University of Trondheim UNIT

Theoretical Physics Seminar in Trondheim
No 11 1995

Massive quark-antiquark and gluon production 1n
high energy spin polarized electron positron
collisions

John B. Stav

Department of General Science
Sgr-Trgndelag College
N-7005 Trondheim, Norway

Haakon A. Olsen

Institute of Physics

University of Trondheim
N-7055 Dragvoll, Norway

ISSN 03652459
October 1995

|

= 0O
=
U’J= Z.
N o
=
7= §
gg =
—= &
o= N
N =——=
o= 7
—_—
= <
=
9551



Abstract

The quark-antiquark production cross section, including gluon radiative cor-
rections to order ay, for high energy spin-polarized electron-positron collisions is
obtained. The gluon radiative corrections are functions of the maximum recorded
scaled gluon momentum X, = E;/E and are expressed by gluon form factors
F,(mys,X,). Formulae for form factors are given for all values of Xy, 0 < Xy <
1- ﬁl?, where 7y is the scaled quark mass for flavour f, m; = my/E. Exact
formulae in terms of the form factors are given for the radiative corrections to the
cross section, the forward-backward asymmetry, the left-right asymmetry and the
forward-backward, left-right asymmetry. Explicit analytic formulae for my < 0.2
are given for the radiative corrections to the cross section and the asymmetries for

elastic quark-antiquark production, small values of X, and for the case that almost
all gluons are recorded, 1 — X, < 1.



1 Introduction

The recent advance in technologies for obtaining high-energy spin-polarized electron

beams [1] has given new possibilities for obtaining new and more accurate knowledge
of the electroweak interaction [2].

The theoretical study of polarization effects in gluon bremsstrahlung and related
radiative gluon effects from collisions of high energy spin-polarized electrons and positrons
was initiated a long time ago [3]. In these bremsstrahlung calculations, where also the
linear and circular polarization of gluons was obtained, the quark and antiquark were
assumed to be massless. Mass effects are taken into account in radiative gluon effects, i.e.
radiative corrections to quark-antiquark cross sections and various asymmetries [4, 5, 6]

involving spin-polarized electrons and positrons.

In the present paper we obtain the quark-antiquark cross section with radiative gluon
corrections to order «, for initially spin-polarized electrons and positrons. The effects of
the gluon is taken into account in gluon form factors which are functions of X, = E,/FE,
the maximum value recorded of the scaled gluon energy. The form factors Fi(my, X,) are
given by exact formulae, except F3(my, X,), related to the radiative corrections to the
forward-backward asymmetry of the cross section, which cannot be expressed in terms
of known functions for general values of X,, 0 < X, <1 — m%, where 7y is the scaled
quark mass mys/FE. Since the form factor formulae are very complicated we show that it

1s possible to find approximate formulae representing well the exact results for regions of
moderate values of the scaled mass.

We discuss forward-backward, left-right and forward-backward,left-right asymmetries
[7]. With the approximate form factors we obtain explicit formulae for radiative correc-
tions to cross sections and asymmetries. In particular we obtain the radiative corrections
to elastic quark-antiquark production, X, < 1. At the other end of the gluon spectrun
1 — X, < 1, the radiative corrections to quark-antiquark production, when almost all
gluons are recorded, are obtained. Our present results valid for all values of X, are com-
pared to our results in ref. [6] at the Z, resonance and for X, = 1 — m%, and to recent

calculations for unpolarized electrons and positrons [8, 9].



2 The cross section

The ere_ — ggg-cross section for production of quark-antiquark of flavour f is given in
reference [5]

4 949 2
de _ata, 1

dQdzdz ~ 27 s (1 —2)(1 — )

X { Fi(z, T) ( h(fl)(s, P“Pﬂ)(l + cos* §)
+PEPEsin? 0| BT (s)cos(20 — 64 — o) — B (s)sin(2¢ — ¢4 — 6-) | )

