33), we first expand the square brackets

in Eq. (35), and note that only the first term contributes to the divergent

part of I . Hence,

I = lim
ω→ 3

2

lim
σ→ 1

2

iΓ(3− ω − σ)

(4π)ω+σ(p2)3−ω−σ(ω + σ − 2)(ω − 1)
, (36)

or, finally,

I ≡ div
∫ Mink. d4q

(2π)4(q2 + iε)[(q+ p)2 + iε](~q+ ~p )2
= −

2

p2
I∗1 , (37)

where I∗1 is defined in Eq. (25). Similarly, one may show that

div
∫ Mink. d4q

(2π)4(q2 + iε)[(q + p)2 + iε]~q 2
= −

2

p2
I∗1 . (38)
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The appearance of nonlocal Feynman integrals, such as Eqs. (37) and

(38), is both necessary and sufficient for the internal consistency of one-loop

integrals in the Coulomb gauge. Nor is it entirely unexpected, considering

the noncovariant nature of that gauge. After all, we have known for some

time that axial gauges likewise lead not only to nonlocal Feynman integrals,

but also to a nonlocal Yang-Mills self-energy [1, 29, 33].

4 The self-energy Πab
µν

Computations in the Coulomb gauge never seem particularly enjoyable or

uplifting. Too many trivial things can and do go wrong, and the compilation

of Feynman integrals seems to take forever. Needless to say, we were more

than relieved to see the various results converge to manageable form. For

technical reasons, we have chosen to evaluate the Yang-Mills self-energy Πab
µν,

Eq. (14), in Euclidean space. Here is our final result for Πab
µν(p), written

covariantly in Minkowski space:

Πab
µν(p) = Cab

[
11

3
(p2gµν − pµpν)−

8

3
(p2gµν − pµpν)

−
4

3

p·n

n2
(pµnν + pνnµ) +

8

3

p2nµnν

n2

]
I∗1 , (39)

where nµ = (1, 0, 0, 0), Cab = g2CYMδ
ab/(4π2), and I∗1 is defined in Eq. (25).

This result for the Yang-Mills self-energy possesses some remarkable features:

1. Πab
µν(p) is nontransverse in the Coulomb gauge.

2. Despite the appearance of nonlocal integrals at intermediate stages of

the computation, Πab
µν(p) is a local function of the external momentum

pµ.

3. Ghosts play an essential role, despite the “ghost-free” nature of the

Coulomb gauge. (See Section 5.)

4. Apart from the complex parameters σ and ω, defining split dimensional

regularization, no additional parameters are needed to evaluate Πab
µν(p).

5. All one-loop integrals in the Coulomb gauge are ambiguity-free; they

are consistent, at least in the context of split dimensional regularization,
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with the values of the following integrals:∫ d2ω+2σq f(q)

q2~q 2
=
∫ d2ω+2σq f(q)

~q 2(~q + ~p )2
=
∫ d2ω+2σq f(q)

(q + p)2(~q + ~p )2
= 0, (40)

where f(q) is any polynomial in the components of q. The latter in-

tegrals are the analogues of tadpole-like integrals which are known to

appear in axial gauges, for example [1]∫ d2ωq

(q ·n)2
=
∫ d2ωq

(q ·n)q2
=
∫ d2ωq

(q ·n)((q− p)·n)
= 0, etc. (41)

5 Verification of the Ward identity

It has been known for some time [56, 57, 59, 60, 61, 62, 63, 64] that ghosts

play a crucial role in the renormalization of non-Abelian theories, regardless

whether the applied gauge is covariant or “ghost-free”, i.e., noncovariant.

This conclusion holds not only for the ghost-free gauges of the axial kind,

such as the planar gauge and the light-cone gauge, but also for our Coulomb

gauge. In this section, we shall examine the role played by ghosts in obtaining

the correct Ward/BRS identity for Πab
µν(p).

Referring to Section 2 for the various definitions of S, L, L′, Fabµ , etc., we

recall that the action S satisfies the Becchi-Rouet-Stora identity [57, 65, 66]

σS =
∫

d4x

[
δS

δAa
µ(x)

δ

δJaµ(x)
+

δS

δJaµ(x)

δ

δAa
µ(x)

+

δS

δωa(x)

δ

δKa(x)
+

δS

δKa(x)

δ

δωa(x)

]
S = 0, (42)

and the ghost equation

δS

δωa(x)
−Fabµ

δS

δJ bµ(x)
= 0, (43)

σ being the Slavnov-Taylor operator, σ2 = 0. It is advantageous to work

with the vertex generating functional Γ for one-particle-irreducible Green

functions with the gauge-fixing term omitted. The one-loop divergent parts

D of the generating functional Γ must then obey the BRS identity [30, 56, 62]

σD =
∫

d4x

[
δS

δAa
µ(x)

δ

δJaµ(x)
+

δS

δJaµ(x)

δ

δAa
µ(x)

+

δS

δωa(x)

δ

δKa(x)
+

δS

δKa(x)

δ

δωa(x)

]
D = 0. (44)
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Figure 2: Ghost-loop needed for the Ward identity (46).

