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ABSTRACT

It is shown that the simple expression for the forward virtual Compton scatter-
ing on a soft pion for the ¥ — 7° electromagnetic mass difference calculation
usually obtained from Current Algebra and Weinberg sum rules can be de-
rived in a simple manner from a chiral Lagrangian with vector and axial vector

mesons. We also discuss the relation between the chiral Lagrangian approach

and the dispersion relation for the Compton amplitude.
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Recently there has been renewed interest in the electromagnetic mass difference
of pseudoscalar mesons [1, 2] . In these works, the electromagnetic mass shift of pion
and kaon are rederived using an effective chiral Lagrangian with vector and axial
vector meson included. Using the electromagnetic form factor of the pion obtained
from the vector meson dominance hypothesis and the relation between the coupling
of the vector current to vector meson and axial vector current coupling to the axial
vector meson given by the second Weinberg sum rule, the expression for the forward
virtual Compton scattering amplitude is obtained and is found to be in agreement
with the soft pion results obtained long ago by Das et al. [3]. This result has also been
obtained long ago in a linear sigma model with vector and axial vector meson included
as shown by Wick and Zumino [4] and by Lee and Nieh [5] where all the individual
double pole terms in the vector meson propagator cancel out in the expression leaving
only simple pole terms for the amplitude. In the work of Donoghue et al. [2], this
cancellation is also obtained from a chiral Lagrangian in which the vector and axial
vector meson fields are treated as antisymmetric tensor representation instead of the
usual four-vector field operator [6]. In this paper, we feel it is useful to give a simple
derivation of the soft pion result using the conventional Lagrangian for the vector
and axial vector mesons. Furthermore, to insure the convergence of the 7+ — z°
mass difference calculation, we need to construct a chiral Lagrangian similar to that
given in Ref. [5] in which the vector and axial vector meson dominance as well as
the first and the second Weinberg sum rules come out automatically. This non-linear
gauged chiral Lagrangian has been given in a previous work [7] and will be used in
this paper. Thus we shall start with a local left-right symmetric Lagrangian in which
the two gauge bosons associated with a local SU(3) x SU(3) symmetry are the two
hypothetical left-handed and right-handed vector bosons {, and r, respectively. We

have in standard notation [5, 7]

1 ! I 1 a
L= =gt (L 4 0id) + gm* (5 +h) + g (DM DM 8

where M is the meson coupling matrix which takes the standard exponential form
(8],1.€
M= erp2ifo).  f=fi (2)

¢ 1s the matrix of the pseudoscalar meson octet in SU(3) space and f, = 131MeV,
the usual pion decay constant measured in 7% — [t decay. A covariant derivative

for M in this gauged chiral model is then.
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DM = 9.M — %(zuM — Mr,),
DM = oM+ ’-29-(1\,1‘@ — MY (3)

In this model, as discussed previously [7] the usual covariant field strength tensors
l,, and 7y, for the left-handed [, and the right-handed r, defined by

1111/ = avlu - aulv + %[lu'll/]a

L] (4)

4

Fuw = 81/7‘;1 - auru +

are replaced by I/, and 1], respectively in the modified gauge boson kinetic terms.
We have
/ J t t
Ly = luw+t g (MDM' MD,M'],
My =t o+ o [M' DM M D,M| (5)
29

The last terms in Eq. (5) are needed to reproduce the KSFR relation for the physical
prw coupling (g,-r = g = m,/ f,). The second term in Eq. (1) is the mass term. This
term breaks local SU(3) x SU(3) symmetry and generate the left-handed (V — A)
and right-handed (V + A) currents given by

. 7712
"‘# — ‘4“ — '—l;n
g
2
Vot A, = ﬁg— (6)

We now express [, and r, in terms of the vector meson p, and axial vector meson a,

fields defined as

L, = &(p.—a,+ 2Ap,)E,
Pw = fr(/’u +a, — 2?/\1&){ (7)
where [10, 11]
L.y, Lo+
l‘u = T[f *()Né] 1 pﬂ = ‘_{6 aaué} (8)
) 2
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and ¢ is defined by M = £2. By definition, M transforms as an (3,3) under global
SU(@3)L x SU(3)g:

M= LMR' .  ¢— L&U = UER' (9)



where L and R arc respectively elements of SU(3);, and SU(3)g. U is a function of
€. p, transforms as covariant derivative and v, transforms as gauge field under the

non-linear chiral transformation UV, i.c
Py — ("pu(fY . vy, — (/'1?“(""f — (7L,UUT (10)
while the vector and axial vector meson transform as
Py (frpul"T . a, — Ua“Ut (11)

Putting the expressions for [, and r, given by Eq. (7) into the Lagrangian Eq. (1),
we obtain, for the = — p — 1} svstem