+%if2(:c,r) ([ s PLPY) = hP (s PLPLY | cos® 0
+P+PEsin® 0 [ )7 (s) cos(26 — ¢4 — &)
—h$(s)sin(26 — 64 — 6-) | )
+2h ) (s, PV P Foa. ) cos 0+ B (s, PLPL) Fu(z, )

m
+—4f— [ B0 (s, PP — w9, PUPY | Pyl 2) } (2. 1)
with the coupling constants

KOs, PUPY) = Q32 - 2Q¢Ref(s)(vE — af)v;
) [ (0% 4+ )= - 200t | (v} 44} ),
KP(s, PIPY) = —2Q Ref(s)(aZ — vE)a;
“20f(s) [ (0F + a?)€ - 2vaZ | vjay,
BOE(s) = Qb —2QsRef(s)ovy + ()P (07 =) £af), (2. 2)
B(s) = 2QpImf(s)avy,
KOs, PUPYY = 2 f(s)]* [ (v* + a*)E — 2vag | a2,
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where P_ and P are the electron and positron polarizations respectively and where the

longitudinal polarizations are given by

= = 1=plpl e=pl Pl (2. 3)

and

| &
o | s ‘ 2. 4
f(s) 4sin?20, s — NIZQ + e M Tt ( )

It is convenient to introduce the functions W, — W5 from reference [6}, where the integration
over parts of the phase space is specified by m; < x < 1 and i < z, < X, where fi, the
scaled gluon mass parameter, describes the infrared gluon singularity to be removed by
the radiative correction to the e e_ — ¢g cross section, and X, is the maximum scaled

gluon energy recorded. The functions ¥; — W5 are given by

dad. m4 _
2 Ale,e)+ L Fe) ) = WX, k) — 3%a( Xy, ),
2 (I —z)(1 —x) 2

ﬁ drdz
1 (1 —x)(1 — )

Folz,z) = W4(Xgaﬂ)_3\p5(Xg»ﬂ)>

1 dzdz - )
s s = B w, (2. 5)

dzdz
2 -1 -2)

(»7'—1(17 r) + Falz, I)+—f5( )) = Uy (X, i) + Vo Xy, 1),

ﬁ dxdz
] (1—2)1—2)

f5(xaj) = \D4(Xgaﬂ) + \I}5(Xgaﬂ)'



This gives the cross section

2 999 2
dO’f _a Q’S

dQ 7 s

x| RO (s, PLPI) {0 (X, ) (1 4 cos® 0 )+ Wa( Xy, 1) (1 —3cos?0 ) }
— 1P (s, PYPI) { wa(Xyo i) (1 + cos® 0 )+ Us( Xy, ) (1- 3cos?0 ) |
+20{ (s, PV P Wa(X,, 1) cos b
L PEpsin?0{ | hSF(s)cos(20 — 04 — 0-) — hY(s)sin(20 — 64 = 0-) ]
X [ WX 1) = 3Ua( X, ) |
4 [ K () cos(2 — 04 — 6.1 — hO(s)sin(29 — 91 = 6-) |
< [ WX,y 0) — 305( X, ) ]}, (2. 6)

which shows the structure of the angular dependence of the cross section.

The U-functions are obtained from reference [6]

m? ) 6 ,
wim = o (145 A X - P - 5 Loy (9).
m2 ,
\IJ2(X!]71H) - ‘/3 [FQ(m’fﬂXg) - _TziFV(ﬁvﬂ) - ReFV(ﬁ)] 3
Us(Xg ) = (1—m}) [Folmp, X,) = Fol8, )], (2. 7)
Im? ) 25— 2m* )
\114(Xg7ﬂ) = o {F4(Tn’f‘/Xg) - Fv(ﬁ,ﬂ) Y —92 fReFV(/B)} 3
4 3 mf
) ms . o 2 ,
Us(Xg, 1) = ¢ e Fo(my, Xy) — Fv (8, 1) — WReFV(B) ,
f

where the form factors Fi(my, X,) here are functions of X,,and B2 =1— m5. Fy(B, i)

! . . . . . . — .
and Fy(B) are radiative correction functions occuring in the eye_ — ¢g cross section,
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reference [6],

d20'qq 3a
dQ N ﬁ

x{[h”(}ﬂPM<l+i?)<h+ér{ﬂ(3#) )f f%ﬂim})