Differentiation of Eq. (44) with respect to Ab
ν(y) and ωc(z) yields eventually

[67]

δ2(σD)

δωc(z)δAb
ν(y)

=
∫

d4x

[
δ2S

δωc(z)δJaµ(x)

δ2D

δAa
µ(x)δAb

ν(y)
+

δ2S

δAb
ν(y)δAa

µ(x)

δ2D

δωc(z)δJaµ(x)

]
A,J,K,ω=0

= 0. (45)

Interpreting the functional derivatives [59], and Fourier-transforming to

momentum space, we obtain from Eq. (45) the following Ward identity in

Minkowski space:

pµΠab
µν(p) + (gµνp

2 − pµpν)H
abµ(p) = 0, (46)

or, graphically,

pµ × (Figure 1) + (gµνp
2 − pµpν) × (Figure 2) = 0. (47)

It remains to evaluate the ghost contribution Habµ(p), corresponding to Fig-

ure 2, and then to check whether the computed values for Habµ(p), together

with Πab
µν(p) from Eq. (39), respect the Ward/BRS identity (46).

In order to compute Habµ(p), we employ the gluon propagator in Eq. (10),

the ghost propagator in Eq. (13), the Ja-Ae-ωd vertex factor −gfaed, and the

Ae-ωd-ωc vertex factor (pµ − n·pnµ)gfdce [56]. Hence,

Habµ(p)

= (−i2)Cab
∫ d4q (pβ − n·pnβ)

(q2 + iε)(~q+ ~p )2

[
gµβ −

(
qµqβ − q ·n(qµnβ + qβnµ)

−~q 2

)]
,

=
4

3
Cab

(
pµ −

p·n

n2
nµ
)
I∗1 , nµ = (1, 0, 0, 0), (48)

which agrees with reference [68]. We see that the respective values for Πab
µν(p)

in Eq. (39), and Habµ(p) in Eq. (48), do indeed satisfy the Ward/BRS identity

(46).
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6 Conclusion

In this article we have suggested a new procedure, called split dimensional

regularization, for regularizing Feynman integrals in the Coulomb gauge
~∇· ~Aa= 0. The principal feature of this procedure is the use of two complex

parameters, ω and σ, which permit us to control more effectively the re-

spective divergences arising from the d3~q - and dq4-integrations. The method

leads to ambiguity-free and internally consistent integrals which may be ei-

ther local or nonlocal , and are characterized by pole terms proportional to

Γ(2 − ω − σ), rather than Γ(2 − ω) (as in conventional dimensional regu-

larization [69, 70, 71]). No additional parameters, apart from ω and σ, are

needed to evaluate these integrals.

To test the method of split dimensional regularization at the one-loop

level, we calculated the Yang-Mills self-energy Πab
µν(p). The latter turned out

to be nontransverse, but local , despite the appearance of nonlocal integrals

at intermediate stages of the computation. A further check was provided

by the Ward/BRS identity, Eq. (46), which consists of the self-energy Πab
µν(p)

in Eq. (39), and the ghost-loop contribution given in Eq. (48). The fact that

both contributions together respect the Ward identity underscores once again

the significance of ghosts, even in the case of the so-called “ghost-free” gauges,

such as the Coulomb gauge.

Although the present results seem encouraging, it is too early to predict

whether or not the method of split dimensional regularization is destined to

survive into the 21st century as a viable prescription for the Coulomb gauge.

Clearly, more calculations are needed, particularly at two and three loops,

before split dimensional regularization can be placed on a firm mathematical

footing, similar to the successful n∗µ-prescription for axial gauges.
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Table 1: Divergent parts of some Coulomb-gauge integrals in Euclidean
space, as ω → 3

2
and σ → 1

2
. Eijk ≡ piδjk + pjδki + pkδij; i, j, k = 1, 2, 3. All

entries are implicitly multiplied by I∗1 (see Eq. (26)).

A︷︸︸︷
∫ d2ω~q d2σq4

(2π)2ω+2σ

A

B︷ ︸︸ ︷
1 2 −2/p2 −2/~p 2 −4/(~p 2p2)

qi −4
3
pi 0 0 2pi/(~p 2p2)

q4 0 0 0 2p4/(~p 2p2)

qiqj
16
15
pipj − 2

15
~p 2δij

1
3
δij

2
3
δij −2pipj/(~p 2p2)

qiq4 0 0 0 −2pip4/(~p
2p2)

q2
4 −2

3
~p 2 1 -2 −2p2

4/(~p
2p2)

qiqjqk — − 1
10
Eijk − 4

15
Eijk 2pipjpk/(~p 2p2)

qiqjq4 — −1
6
p4δij 0 2pipjp4/(~p 2p2)

qiq
2
4 — −1

6
pi

4
3
pi 2pip2

4/(~p
2p2)

B
{

q2(~q + ~p )2 q2(q + p)2~q 2 q2(~q + ~p )2~q 2 q2(q + p)2(~q + ~p )2~q 2
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Appendix

Table 1 shows about half of the integrals needed in the evaluation of

Πab
µν(p) and Habµ(p). The others may be obtained by means of the transfor-

mation p → −p, followed by q → q + p, applied to all components of p and

q in A, B, and the body of the table. See also Eq. (40).

The integrals in Table 1 were calculated using the efficient technique de-

scribed in reference [72]. Briefly, the most complex B was first parametrized

14



in accordance with the four-factor analog of Eq. (29). Integration over d2ω~q

and d2σq4 was then carried out for the A = 1 case, and the result differ-

entiated repeatedly to obtain momentum integrals for the other eight A’s.

Finally, parameter integrations tailored to various different B’s were applied

to each of the momentum integrals.
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