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Abstract: Understanding the concept of dynamic aperture provides essential insights into nonlinear

beam dynamics, beam losses, and the beam lifetime in circular particle accelerators. This compre-

hension is crucial for the functioning of modern hadron synchrotrons like the CERN Large Hadron

Collider and the planning of future ones such as the Future Circular Collider. The dynamic aperture

defines the extent of the region in phase space where the trajectories of charged particles are bounded

over numerous revolutions, the actual number being defined by the physical application. Traditional

methods for calculating the dynamic aperture depend on computationally demanding numerical

simulations, which require tracking over multiple turns of numerous initial conditions appropri-

ately distributed in phase space. Prior research has shown the efficiency of a multilayer perceptron

network in forecasting the dynamic aperture of the CERN Large Hadron Collider ring, achieving a

remarkable speed-up of up to 200-fold compared to standard numerical tracking tools. Building on

recent advancements, we conducted a comparative study of various deep learning networks based on

BERT, DenseNet, ResNet and VGG architectures. The results demonstrate substantial enhancements

in the prediction of the dynamic aperture, marking a significant advancement in the development of

more precise and efficient surrogate models of beam dynamics.

Keywords: machine learning; deep learning; circular particle accelerators; single-particle nonlinear

beam dynamics

1. Introduction

The advent of modern hadron circular accelerators that utilise superconducting mag-
nets has significantly enhanced performance, especially regarding energy reach. However,
a major drawback is that the inevitable addition of field errors inherent to superconducting
magnets, which generate the field by means of current distributions (the magnetic field
produced by normal-conducting magnets is controlled through the accurate shaping of
their poles, which allows for finer control compared to the current distribution in super-
conducting magnets), renders the beam dynamics strongly nonlinear. This nonlinearity
can potentially excite resonances, leading to beam losses and an increase in transverse
emittances. These negative phenomena adversely affect the performance of accelerators,
necessitating the implementation of mitigation strategies during both the design phase and
later during the operation of the machine. In this context, it is vital to identify an indicator
to measure the impact of magnetic errors on beam dynamics. Parenthetically, we should
note that nonlinear effects also play a role in the dynamics of circular lepton accelerators.
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The interested readers may refer to the selected references specified [1–7] including refer-
ences therein. Among several possible options, the most effective is the dynamic aperture
(DA), which is defined as the extent of the connected phase-space region within which
single-particle dynamics remain bounded (see, e.g., [8] and references therein). A key
aspect of this definition is specifying the time interval over which the dynamics should
stay bounded, which is a parameter determined by physical considerations, particularly
the length of the accelerator’s operational cycle. The DA offers essential insights into the
nonlinear beam dynamics of non-interacting particles as well as the resonance mechanisms
that provoke beam losses and reduce beam lifetime. Despite its somewhat abstract nature,
a direct link can be made to the beam losses resulting from nonlinear beam dynamics [9],
which is a relationship that underpins the recent method for measuring DA in circular
rings [10].

Mastering DA is crucial for optimising the functionality of current circular particle
accelerators like the CERN Large Hadron Collider (LHC) [11] and its luminosity upgrade
(HL-LHC) [12], and it represents a fundamental figure of merit for the conception of future
accelerators, such as the CERN Future Circular Collider (FCC), in its hadron–hadron version
(FCC-hh) [13] (refer to Ref. [14] for an overview of the most recent baseline layout).

The numerical determination of the DA involves monitoring multiple initial conditions
in the phase space over numerous revolutions, the precise value of which depends on
the application or specific physical processes involved. For example, in lepton rings,
energy damping introduces a natural time scale that is relatively short, i.e., 1 × 102 turns to
1 × 104 turns, for DA calculations. In contrast, in hadron rings, where energy damping is
minimal or absent, the time scale is defined by the application, and for the LHC or HL-LHC,
it is usual to consider 1 × 105 (or 1 × 106) turns. Therefore, the methods presented in this
paper primarily focus on the DA concerning hadron rings, as the absence of significant
damping effects renders the long-term dynamics especially crucial, making DA calculation a
highly CPU-demanding activity. It should be noted that the standard number of turns used
in LHC DA calculations is equal to only about 9 s (or 90 s) of storage time, compared to 10 to
15 h of a typical fill duration: This suggests that there is a significant discrepancy between
what can be computed and what is needed to model the actual LHC performance and that
its treatment is crucial to the advancement of the field. The computation of DA is very
demanding, particularly for large hadron accelerator rings like the LHC. The computational
challenge is two-fold. Firstly, it involves the large number of initial conditions needed
to accurately explore the phase space; secondly, it requires a substantial number of turns
to assess the stability of the dynamics. The first challenge can be mitigated, as the initial
conditions are non-interacting, by parallelising the DA computation algorithms [15] or
exploiting the performance advantages provided by GPUs. The latter challenge lacks a
straightforward solution; the most effective method has been the derivation of scaling laws
for the DA versus the turn number. This method has seen success through the application
of advanced theorems from dynamical systems theory, which yields the long-sought scaling
laws [16,17].