25 — 2 ,
3, P (1 2 L 4 202 e ) |t cos?e)
2 4 3 3mf,

iy 5 day 2 ,
+2L [ om0 (s, PUPY) — (s PPy | (1 + o {Fvw,m + TQ‘ReFv(ﬁ)}) (1 — 3cos’0)
4 3r mj

fa, |
-+25[ hfks,PﬂPﬁ)< 1+—7§;fx45,ﬂ)> LR )3 21n4Fy(ﬁ)}

Us s
da;
X (1 + 3a Fyv(p, p)) cos
+ ( 1-— ﬁz?) PfPi sin® 0 (2. 8)

x([h@ﬂgmaw—¢+—aq—w%@gmw—¢+—¢q](L+3JWW )>

+ [ A7 (s) con(26 — 04 — o)~ s sin(26 — 64— 6) | 2 ReFy(8) ) |,

where the formulas for Fy (3, ) and Fy,(3) are given by

N L+p2 18 1—32__1_ 2 1 1-8
Fy(B,n) = <1+ 23 ln1+ﬂ>ln e 6(1+B 2)1n1+ﬁ 2

1+82 1, ,1-8 3. 28 1-8. 2r?
{_§n1+ﬂ ”‘_?11+5+Jd1+ﬁ+ 3 |

Addition of Eq. (2.6) and (2.8) gives the cross section for quark-antiquark production
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with emission of a gluon with scaled energy less than X,

d20'f
dQ2

X [h( (s, P“P“){ (1 + ;) < 1} (ﬁzf,Xg)> (1 4 cos® §)

mé o
f s _
+< > + 37r[ o(my, X, ))(J 3 cos? 6’)}

r'4

2
o

= 36—
ﬂ45

n

h (3 P”P_L| T{ < a(myg, X ))(l+00829)
(0

Jra;

Fs(my, X, )> (1 — 3cos®0) }

+26{ 2)(s P“P”)( Lsang(mf,X )) (l;h ()43“8 QImFV(ﬂ)}COSO

+PEPEsin? 0 | 1 (s)cos(20 — éy — o) — A (s)sin(2¢ — ¢4 — 0-) |

. 4o, m _
X { 1 — ”lj+ 30;7 [ (1 + )f> Fi(mys, X, )—3F2(mf,Xg)} }

+[ 897 (s) cos(26 — oy — 6) — hY0(s)sin(20 — 64 — ¢-) |

05 _,

xS m2 [ Fylimg, X,) = Fsliing, X,) | } ] . (2. 9)

s

The infrared function Fy (43, ) as well as the real part of

po 1 -
() = n—Q (h’l , + 2'7r> , (2. 10)
+
have disappeared. Only the imaginary part ImFy(5) = mm?%/(4p), survives, usually a
small term.
3 The form factors

The analytical formulae for the form factors as functions of the maximum scaled gluon
energy X, is given in Appendix 1. The formulae for Fy(rny, X,), Fa(my, Xg), Fs(my, X,)
and Fs(my, X,) are exact. The formula for F5(1my, X;) which cannot be obtained in
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terms of known functions is given as a formula which is exact for m; = 0 and is a good
approximation for all values of X, for scaled quark masses m; < 0.3.

The form factors are shown in Fig. 1 for Fy(m;, X,) and F3(my, X,) and in Fig. 2
for Fy(my, Xy), Fa(my, X,) and Fs(my, X,). In Fig. 3 we demonstrate the accuracy of
the approximate formula for F5(m;, X,) Eq. (A.L1).

The exact formulae for the form factors arc complicated. It is therefore useful to
have simple approximate formulae representing F;(my, X,). Formulae which are exact
for massless quarks and in the infrared limit X, — 0 for massive quarks, and correct to

order m} and m?% ln2(4/m§) in the high energy gluon limit X, = 1 — m} are given by

=X, 4+l —m?—-X
Fi(my, X,) = {2111(\/ u r\r/lf ! g)—l}

X

oL
200 X, + (8- X,)(1 - X,) }

3 , . I . m?
+5 (1= (= X0 | = 500 = X2 +2Ly(1 — X,) + ”Zi’ (3. 1)
m i |
Fy(mys, X,) = 7f1*11(n2f,){g) + X, (E — E—nq)
‘ 1 7 3 4 1 4
_2 2
—mi| -4 —=—ZIn—5 4+ —In®* — 3.2
mf<8+12 8nm}+16”m§>’ (3. 2)