L./, 1 PR 2o 1 .
Lrepon, = —g'lr (p‘fl, + ufw) + 1 (mﬁ lrpi + mf\lrai) + gz—Tr(BMJMOMM') (12)
with
mf) =m?. m% = m?/(1 — ¢*/2f*m?) (13)
and
_ 2 16 r2. 2y~1 _ 9
a=(1—-g¢g°/2f*m*)"", A= REYEIY (14)

The modified vector meson term pf, now contains the prr interactions and is given

by

g 22
/’:“/ = Dup, — Dyup, + Z)—[pu’pu] + ;[pmpu] (15)
The axial vector meson term a,, is

a,, = D,a, — D“(I,,, + (1 4+ gX) ([Puwou] + [pvvpu]) (16)
with

D.p, = aupu + [‘l'u’ f’u]v
Dya, = 0,a,+ [v,,a,] (17)

The expression for the axial vector meson mass in Eq. (13) can also be written in

the form [5]
2 2
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which is the familiar first Weinberg sum rule in the zero-width resonance approxima-

tion [9]. Infact, the 1st Weinberg sum rule reads,

. N 2 2
/ A (771 ) sz4(77l‘ ) (17”’2 - Lr_ (19)
0 m 2
with
pv(m?) = g26(m? —m?), pa(m?) = g46(m* —m?) (20)
and
m?
gp - gA = — (21)
g

as a consequence of the left-right symmetric chiral Lagrangian and is usually derived

from the second Weinberg sum rule [3],

/W [/)v(m,g) - pA(m2)] dm? =0 (22)
0
As pointed out in a previous paper [7], the relation m? = 2m? follows if g satisfies
2
m
9= (23)
The on-shell g,»» coupling constant is
Jonr = g + ([*m/g)(1 = g*/ f*m?) (24)

which is equal to ¢ and satisfies the KSFR relation by virtue of Eq. (23). Note
that the predictions for g, and g4 are consistent with the measured values from the
leptonic decays of the p meson and from the 1 — v A; decays [3, 12].

Having derived the two Weinberg sum rules from our vector and axial vector meson
Lagrangian, we now introduce the electromagnetic interactions for the 7 — p — A

system using a minimal substitution [5]
2 2e
l“ - l“ + _(2‘4“ : Py = Ty + _—QAu (25)
g g

where @) is the quark charge operator in the SU(3) space. The first and third term in
Fq. (1) are invariant under a local SU(3) x SU(3) transformation and are therefore
not affected by this substitution. Thus all electromagnetic interactions appear in the

gauge boson mass term and the total Lagrangian for the 7 — p — Ay system Eq. (12)
becomes

L., : |
Liotal = —3 It (pji} + (wa) + 1 (mﬁTr /)i(new) + mi Tr ai(new))
!

- fz'rr((‘)wua,,M') YL+ Ly (26)
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with

pu(new) = p, + ngAu \ a,{new) = a, + SQaAu (27)
g g
and
Qr=€QE +EQE.  Qu=¢Q¢ —€Q¢ (28)

Using Eq. (13) and the identities

Q) = Tr(1Q* - [Q. M)[Q, M),

TrQ} = Tr[Q, M)[Q, M (29)
we get
€ - . 1
141 = TP'AHII'Q[A[,d‘,AI ],
62
L, = —SPAiTr[Q,M][Q,M'] (30)

which together with the third term in Eq. (26) reproduces the minimal chiral La-
grangian for the pseudoscalar mesons in the presence of the electromagnetic interac-

tions usually obtained by making a substitution
d M = 9M +e[Q, M) (31)

in the third term of Eq. (12). The clectromagnetic interactions of the pseudoscalar
mesons with the vector and axial vector mesons are now can be obtained in a simple
manner from Eq. (26). They are given by the modified vector and axial vector
mesons mass terms as given by the second term of Eq. (26). To derive the soft
pion result for the pion Compton scattering, we shall redefine the vector and axial
vector meson field so that the mass terms in Eq. (26) are gauge invariant under the
electromagnetic gauge transformation. As can be seen from Eq. (27) an obvious
choice is p,(new) for the vector meson field and a,(new) for the axial vector meson
field. All electromagentic interactions are now transferred to the gauge boson kinetic
terms, the p2, and the a2, terms in Eq. (26). In terms of pj(new) and a’(new), our

total Lagrangian L. is then

l. . . 1 .
Liotal = —,—qTr (/):i, + afw) + n (miTr pfl(new) + m4Tr ai(new))

1

Y

T (8, M + ie[Q, M@, M + ie[Q, M']) (32)



where o’ is now given by,
111y 2

1 2
p:w = Duﬂu(“ew) - Du/’u(new) + ng‘[pu(new)’ p,,(new)] + E[pu» pu]