Conducting precise numerical calculations of the DA requires significant CPU re-
sources. Nevertheless, a single DA value is rarely practically valuable in the design and
analysis of circular accelerators. Meaningful outcomes require examining several machine
configurations. There are at least two reasons for this. First, the accelerator model may
be known with limited precision. In such cases, a Monte Carlo method is typically em-
ployed, in which certain parameters describing the accelerator model are varied across a
high-dimensional space. For the LHC, this technique applies to the errors that affect the
superconducting magnets. Although an extensive measurement campaign was conducted
to qualify all produced magnets, only a small subset was tested under cold conditions,
which are the conditions of normal operation. Magnetic errors measured under these
conditions can be directly used in DA simulations. For most magnets, errors are known
only under warm conditions, and a transformation is required to deduce errors under cold
conditions [18–21]. It is customary to neglect the impact on the field quality experienced by
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the charged beams of the misalignment errors of the various magnets. This methodology
introduces some degree of uncertainty regarding the actual errors in these magnets. As a
result, it is typical to produce realisations of the magnetic errors measured under warm
conditions based on the uncertainty in the measurements. For the LHC, it is standard to
consider sixty realisations (also known as seeds) of the ring lattice, each incorporating
different sets of magnetic errors: overall, the true DA value should fall within the range of
DA values for the collection of realisations. The second reason for assessing multiple DA
values is that optimising the ring configuration is a crucial aspect of the circular accelerator
design and operation. This is usually achieved by evaluating numerous machine configura-
tions and examining the hyper-surface that represents the DA as a function of the machine
parameters, identifying regions that maximise the DA and produce minimal DA variation
close to the peak (see, e.g., Refs. [22,23]).

Observing the current trend in accelerator physics, it is clear that the pursuit of con-
structing surrogate DA models has grown into a highly appealing research area. Clearly,
in this field, modern computational technologies, such as machine learning (ML), offer an
attractive solution to this demand. Recently, ML methodologies have been investigated
to create efficient surrogate models for DA (see, e.g., [24]) or to better reconstruct its time
dependence [25]. Furthermore, deep learning (DL) techniques have been applied to quickly
and precisely forecast DA for unfamiliar machine configurations [26]. By training a multi-
layer perceptron (MLP) on a comprehensive data set of simulated initial conditions, this
method effectively captures the intricate relationships between accelerator parameters and
the corresponding DA values. Furthermore, this model has shown the ability to accurately
represent even new optical configurations of the accelerator with minimal new data due
to its ability to extract universal physical features from common accelerator variables
that influence beam dynamics. This feature holds significant promise for the design and
optimisation of future accelerators, underscoring the crucial role of surrogate models.

Expanding on our initial MLP, we conducted additional research, evaluations, and com-
parisons involving various cutting-edge DL architectures. Each architecture has been tested
on the same data set to assess its potential in improving the accuracy of DA forecasts. It is
important to note that while numerical accuracy is crucial, it should be weighed alongside
the inference time, which needs to be sufficiently brief to make these advanced architectures
a viable substitute for traditional numerical DA computations. These points are thoroughly
examined and discussed throughout this paper.

The layout of this paper is as follows: Section 2 describes the computation of the DA
through direct numerical simulations and addresses the data preparation to implement the
DL models. Section 3 examines the proposed DA regressor, providing a comprehensive
review of the various architectures developed and evaluated in this research. The analysis
of the developed DL architectures is divided into three sections: Section 4 focuses on
the training and accuracy of the different architectures; Section 5 discusses the inference
performance; and Section 6 looks at the surrogate model’s performance when DA is
considered a function of the number of turns. Lastly, conclusions are presented in Section 7,
and the appendices provide details on some aspects of this study.

2. Simulated Samples for Deep Learning Models of the DA

2.1. Simulating the DA

The definition of DA requires some care, and the detail is given in Appendix A.
The stability of the orbits should be checked by performing an appropriate sampling of the
phase space, which is a very time-consuming task. For this reason, some simplifications can
be applied so that only a subspace of the entire phase space is carried out. It is customary
to consider a scan over the initial conditions of the form (x, 0, y, 0), which reduces the
computation of the DA to a 2D scan. Furthermore, in the rest of the paper, the concept of
angular DA is used: It is simply defined as DA(αk, N) = rs(αk, N) using the same notation
as in Equation (A14).
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An essential point to cover is the criterion for defining bounded orbits, which ne-
cessitates setting a threshold amplitude. Orbits with amplitudes below this threshold
throughout the tracking simulation are classified as bounded (or stable). If an orbit exceeds
this threshold, it is deemed unbounded (or unstable), and the number of turns reached
is recorded to define the orbit’s stability time. This assessment is performed turn by turn
with a default threshold value of 1 m. In particular, in the LHC, a collimation system [11] is
used to safeguard the cold aperture by absorbing particles at higher amplitudes. The jaws
of this system serve as absorbers and set a physical limit on the amplitudes of the orbit.
Therefore, in our DA simulations, we considered defining the threshold amplitude based
on the aperture of the collimator jaws.