3 , 1
Fy(img, X,) = Filmy, X,) =5 [ 1 (1= X" | = 53— X,)(1 = X,) In(1 - X,)

+ ( 7'7’1? lnm? +2m;y )Xg [ 1 —2X, (l —X;) ]

3m? VS | 1 4
f 2
RN R I 3.
S ( 3+18+3nm}+12nm§)’ (3. 3)
) o 4 X,
Fa(ng, X,) = Fi(mg, X))+ [ 1—ln— <1+—), 3. 4)
mj 2
_ o 1 X,
Fo(igp, X,) = Fylmg X,)+ (2 In— <1+—). 3. 5)
my 2

These formulae represent well the form factors for all X, for m; < 0.2. By checking with
Egs. (3.1)-(3.11) in reference [4] it is seen that Eqgs. (3.1)-(3.3) for m; — 0 are identical

S



to the form factors for massless quarks. Likewise, by checking with Eqs. (6.1)-(6.5) in

reference [6] the formulae given here are seen to give the correct form factors in the limit
Xy =1-m%

It is useful to study in particular the two cases, elastic quark-antiquark production
X, < 1 with gluon radiative correction and on the other hand the close to the total
quark-antiquark-gluon production 1 — X, < 1.

In the case of elastic ¢, ¢ production the radiative correction is dominated by the
infrared singularity effect which is contained in the function G(z), Eq. (A.6). This
logarithmic dominance is clearly demonstrated in Fig. 3 for Fs(ry, X;). In fact the form
factors can in this elastic region for X, < 0.2, m; < 0.2 be described by

B 4 3 1 72
m> 1 2
Fy(myg, Xg) = —Qf‘Fl(fnf»Xg) + X, ('2‘ - gfnf) : 3.7)
3
FB(mf’Xg) = Fl(mvay)“'Q‘[Xg+ln(l_Xg)]a (3' 8)
_ _ 4 X,
i, X,) = FlmgX)+ (1 ) (1+52), (3. 9)
™M 2
_ ) 4 X,
Fs(mms, X;) = Fi(myg, Xg)+1| 2— ln%; ( 1+ 5 ) . (3. 10)
f

For the case that close to all quark-antiquark events, 1 — X, = £ < 1 are recorded
we define

AF,(ms;1 —€) = Fi(mg, 1 —§&) — Fy(mg,1 —m3), (3. 11)

where the form factors for total recording of ¢-g-g events to first order in m%, are given
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in reference [6] and can be obtained from reference [9)]

Fy(mys, 1 —m7)

Fy(mg, 1 —m3)

Fs(mgs, 1 — m‘?)

Fy(my, 1 —m3)

Fs(my,1 —m7)

The changes in the form factors Eqs. (3.11) are obtained for ﬁz? <EK1 as

AFy(mg, 1 = £)

AF2(mf71 _é)

AFs(my, 1~ §)

AFy(mg, 1 —£)

AFs(mg,1 = &)

{anugﬁdg_l)_1}[21n(1—5)+£]
m? m4

+& — 2m}, (3. 13)
mff _ 1 .
TAFl(mfvl_f)—a(é—‘mf)a (3. 14)

AFy (g1 — €) — g(z + &) —75—2 — 1072 (¢ = m3), (3. 15)

f
AFy(mg 1 — &) _r)m? ( I —ln— ) 7 (3. 16)
Z mf
— m2 4
Ay, =€) = ! (2—1ng2;>. (3. 17)

With the approximate formulae for the form factors Eqs. (3.6)-(3.10) for X, < 1 and
Egs. (3.13)-(3.16) for £ < 1 we shall be able to give analytical formulae for radiative

corrections to cross sections and asymmetries.

B
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4 Radiative corrections to cross sections and asym-

metries

We give in the following formulae for cross sections and quark forward-backward, left-
right and forward-backward, left-right asymmetries including radiative corrections, as
functions of the maximum recorded scaled gluon energy X,. Exact formulae in terms of
the form factors are then specialized to two cases: Radiative corrections to elastic quark-
antiquark production, e,e_ — g where X, < 1, and on the other hand the case when
almost all gluons are recorded, £ = 1— X, < 1. For these two cases analytic formulae are
obtained with the use of approximations developed in Sec. 3. We shall here not discuss
transversely polarized electrons and positrons.