- 'SQvFW + other terms (33)

and for a,,,

a, = Dyau(new) — D a,(new) + (14 gA) ([pu. pu(new)] + [Py, pu(new)))

€ 7772

— ~-—§Qa F,, + other terms (34)
g m4

where “other terms” contain the electromagnetic field A, and higher derivative term
in the pseudoscalar meson field. For the derivation of our result in the soft pion
limit, we need only terms without derivative of the pseudoscalar meson field and will

therefore ignore those terms. Then the total contribution to the Compton amplitude

can be read off automatically from the above Lagrangian. We find

2
Gl 52 1 m
Tul’(p’ q) = 2¢* (gl“/ — = 2 ) T ‘2(’2((129;w — quqv) ( Y 2p q2)> (35)

q (m?—q?)  mi(mj —
where the vector and axial vector meson contribution come from terms of the form
Tr [Q, M][Q,.M']FEU in the Lagrangian kq. (32).

The first term in Eq. (33) is the usual Born term with the pion electromagnetic
form factor taken to be off-shell. In the limit of p — 0, the vector meson contribution
to the off-shell form factor is of the order O(p - q) and can therefore be neglected.
Thus the off-shell pion form factor can be taken to be point-like and the first term
in Eq. (35) is the Born term in the soft pion limit. More precisely, from the total

Lagrangian in Eq. (32), for an inital momentum p and a final momentum {, the pion

form factor takes the following form

Fo(p, 1) = (p+ D+ [(p+ Dud® = (p = Du(p® = )/ (m5 — ¢%) (36)

In obtaining the above result. we have used the relation g? = m?/f} given in Eq.
(23). Thus, for | = p + ¢. as in the Born term contribution, pP -0 =—¢"+2p-¢q
so that the g, term cancels out in the form factor. The vector meson pole term thus
produces only terms at least first power of the pion momenta and does not contribute
in the soft pion limit. This agrees with previous results in Ref.[2].

The second term Eq. (35) is the vector and axial vector meson contributions. The
vector meson contribution comes from the term Tr Q?]qu in the soft pion limit. It
exhibits a simple vector meson pole behaviour in the ¢* variable. The axial vector

meson contribution comes from the term Tr Q2F?, which is of opposite sign to the

T



vector meson contribution, as can be seen from Eq. (29). This is an axial vector
meson pole dominance term with a simple pole behaviour in the variable s = (p+¢)?.
The form factor for the A; — © — v vertex, like the pion electromagnetic form factor,
because of chiral symmetry, gets contribution from vector meson terms of the order
O(p - q) as the A; — p — 7 coupling is at least first derivative in the pion field as can
be seen from our chiral Lagrangian Eq. (32). Thus in the soft pion limit there is no
vector meson double pole terms in the axial vector meson contribution to the pion
Compton amplitude.

Putting the total amplitude in the following form,

T;w(pq(]) = 2('2 (guu - 1;(21 ) + 462 (g;w - q;;;] )

" [‘ (1 _T) ¥ ((mz—pqz) - (mz,—q%)} (37)

and using Eq. (13), we find that the Born term cancels out the first term in the

square bracket so that our final result for 7,,(p, q) 1s

ququ 2 1 1
T..(p,q) = 1e? (g,,— )m [ - } 38
el o) T lmE =gt (mi - ) %)

which is the soft pion result obtaineed by Das et al. [3].

Thus in a simple and transparent manner, we have obtained the soft pion result
of Das et al.. Our chiral Lagrangian leads automatically to the first and second
Weinberg sum rules and thereby guaranteeing the convergence of the #* — 7° mass
difference calculation. Once we understand the absence of double pole terms in the
pion Compton amplitude. we can compare our derivation with the dispersion relation
approach. Without using a chiral Lagrangian, one could just include the on-shell pion
form factor and the A; — 7 — v on-shell form factor in the dispersion relations for the
forward Compton amplitude [13] and obtain the erroneous result that the double pole
terms must be present. Infact, in the work of Chanda et al. [14], the cancellation
of the double pole terms imposed on the pion Compton amplitude by the soft pion
theorem has been invoked to obtain dispersion sum rules for the coupling constants
which are however found to be difficult to satisfy experimentally. In our appoach,
the absence of the double pole terms is simply a consequence of chiral symmetry. We
note also that the unsubtracted dispersion relation for the Al = 2 amplitude can be
made consistent with the soft pion result by including also the contact term from the
vector meson pole term in a modified Born term. Then it would be more convenient
to use the dispersion relation approach to calculate the 7+ — 7% mass difference since

terms of O(p?) can also be analysed in a straightforward manner.
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