From a computational perspective, we evaluated DA by tracking initial conditions
in phase space using XSuite [27,28]. These initial conditions are set in polar coordinates,
allowing us to establish the stability limit for each angle, which is known as the angular
DA. To speed up the tracking process, an initial coarse scan was performed using evenly
spaced initial conditions over eight polar angles within the range of [0, π/2] and 33 radial
amplitude values spanning [0, 20σ]. (It is customary to express amplitudes in terms of the
transverse rms beam size, which is computed starting from the values of the normalised
emittance ϵ∗. In the case of the LHC [11], the nominal value of ϵ∗ equals 3.5 µm for
both x and y planes.) This approach identifies the angular DA value for each angle and
pinpoints the smallest amplitude where the initial conditions do not remain bounded
beyond 1 × 103 turns, defining the boundary of the fast-loss region. Subsequently, a finer
scan is performed within the amplitude range from 2σ inside the stable region to 2σ outside
the fast-loss boundary and tracking for 1 × 105 turns. This finer scan employs radial
increments of 0.06σ and examines 44 polar angles within [0, π/2]. Overall, this method
provides a detailed phase space scan, focusing on areas near the stability boundary. This
technique not only improves the accuracy of the angular DA computation but also triples
the tracking efficiency by limiting the scanned space, as empirically shown [29].

An example of the results of these calculations, performed in the x − y space, is shown
in Figure 1 for one of the LHC configurations that are part of the data set used to construct
the DL surrogate models.

Figure 1. Stability time for a distribution of initial conditions in x − y space for one of the LHC config-

urations that are part of the data set used for constructing the DL surrogate models. The reduction in

the extent of the stable region for an increasing number of turns is clearly visible. This information is

then used to determine the value of the angular DA. As an example, the angular DA for 1 × 105 turns

is shown in red.
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We note that the horizontal and vertical axes represent in reality the value of the hori-
zontal and vertical invariants. Therefore, for the case of the hadron accelerators, for which
the dynamics is symplectic, only positive values of the initial coordinates are considered.

2.2. Generating Accelerator Configurations and DA Samples

The data set used to build the DL models is made up of accelerator configurations that
are generated using MAD-X [30–33]. The accelerator considered is the LHC, which is in its
configuration used during the 2024 physics run at injection energy (450 GeV). This base
configuration has been used to generate many variants labelled by the values of some key
accelerator parameters, namely the betatron tunes Qx, Qy, the linear chromaticities Q′

x, Q′
y,

the strength of the Landau octupole magnets (these magnets are used in operations to pas-
sively mitigate collective instabilities. The strength of the magnets is the key parameter and,
in our studies, it has been labelled by the current IMO that flows in the octupoles), and the
realisations of the magnetic field errors (also called seeds) that have been assigned to the
various magnet families. Furthermore, in these studies, the ring configurations for Beam 1
(clockwise beam) and Beam 2 (counter-clockwise beam) have been independently consid-
ered. Note that the two magnetic channels of Beam 1 and Beam 2 only have a relatively
small number of single-bore magnets in common, namely 36 superconducting magnets
and 30 normal-conducting magnets, while the two-bore magnets are several thousands.
For the two-bore magnets, the magnetic field errors are different for the two apertures, thus
justifying the approach of considering both beams as independent configurations.

An initial data set comprising 5 × 103 LHC configurations was generated by per-
forming a random uniform grid search of the following parameters: Qx ∈ [62.1, 62.5] and
Qy ∈ [60.1, 60.5], with steps of size 5 × 10−3; Q′ ∈ [0, 30] (high chromaticity values were
incorporated into the scan since they may actually be employed to mitigate collective insta-
bilities, and it is important to integrate this aspect into our DA model; also, note that the
same value Q′ is used for Q′

x and Q′
y), with steps of size 2; IMO ∈ [−40 A, 40 A] with steps

of size 5 A. For each of the 1000 configurations, five different realisations of magnetic errors
(seeds), randomly selected among the 60 available, have been considered for both beams,
resulting in a total of 5 × 103 configurations.

The control of the ring chromaticity is performed by means of two families of sex-
tupole magnets that are installed in regular arc cells, close to the focusing and defocusing
quadrupoles, as is customary for a FODO lattice. The Landau octupoles are also located
close to focusing and defocusing cell quadrupoles, but only in a subset of the regular cells
in the ring arcs.

Moreover, 5655 additional accelerator configurations (which gives a data set with a
total of 10.655 × 103 configurations) were generated using the active learning (AL) frame-
work developed by our team [29]. This framework allows the smart sampling of accelerator
configurations through a clever selection of configurations with higher error estimates.
As demonstrated in our previous studies, by prioritising configurations with larger magni-
tude error, the AL framework enables a more efficient exploration of machine configurations
where the surrogate model has not yet fully captured the underlying physics features.

We also considered six values of the threshold amplitude to identify bounded orbits,
namely four cases using different collimator apertures (5σ, 5.7σ, 6.7σ, 11σ) and one using
the default aperture of 1 m.

The relevance of the evolution over time of DA has already been mentioned above.
Therefore, the possibility of reconstructing a model for this dependence has been explored
by monitoring the stability time of the initial conditions. For this reason, the stability
times have been binned using 19 distinct intervals whose boundaries are given by 1, 5, 10l1,
100 + 50l2, 1 ≤ l1 ≤ 10, 1 ≤ l2 ≤ 8 thousand turns.

Concerning the number of turns performed in the tracking simulations, 3805 LHC
configurations were tracked for 5 × 105 turns, while in the remaining 6850 configurations,
tracking was limited to 1 × 105 turns. This approach was used to assess the capacity of the
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model to predict the angular DA over a larger number of turns even with a smaller sample
size. Further discussion of this methodology is provided in Section 6.