The differential cross sections is then given by
d20”f Ocz

= 35—
dQ) 3

4s

dog
I + 3a Fs(mf,Xg)> (1 —3cos?h) }
e

4as R , g (4) 80ts
37’(’ ﬁS(T’Zf?‘XQ)> + Ff.hf (5) 3

+2ﬂ{ P (s, PPl (1 + = Iy (5) }cos@} (@4 1)

The total cross section
2

N
os(X;) = Amp— hy'(s, PLP)

Y 4o 3m2 b (s, PP dov
X 1+—i>(1+ sF(m,X)— 12 * (1+ sFm,X)) , (4. 2)
[ ( 2 3 1) ) U e i s

written in terms of the Born approximation eye_ — gg cross section o§ and the radiative

correction Al (X,), becomes
oi(X)) = o (1-al(Xy) ), (4. 3)
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with

2 ) Im2 h(5) Pﬂp“
O'? e 1171';30—‘}L‘(fl)(5’ PﬂPJL') l + ?‘7‘{‘2)*]; - mf {1)(87 “ -ﬁ) L] (4 4)

S &~ 4 h’f (8, P_P+)

and
Atfoi(‘Y{})
a=2 1 (5) . pl - -

T 3m2 b (s, PUPYY Py (my, X,) — Fa(my, X,) (4. 5)
3 A 3 .

2 w2, PIPI |7
1

which to order mj is

Atfot()(g)
4o 3m2 (s, PPl

= ——| F(mg, X,)+ —L L2 (g, X,) — Fa(myg, X . (4.6
3r 1 ( f J) 4 h&”(s,PﬂPﬁ) 1 ( f g) 4( f g) ( )

where the effect of the electron and positron polarizations is contained in the ratio
hsfs)(s,PUPﬂ)/hy)(s,PﬂPﬂ). It then follows from Eq. (2.2) that the radiative correc-
tion to the total cross section at the Z, resonance is independent of the polarization of
the electron or positron for all values of X,. This can be understood since the radiative
correction is a final state effect and the decay of the almost real particle Z, at the res-
onance is independent of its spinn state. Note however that the total cross section Eq.

(4.2) is changed at the Z, resonance by the factor

2va

- plpl - Pl - ply, (4. 7)

vida?

which is a Zy production effect. In particular note that if pl = PLI = #+1, no spin-1 Z

particle can be produced and the cross section is zero.

The forward-backward asymmetry, Ai‘B(Xg)-, for all values of X, is obtained from
Eq. (4.1) as

Afp(Xy) = Abg (1 - Aks(X,) ), (4. 8)
with
. -1
s iﬂh}“(s,Pﬂpﬂ) +m_§_3m§h(f5’(s,PﬂPﬂ) “. 9
FB = 47 (1) I pll 2 4 p) I pll ’ )
hy (s, PLPy) hy (s, PLPY)



and the radiative correction may be written in the form

1o a;  h(s) :
ALLX) = — | ALX,)+ = Fymy, X))+ L—A = 2ImFy (8
FB( g) tt( J) Ir 3( f g) vy hﬁf)(s,P“Pﬂ) V( )

w[r=alxy ] (4. 10)
[ J

where A{ot(Xg) is given in Eq. (4.5). To order a, and fn§ the radiative correction to the

asymmetry is given by

da a hm(s) i
f _ s o - _ — - _]i___f__—__ 2
AFB(X!J) — 37T 1: PS(’nf-,‘x{]) Fl(;nzfv‘xg)‘*_ vf h(fZ)(S’P!P_LI)me

(
B (

3171? hfS)(s, Pl_‘PJL')
- Films, X,) — Fy(mys, X . (4. 11)
T W0(s, PTPI) W(my, Xg) — Falmyg, Xg) (

The left-right asymmetry, A .(X,). for polarized electrons with polarization Pl s
g Y Yo ALrlAyg P

given by

o-f(‘ng “P”) - o-f(Xw P!—I)