The quantity of samples employed in our model is determined by the product of
three factors: the quantity of accelerator configurations in the data set, the 44 angles
used to examine the phase space, and the 19 bins used to observe the evolution of the
stability time. This calculation results in a considerable 836-fold increase in the size of the
data set of the accelerator configurations, substantially improving the chances of model
training convergence while allowing us to track the contours of the stability limits and
their development.

As beam–beam effects are not included, the value of the beam emittance represents a
simple scale factor. Therefore, it is possible to augment the angular DA data set, computed
for the nominal value, by using different values of the beam normalised emittances ϵ′x and
ϵ′y. This strategy does not require any additional CPU-intensive angular DA computation
but rather only a simple rescaling of existing results. In fact, the value of the angular
DA′(αk, N) using ϵ′x and ϵ′y is given by

DA′(αk, N) = DA(αk, N)

√

√

√

√

ϵ∗
√

ϵ′2x sin2 αk + ϵ′2y cos2 αk

ϵ′xϵ′y
, (1)

where ϵ∗ is the nominal normalised emittance value used to compute DA(αk, N). In our
studies, we considered the following emittance values:

ϵ′x ∈ {0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 3.5, 5.0, 7.0, 10.0, 20.0, 50.0} µm

ϵ′y = ϵ′x(1 + ξ) ,
(2)

where ξ is a Gaussian-distributed random variable with zero mean and sigma equal to 0.1,
which corresponds to having always almost equal horizontal and vertical emittances. This
approach is designed to achieve two objectives: it enables the surrogate model to grasp
an initial understanding of how DA is influenced by the beam emittance value and, more
significantly, to introduce a method to even out the distribution of angular DA. This is
essential to provide an unbiased training set for the DA regressor, which is achieved by
randomly sampling the inverse distribution of the angular DA values after augmentation.
The distribution of angular DA is illustrated in Figure 2 both before (red) and after (blue)
the augmentation and unbiasing steps. Initially, the higher DA values were not sufficiently
represented; however, following these adjustments, the distribution becomes more uniform,
resulting in a better-balanced representation of DA values.

Figure 2. Distribution of the angular DA before (blue) and after (red) the augmentation and unbias-

ing pre-processing.
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The total number of samples after the unbiasing step is about 50 million. From this
sample size, 10% of the samples were used for validation and 10% were used to test the
performance of the model, while the rest was used for training.

2.3. Pre-Processing of DA Data Set

Labels used to denote machine configurations might be inadequate for classifying
the beam dynamics. Consequently, to provide a more comprehensive description of the
phenomena that affect DA, we incorporated several variables calculated using MAD-X
and PTC [34–36]. For a better characterisation of the LHC ring’s optical configuration, we
included the maximum values of the Twiss parameters αx,y and βx,y, along with the phase
advance µx,y, between the high-luminosity insertions of the ATLAS and CMS experiments,
which are located at IP1 and IP5, respectively. This approach aims to better capture
the interrelationship between the optical parameters and the angular DA. Additionally,
to encapsulate observables related to nonlinear beam dynamics, we accounted for seven
anharmonicity coefficients, specifically the amplitude detuning terms up to the second
order [37].

A crucial step is the standardisation of input variables that take real values. However,
note that the beam and seed variables take discrete values and are excluded from this
step. This process entails normalising the distributions by using their mean and standard
deviation. By ensuring a uniform scaling of all input features, this step helps to achieve
quicker model convergence and improves model stability [38]. Consequently, this improves
the performance and interpretability of the model.

In contrast to [26], we did not cap the DA values, as our augmentation and unbiasing
steps result in a balanced distribution of DA values, allowing the model to learn from the
full range of DA values without introducing bias.

3. DA Regressor

The DA regressor is a neural net designed to assess accelerator parameters, the polar
angle, and the number of tracked turns to predict the angular DA value. We explored
several network architectures using the TensorFlow library [39] and used the rectified
linear unit (ReLU) activation function [40] to enhance nonlinear learning capabilities.
Furthermore, the hyperparameters were fine-tuned using random search with the Keras
Tuner framework [41] to improve model performance. The subsequent subsections offer a
comprehensive description of each tested network.

The network architectures discussed in this document showcase the top performing
setups discovered during our investigation, encompassing various layer configurations
and types. Our experiments revealed that attention mechanisms and residual connec-
tions were especially effective in representing the numerical variables in this data set.
Although these configurations delivered optimal results, it is possible that they are tailored
to this specific data set, suggesting that exploring a wider range of hyperparameters might
provide additional insight. Nonetheless, we consider the effectiveness of attention and
residual mechanisms in this scenario to be noteworthy, potentially pointing to their broader
applicability in similar data sets.

3.1. Multilayer Perceptron

The MLP consists of a fully connected neural network, and its advantage over more
complex architectures lies in its simplicity, requiring fewer computational resources and
fewer data for training. The implemented network structure closely follows that imple-
mented in our previous study [29]. This includes four hidden layers with 2048, 1024, 512,
and 128 nodes, respectively. Batch normalisation is applied to each hidden layer to stabilise
and speed up training by normalising layer outputs. To avoid overfitting, three dropout
layers between the hidden dense layers with a rate of 1% were applied in [29]. However,
after performing hyperparameter tuning for this new data set, the optimal dropout rate
was found to be 50%. The structure of the MLP network used is shown in Figure 3.
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Figure 3. Architecture of the designed MLP for the DA regressor, featuring a fully connected structure.

3.2. Bidirectional Encoder Representations from Transformers

The Bidirectional Encoder Representations from Transformers (BERT) neural net-
work [42] was initially designed to improve natural language understanding tasks due
to its unique architecture. BERT is characterised by its use of self-attention mechanisms
in multiple Transformer blocks [43], which allows it to capture complex, bidirectional
dependencies within input data. The embedding in the network converts the input features
into dense vectors, which effectively represent the patterns in the data. These vectors are
then processed through self-attention layers, where each token in the input sequence is able
to consider and weigh its relationship to all the other tokens in the sequence. This dynamic
attention mechanism adjusts focus based on the relevance of tokens, allowing the model to
capture subtle contextual relationships across the entire sequence, enhancing the model’s
ability to learn intricate relationships and improve predictive accuracy.

Our BERT-based network is designed for numerical data processing and consists of
12 Transformer encoders. Each Transformer encoder comprises a multi-head self-attention
layer with eight attention heads, allowing the model to learn from different representation
subspaces simultaneously. Following this, a single feed-forward neural layer (FFN) is
employed with a hidden layer size of size 512. Layer normalisation and dropout layers
with a rate of 0.5 are applied before and after each FFN to stabilise the training and prevent
overfitting. A global average pooling layer is included after the Transformer blocks to
reduce the sequence dimension and aggregate the information into a fixed-size vector,
ensuring efficient downstream processing. The structure of the BERT network used is
shown in Figure 4.

Figure 4. Architecture of the designed BERT for the DA regressor.

3.3. Densely Connected Convolutional Networks

The Densely Connected Convolutional Networks (DenseNet) network introduces a
novel connectivity pattern in which each layer is directly connected to every other layer in
a feed-forward fashion [44]. This dense connectivity results in a significant reduction in the
number of parameters compared to other deep network configurations of similar depth,
leading to more compact models with improved computational efficiency. The structure of
the DenseNet network used is shown in Figure 5.

Our implementation of DenseNet consists of 121 layers, including dense blocks, tran-
sition layers, and fully connected layers. The network begins with an initial convolutional
layer, which is followed by maximum pooling to reduce spatial dimensions. Then, a series
of four dense blocks, each separated by a transition layer, are applied. Within each dense
block, multiple layers are connected directly to every other layer, promoting gradient flow
and alleviating the vanishing gradient problem. A global average pooling layer is used
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before the fully connected layers to aggregate features, and dropout with a rate of 0.5 is
used to prevent overfitting, enhancing the generalisability of the model.

Figure 5. Architecture of the designed DenseNet-121 for the DA regressor.

3.4. Residual Networks

Residual Network (ResNet) is a deep convolutional neural network (CNN) known to
address the challenges of training very deep networks through the introduction of residual
learning [45]. It leverages residual connections, or skip connections, that allow the network to
bypass one or more layers. Instead of learning the full output transformation at each layer,
the network learns the residual (or difference) between the input and output of the layer.
This mechanism helps mitigate issues such as the vanishing gradient problem and enables
the construction of much deeper networks without performance degradation. The structure
of the ResNet network used is shown in Figure 6.

Figure 6. Architecture of the designed ResNet-18 for the DA regressor.

We used a relatively shallow variant of this topology, based on ResNet-18, making
it computationally efficient and suitable for tasks where faster training and inference are
needed without sacrificing performance. It starts with an initial 1D convolutional layer
followed by eight residual blocks, each containing two convolutional layers with Batch
Normalisation. The network ends with a global average pooling layer to aggregate features,
a dense layer with 1024 units, and a dropout layer with a rate of 0.5 to mitigate overfitting.

3.5. Visual Geometry Group

The Visual Geometry Group (VGG)-16 model developed for our application features
a deep architecture with a series of convolutional blocks designed for effective feature
extraction [46]. Each VGG block consists of multiple 1D convolutional layers followed by
max-pooling, which reduces the spatial dimensions of the feature maps by selecting the
maximum value in each region of the feature map, allowing the network to focus on the
most important information while downsampling. The structure of the VGG-16 network
used is shown in Figure 7.

Figure 7. Architecture of the designed VGG-16 for the DA regressor.
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After the convolutional layers, the features are flattened and passed through two fully
connected dense layers with 4096 units each, including a dropout layer with a rate of 0.5
for regularisation.

3.6. Hybrid

Finally, we developed a hybrid network that integrates three key components: a Trans-
former encoder, a residual block, and a dense network. The input features are converted
into dense vectors through an embedding layer. Then, the Transformer encoder, featuring a
multi-head attention layer with a feed-forward layer, captures complex dependencies and
contextual information. This is followed by a residual block that enhances feature learning
through skip connections. A dense block builds upon the residual connections, incorporat-
ing dropout and concatenation to improve robustness and performance. The dense network
processes the extracted features with dense layers and an additional dropout layer (with a
0.5 rate) for regularisation. Combining these elements ensures that the network maintains
high performance while being computationally efficient compared to traditional DenseNet
and BERT models. The structure of the Hybrid network used is shown in Figure 8.

Figure 8. Architecture of the designed Hybrid network for the DA regressor.