ALL(X,)) = .
L S Ll

With the definitions
AR = W(s, =Pl — nP(s, P,

SO = R (s, =P+ hP(s, P,
the asymmetry can be written
ALr(X;)
LR\ *g

AW 3m? [ ARY spY 4
s T (S ) O B
T
f

2
32 SEY 1 da o
- 2 Fy(my, X,) (4. 12)
(1)( AT 9)
4 Sh 3



To order o and rh‘} the asymmetry simplifies to

A{R(Xﬁ = A{,}({) ( I - A£R(Xg) ) ’

i (5) 5
l_smj(mf ~ Shj H (4. 13)
, (1) (1) ’ )
4\ Ary Sk
and the radiative correction

A JAS)
MaXy) = S| T - S
ARG st

with

(1)
AR

(D
bhf

fo
Al =

T

) ( Fy(my, Xy) — Fi(myg, Xy) ) . (4. 14)

The left-right asymmetry being al the Zy resonance purely an initial-state effect for
production of the almost real Z, particle, AJ, = 2avP_/(v? + a?), Ao = 0, has
for energies outside the Zy-mass where Ah(fs)(s, pl Pﬂ)/Ah}l)(s, Pﬂpﬂ) is different from
Shs,s)(s, PﬂPﬂ)/Sh&l)(& pl Pﬂ), radiative as well as mass corrections.

The forward-backward, left-right asymmetry, A{?BVLR(XQ), is to order ar; and m7 given

by

Afpra(X,) = A{NS,LR( 1= Afp LX) ) ;

with
N (2) _ _ (5)

apo o BBk my Sy Shy (4. 15)
“AFB LR 4 E;h(fl) 9 4 Shg,l) )

and

A%;B,LR(XQ)
4o, I 3m3 ShY i} _
:_3 F3(mfv‘xg)_ﬁ1(m'vag>— 4 (1)( Fl(mvag)_F‘i(mf’Xg) ) '(4' 16)
T Shy

From the formulae given in this Section it is clear that the simple relations at the Zp

resonance, reference [6],
AFB(P_) : AFB(O) : AFB,LR(P—) = PZO(P—) . PZO(O) . P__,

do not hold outside the resonance, in particular the radiative correction differ considerably

for the different asymmetries.
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We show in Figs. 4-6 the radiative corrections A (X,), A%g(X,) and A%g [ r(X,)
for b-quarks for two values of energy, 91.2 GeV and 200 GeV. The accuracy of the approx-
imate formulae for the radiative correction is demonstrated. The effect of electron polar-
ization on the radiative correction is at the Zo resonance, 91.2 GeV, essentially zero, and
very small for 200 GeV. For the asymmetries, however, the polarization effects are large.
We demonstrate the large effects of electron polarization on Arpp(X,) and Arg.Lr(X,)
in Figs. 7 and 8 respectively. We use a,(91.2 GeV') = 0.118 and «,(200 GeV) =0.104.

5 Radiative corrections to elastic quark-antiquark
production
The radiative corrections to the epe_ — ¢ process is obtained by the use of equation

(3.6)-(3.10) for X, < 1. One obtains the analytic formulae for the radiative correction

to the total elastic cross section to order m3% from Eq. (4.6)

da 4 3 3m2 (s, PLP])
; B . . . fiof ) +
AL(X) = - i { 2 ( In fn_f, —1 ) {ln)sg + o Xy + 3 hgcl)(s P!PJL')

| —

- (1—3Xg)+ﬁ} (5. 1)

¢

~

3

t

For the asymmetries to order m7}, kigs. (4.11), (4.14) and (4.16) one finds

Afp(X,) = Sl x +1In(1 - X,) T NS S L
FB( g T ( Xy g) ) vy hgg)(s,PﬂP_Ll) g3 f
4 B(s, PP
+m} ( In—5 —1 ) {1)(8 0 “) . (5. 2)
m} BD(s, PP
4 ARY sk
Af )( et _% 72 o f _ f 5 3
o = 2 () (S5 ) o9
’e as K
Afpra(X,) = 7[ 2( X, +1In(1 — X,) )
‘ 4 S
P\ my spl)
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The effects of electron-positron polarization are always contained in the hgf)(&PuP_u)
functions. Note that these factors depend strongly on energy, for instance at the Zo
resonance ARG /ALY equals SA)/ShMY and the left-right asymmetry being then a
purely initial state effect, has no radiative correction. It should be noticed that Atfat(Xg)
containing the large factor In(4/m%)In X, is in general much larger than the radiative

correction to the asymmetries which are ratios of cross sections.