4. Training and Precision of DA Models

For training of all the networks tested, we used about 1.1 × 104 accelerator config-
urations of the LHC 2024 optics case at injection energy, comprising data tracked for
1 × 105 turns and 5 × 105 turns, totalling approximately 9.1 million samples. The batch
size used for training is 1024 samples. The loss function used for the regressor is the mean
absolute error (MAE) function that is trained with the NADAM optimiser [47]. The initial
learning rate is 5 × 10−5 and is halved every five sequential epochs if the validation loss
is not improved to enhance the model accuracy. Early stopping was used with a patience
of 20 epochs to prevent overfitting. Figure 9 illustrates the performance improvements
throughout the training process and the adjustments to the learning rate.

The MAE, the mean absolute percentage error (MAPE), and the root mean squared
error (RMSE) for the test (train) data set are presented in Table 1, while Table 2 shows
the training time spent. The BERT model achieves the lowest MAE in the test (0.342σ).
However, it required 37 h for training, reflecting a high computational cost. DenseNet-121
exhibits a reasonable MAE in the test (0.365σ) but required the longest training time (138 h),
indicating a significant computational cost to achieve its performance. ResNet-18 shows
a balance between prediction accuracy (0.376σ) and training time, taking only 39 min per
epoch. In contrast, the MLP (baseline), with moderate error metrics (0.406σ), completed the
training only in 3 h. Moreover, there are no signs of overfitting, as evidenced by the similar
error metrics between the training and test sets in Table 1. This is further supported by the
training progress graph, such as the one shown in Figure 9, which demonstrates consistent
performance across both data sets.

Figure 10 illustrates the 2D histogram of the predicted versus computed angular DA
for all evaluated networks. This visualisation shows that most models perform well for the
majority of data points, with a tight cluster along the diagonal line, indicative of accurate
predictions. Additionally, the Pearson correlation coefficient is presented, demonstrating
values approaching unity across all instances albeit marginally lower for the Hybrid and
VGG-16 architectures.
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Figure 9. Training and validation performance over epochs. The blue line represents the training

loss (MAE), while the orange line shows the validation loss. The green line tracks the learning rate

adjustments throughout the training. The vertical dashed line indicates the epoch at which the model

was saved.

Table 1. Prediction performance of the network architectures on the train and test data sets.

Network

MAE MAPE RMSE
[σ] [%] [σ]

Train Test Train Test Train Test

BERT 0.340 0.342 14.36 14.37 0.536 0.536
DenseNet-121 0.356 0.365 12.81 13.11 0.546 0.560

ResNet-18 0.373 0.376 14.42 14.42 0.578 0.578
MLP (baseline) 0.403 0.406 18.35 18.57 0.618 0.621

Hybrid 0.546 0.549 28.78 28.87 0.799 0.801
VGG-16 0.642 0.645 62.90 62.91 0.899 0.899

Table 2. Time performance of the network architectures during training.

Network Epochs Time Per Epoch Total Time
[min] [h]

BERT 30 74.3 37
DenseNet-121 76 107.7 138

ResNet-18 74 38.8 48
MLP (baseline) 39 5.1 3

Hybrid 49 38.1 31
VGG-16 57 22.9 22

Figure 11 presents the comparison of the distribution between the computed and pre-
dicted angular DA, demonstrating their compatibility and further validating the predictive
accuracy of the models. In addition to the significant 16% enhancement in MAE achieved
by the BERT architecture compared to our former MLP baseline model, BERT also excels in
angular DA coverage. As illustrated in Figure 11, all models typically underestimate the
final angular DA bin. This is a familiar problem in regression assignments, as regressors
generally exhibit increased errors near boundary values. However, it should be noted
that the BERT model delivers markedly more precise predictions, particularly at higher
angular DA values where the MLP falters. This is crucial, since predicting values close
to the extremities of a distribution can be challenging. The attention mechanism of BERT
enables it to focus on the most pertinent input features, thus improving its accuracy at
the boundaries, whereas the uniform weighting of MLP often decreases performance in
these areas. This underscores the superior predictive power and robustness of BERT. In
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closing, it is noteworthy that the rise in DA prediction associated with the 6σ bin remains
unexplained, as it is absent in the numerical data.

In addition, we provided an assessment of the models using the Kolmogorov–Smirnov
(KS) test, which measures the maximum distance between the empirical distribution
functions of the predicted and computed angular DA. The KS test values further highlight
the effectiveness of BERT, which achieves the best KS test value. It is followed by DenseNet,
ResNet-18, and the MLP baseline. Models such as Hybrid and VGG-16 exhibit poorer
performance with KS values. In this regard, we note that the KS values might be high
because these models tend to prioritise the reduction of errors in the central parts of the
distribution, where most of the data are concentrated. This occurs at the cost of precision in
the tails. The KS test is sensitive to differences at the extremes of the distribution, which can
result in a less precise performance of the model in these areas. These results support the
superior distributional alignment achieved by BERT, underlining its robustness at varying
values of angular DA.

Although the Hybrid network developed for the regression of the angular DA exhib-
ited faster inference times than DenseNet, BERT, and ResNet, its prediction accuracy lagged
behind. This could be attributed to the network’s insufficient depth, preventing it from
fully utilising the benefits of residual connections, attention mechanisms, and dense blocks.

(a)

(c)

(b)

(d)

Figure 10. Cont.
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(e) (f)

Figure 10. Predicted angular DA as a function of the computed angular DA values for the test data

set for: (a) BERT, (b) DenseNet-121, (c) ResNet-18, (d) MLP (baseline), (e) Hybrid and (f) VGG-16

architectures. The Pearson correlation coefficient is also shown.

(a)

(c)

(b)

(d)

Figure 11. Cont.
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(e) (f)

Figure 11. Computed (blue) and predicted (red) angular DA distribution for the test data set for:

(a) BERT, (b) DenseNet-121, (c) ResNet-18, (d) MLP (baseline), (e) Hybrid and (f) VGG-16 architectures.

The outcome of the Kolmogorov–Smirnov test, used to compare the two distributions, is also reported.

5. Inference Performance of DA Models

The inference time of DL networks is influenced by several aspects, including the
number of samples and the parameters of the model. These elements can lead to a signifi-
cant increase in computational costs for training the network, affecting both the duration
of training and the use of memory. To address this issue, we assessed the performance of
two hardware architectures designed for accelerated operation with our DA regressor: an
Apple M3 MAX [48] and a NVIDIA V100 [49]. A brief overview of the hardware setup is
provided in Appendix B.

Table 3 displays the timing performance of various network architectures when pre-
dicting a single angular DA and a complete accelerator configuration in two hardware
platforms. Examples of complete machine configurations are illustrated in Figure 12.
The findings indicate that the NVIDIA V100 generally surpasses the M3 MAX in inference
speed for most architectures even though the latter features quicker I/O speeds. In addition,
architectures with deeper layers and more intricate operations, such as BERT, exhibit longer
inference durations due to higher computational demands. In contrast, simpler models
or those with fewer parameters, such as ResNet-18 and MLP (baseline), generally exhibit
faster inference times.

Table 3. Time performance of the considered network architectures during inference.

Network

Single Angular DA Machine Configuration

M3 MAX V100 M3 MAX V100
[ns] [ns] [ms] [ms]

BERT 189 61 158 51
DenseNet-121 158 41 132 34

ResNet-18 21 12 18 10
MLP (baseline) 10 4 8 3

Hybrid 116 45 97 38
VGG-16 66 27 55 23

Data Loading 0.9 3 0.8 2
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Figure 12. The true angular DA (left) and the BERT prediction (right) for four different machine

configurations present on the test data set. The colours indicate the stability time in turns.
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While the conventional numerical tracking approach using X-Suite and the HT-Condor
batch system [50] can manage around 1 × 103 jobs simultaneously and takes approximately
30 h to track particles across 1 × 103 different configurations, equating to about 107 s per
accelerator configuration, BERT, even as the most intricate network, delivers a significant
performance boost. On the M3 MAX, BERT achieves a speed-up factor of roughly 675,
and on the NVIDIA V100, it delivers an even higher speed-up factor of 2 × 103. Naturally,
it is important to emphasise that achieving such a significant speed-up is only feasible
after constructing an adequately large data set, which allows for the computation of
DL surrogate models. This data set is created through conventional numerical tracking
simulations, which are computationally very expensive. Consequently, the benefit of the
surrogate model lies in the context of exploring a wide array of ring configurations, such as
for design studies or optimisation purposes.

6. Prediction of DA for Higher Number of Turns

In previous studies [26,29], we limited the tracking of particles to 1 × 105 turns. Cer-
tainly, it is valuable to predict DA for a larger number of turns; but expanding the tracking
is computationally demanding. For this reason, as mentioned in Section 2, only one third
of the ring configurations in our data set were tracked up to 5 × 105. This introduces the
possibility of testing the ability to capture the evolution of the DA when tracking parti-
cles for an even longer duration even if only a fraction of the samples contain extended
tracking information.

Figure 13 shows the absolute error distribution for each of the bins used to distribute
the stability time when the BERT network is used. Performance in the test data set demon-
strates that the model accurately predicts the angular DA, even with limited information
on extended turn counts. This indicates that the model capability captures the evolution of
DA as a function of turn, even if the training of the surrogate model has been performed
including only a reduced sample size that contains simulation results up to 5 × 105 turns.
It should be noted that there were slight discrepancies in the MAE values between machine
configurations tracked up to 1 × 105 turns and those tracked up to 5 × 105 turns, as indi-
cated in Figure 13, which may be due to differences in the statistical characteristics of the
training data. In particular, the input variables may exhibit varying distributions between
the samples tracked up to 1 × 105 turns and those tracked up to 5 × 105 turns, potentially
impacting the model’s predictive accuracy across these subsets. These distribution shifts
could lead to the observed performance discrepancies.

Figure 13. Box plot of the MAE as a function of the number of turns for the machine configurations

tracked up to 5 × 105 turns in the test data set. The box limits indicate the range of the central 50% of

the data with a central line marking the mean value.
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7. Conclusions

This research investigates several advanced deep learning architectures to improve
DA prediction in circular particle accelerators, using 2024 LHC optics at injection as a
benchmark. We experimented with models including BERT, DenseNet, and ResNet, finding
substantial enhancements in prediction accuracy compared to our previous MLP model.
Specifically, the BERT model achieved the highest precision, although it required higher
computational resources. However, ResNet-18 provided a balanced trade-off between
performance and computational efficiency with respect to the inference time; the training
time is only 30% grater than BERT. All evaluated networks showed remarkable speed
increases in inference times over traditional tracking methods, achieving predictions that
were at least 675 times faster on advanced hardware. Furthermore, these models effectively
predicted DA over a greater number of turns, demonstrating their robustness even with
limited training data on long-duration tracking. This progress presents new opportunities
for optimising and designing future accelerators by providing fast and accurate DA predic-
tions, reducing the dependency on time-consuming simulations. Implementing these deep
learning models in beam dynamics research represents a substantial advancement in the
development of efficient surrogate models.