6 Radiative corrections when almost all gluons are
recorded

When all gluons are recorded. X, has the maximum value X, =1 — mf, The variable

¢ =1 — X, introduced in Sec. 3 describes for £ < 1 the effects on radiative corrections

when a small part of gluons have escaped recording; ¢ is sometimes called "cut”.

The radiative correction to the cross section is in this region of Xy, to order m7,

‘ ‘ 3m2 , / (5) ,P‘_IPH
A{ot(Xg) _ % 1 + 3771‘} + Tf ( lu,i.2 -1 ) ———————l(fl)(s T T‘)
-~ ) 771)‘ hf (S’P_P+)

Y o [ T B | "
Tllf 777‘f

The corresponding radiative correction to the forward-backward asymmetry is obtained
from Eq. (4.11) as

s 8 " : 1,4
A{;B(Xg) = ?—[l—*?nfﬂme(2~F—,—lni——ln2——)

+3m‘} ( 4 ) hgf’)(s,PﬂPJlrl) _ay h5,4)(3) 2—7r'r_n2
2 mh ) AW, PTPTY o aP(s, PIPY) 3

+%(£(2+§)1n%+20mf(€—m§))]. (6. 2)
. mf

The left-right asymmetry Eq. (4.14) becomes in the present region of X,

3a 4 ALY shl)

f - _ 5 = f f

Arp(Xy) = — 5 m? ( In ——73‘ —1 ) ( —h(l) - Sh(l) , (6. 3)
A ! f
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which in the present approximation (to order m?) is independent of &.
I i D

The radiative correction to the forward-backward, left-right asymmetry Eq. (4.16)
is given by Eq. (4.11) with h(f5)(3,P!Pﬂ)/h(fl)(s,PﬂPﬂ) replaced by Shg,S)/Shgl) and
h§f4)(s)/h5,2)(s,PﬂPJlr|) left out, as in Eqs. (5.2) and (5.4).

It is seen from the Egs. (6.1)-(6.3) that even a very small value of £, of the order
m%, meaning that a very small part of the gluons have been left undetected, whould give

effects in A{ot(Xg), AfFB(Xg) and AiR(‘Yg) which are as big as and bigger than the mass
effects.
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A Appendix

With the definition 2 = | —m}/(1 — X,), the form factors F(r;, X,,), Fy(my, X,) and
Fy(my, Xy), Fs(my, X,) are given by the analytical formulae:

, 10—m% 13 (L=—mi)? ] 148
Fi(mp,X,) = Glz)— ——L 4 21 2005 LA
wmy, Xy) ) 4(2 + m?) .’3[8( 7nf‘)+2(2+m"}) T1-p
- - ) { <—2+ :MZ - ) mfz
B(2+m?) 5 1 —=z2 1 -2
1 m‘} pE— 22 g 14z
A 1 Al
+3 (1 x ( — no— |, (A1)
B ﬁsz , : .
Fy(myg, X,) = 5 G(z)+ J(my. z) + J(—my, z), (A.2)

2 — m? 1 . m 1+ 73
_ v S =2 f
Fyme, X,) = G(z)+ S - —2[5 (1 —my+ S )lnl

L, 53 mj . mj
63 41— z2 1 — 22

3mt (82— 22\*\ 14z
B S A3
(1 my + 5 (1—22))1111—2 ) (A.3)
1+
1-7
+M(my, z) + M(—my, z), (A.4)

Fy(my, Xg) = —=2G(z)+ 3Fy(mys, X,) + 31n

where the G(z), J(my, z) and M(my, z) functions are defined by
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F—Hn 5 lnl—/3

2—m2 [ n? 148, t+5 1-7
f 3 2
[ 2L 54 + Lo 5%)

1—p 2 B2t L +z
T 1
L2< 5 >+1n(1+61—22 nl——z
11—z -3 1+ =z
b, o, | ——
+(I)Z< 2 >+ “(1—2>+ (1+,B)]

2 22 L2
+21nﬁ+z_.2_ L B S Nl (A.5)
' B—z B\ 1-= 2 )

—4L(B) + 2L, (“;*’) .

P

where

d.(f(=)) = LZ(.f(Z))‘LQ(f(-Z))v (A-G)

L) = - [ Y-y, (A7)

ﬁlf(s + Tﬁ,f)('z + 77’Lf) 1 n 1
8(1 + my) l—z 14z

S~ T

1—2) L +mg+ 2\
142 l+my—=2

(1 4 m; — z)In {(

19



+l+mf (1 +my)? - 2? 1 (1—2) l+my+z
11
2 L+ myp— 22 l+z/|14+my—=

|
+—(1 =} = 2m)(1 + mf)<H(mf,ﬂ) — H(mf,z)) } } , (A.8)

my
where
_ 2 I+ = R | —1mny
H ; = I l 7( >— z —q)z( )
(m,2) n‘2+ﬁzf nl—:+(I)~ 2 ¢ (2+ﬁ1f 1 -2
+¢< VIiFmy -z *q)( Ty —z )
VT + yTHmy) ’ +ms(l —T+my)
\/1—+Tf z VI+tmy—=z
q): — b (Ag)
VI F +my—1 +my+1
and

(A.10)

o Lo (L Ly Ly Lo, !
1 24m; ) \1+z 2+ my

i I—z\l—-2 my + z
m?’ =2 ﬁzf‘ -z _ _ - _
—4z _22—2 ¥ 1+2(4—ﬁ’[§)2 In +4mf(1—I—mf)[H(mf,ﬂ)——H(mf,z)] .
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The form factor F3(m; . X,) cannot be obtained in closed form in terms of known func-

tions. For values of m; < 0.3 a useful formula is

i} 3¢ VRIS )
(s, X,) = Fl(‘Ivzf,A\_q)—Z{l—(l ~ X)) | —5(3—Ag)(1—xg)1n(1_xg)
+ ( mff lnm? + 2my )Xy [ 1 —-2X, (1 — X;) }
3m? 2 7w 1 4 P, 4
f 2
e i s o m— ), A1l
i ( 3+18+3nm}+12“m}> (A1)

where Fy(my, X,) is given in Eq. (A.1). The accuracy of this formula is demonstrated in

Fig. 3.
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Figure captions

Fig. 1
The exact form factors Fi(m;. X,) and Fiy(mj, X,). The value of the parameter m; =

my¢/E is attached to the curves.

Fig. 2
The exact form factors Fy(m;. X,), Fi(my. X,) and Fs(my, Xy). The value of the pa-

rameter my = my/E 1s attached to the curves.

Fig. 3
The approximate formula for Fy(my. X,). Eq. (A.11), (dashed curves) compared to the
exact numerical values (solid curves). The value of the parameter m; = my/FE is attached

to the curves.

Fig. 4
The radiative correction to the total cross section Ab,(X,) for b-quarks for two ener-

gies 91.2 GeV and 200 GeV. For 91.2 GeV the exact (solid) curve is compared to the
approximate A’ (X,) (dotted curve) obtained by the use of the approximate values for
Fi(mys, X,) and F3(my, X,) Egs. (3.1) and (3.3) respectively. The dashed curve for 91.2
GeV describes the low X, approximation Eq. (5.1) and the dot-dashed curve the small

¢ =1 — X, approximation Eq. (6.1).

Fig. 5
The radiative correction to the forward-backward asymmetry for b-quarks A%z(X,) at
the resonance, 91.2 GeV, (solid curve) which is essentially independent of electron polar-
ization, and at 200 GeV for no polarization (dashed curve) and Pl =0.63 (dotted curve).

Fig. 6
The radiative correction to the forward-backward asymmetry for b-quarks A%B’LR(XQ) at
the resonance, 91.2 GeV, (solid curve) which is essentially independent of electron polar-
ization, and at 200 GeV for no polarization (dashed curve) and Pl =0.63 (dotted curve).

Fig. 7
The dependence of A%g(X,) for b-quarks on the electron polarization for X, = 0.99
(solid curve), X, = 0.9 (dotted curve) and X, = 0.1 (dashed curve).

22



Fig. 8
The dependence of A%g ;r(X,) for b-quarks on the electron polarization for X, = 0.99
(solid curve), X, = 0.9 (dotted curve) and X, = 0.1 (dashed curve).
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