Future studies could extend this work by comparing the performance of the models
with measured beam data from the LHC to further validate their effectiveness. Furthermore,
incorporating variables that describe the collision process, such as beam separation and
crossing angle, could extend the ability of the models to predict angular DA under more
complex operational conditions. An alternative research direction involves crafting physics-
informed models that incorporate the DA scaling law as a function of the turn number.
This approach could significantly improve our ability to predict accelerator performance
over time durations that are relevant for standard operations.
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Appendix A. Errors in the Numerical Evaluation of the DA

Following [8], let us consider the phase-space volume of the initial conditions that are
bounded after N turns:

∫ ∫ ∫ ∫

χ(x1, px1
, x2, px2) dx1 dpx1

dx2 dpx2 , (A1)

where χ(x1, px1
, x2, px2) is the generalisation of the characteristic function to the 4D case;

i.e., it is equal to one if the orbit starting at (x1, px1
, x2, px2) is bounded and zero if it is not.

To exclude the disconnected part of the stability domain in the integral (A1), we have
to choose a suitable coordinate transformation. Since linear motion is the direct product
of rotations, the natural choice is to use the polar variables (ri, ϑi), where r1 and r2 are
linear invariants. The nonlinear part of the equations of motion adds a coupling between
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the two planes; hence, it is natural to replace r1 and r2 with the polar variables r cos α and
r sin α, respectively























x1 = r cos α cos ϑ1

px1
= r cos α sin ϑ1 r ∈ [0,+∞]

α ∈ [0, π/2]
x2 = r sin α cos ϑ2 θi ∈ [0, 2π] i = 1, 2
px2 = r sin α sin ϑ2 .

(A2)

Substituting in Equation (A1), we obtain

∫ 2π

0

∫ 2π

0

∫ π/2

0

∫ ∞

0
χ(r, α, ϑ1, ϑ2) r3 sin α cos α dΩ4 , (A3)

where dΩ4 represents the volume element

dΩ4 = dr dα dϑ1 dϑ2 . (A4)

Having fixed α and ϑ1, ϑ2, let r(α, ϑ1, ϑ2, N) be the last value of r whose orbit is
bounded after N turns. Then, the volume of a connected stability domain is

Aα,ϑ1,ϑ2,N =
1

8

∫ 2π

0

∫ 2π

0

∫ π/2

0
[rs(α, ϑ1, ϑ2, N)]4 sin 2α dΩ3 , (A5)

where
dΩ3 = dα dϑ1 dϑ2 . (A6)

Note that rs represents the amplitude of the last bounded orbit in the direction given
by the angles α, ϑ1, and ϑ2. To ensure that stable islands disconnected from the main stable
domain are excluded by this approach, the amplitude of the first unbounded orbit should
be determined, and rs is the previous stable amplitude.

We define the DA as the radius of the hyper-sphere that has the same volume as the
stability domain

DA(N) = rα,ϑ,N =

(

2Aα,ϑ,N

π2

)1/4

. (A7)

On a computer code, Equation (A5) is calculated considering K steps in the angle α

and L steps in the angles ϑi and it reads

DA(N) =

[

π

2 KL2

K

∑
k=1

L

∑
l1,l2=1

[rs(αk, ϑ1, ϑ2, N)]4 sin 2αk

]1/4

. (A8)

The discretisation of the integral (A5) introduces numerical errors that are given by
the following contributions:

• The discretisation in the angles ϑi gives a relative error proportional to L−1 correspond-

ing to a trapezoidal integration rule [51]. A better estimate of the error (L−2) requires
some regularity for the derivative of the function rs(α, ϑ1, ϑ2). This is probably not the
case at the border of the stability domain.

• The discretisation of the angle α gives a relative error proportional to K−1.

• The discretisation in radius r gives a relative error proportional to J−1, where J is the
number of amplitude steps.

The integration steps should produce comparable errors, i.e., J ∝ K ∝ L. In this way,
one can obtain a relative error of 1/(4J) by evaluating J4 orbits, i.e., NJ4 iterates. The factor
4 in the error estimate is due to the dimensionality of the phase space. The fourth power in
the number of orbits comes from the dimensionality of phase space and makes a precise
estimate of the dynamic aperture very CPU time consuming.
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A refined approach to improve the numerical accuracy of the triple integral implies
considering the following integral

Aα,ϑ,N =
1

8

∫ π/2

0
sin 2α

∫ 2π

0

∫ 2π

0
[rs(α, ϑ, N)]4 dϑ1 dϑ2 dα , (A9)

using for each angle an equally spaced sampling by means of (2n + 1) elements. In this
way, we can apply iteratively the Romberg integration scheme three times, which is quite
powerful for sufficiently smooth (e.g., analytic) integrands, which are integrated over
intervals that contain no singularities and where the endpoints are also non-singular [52].

It is possible to reduce the size of the scanning procedure, and hence the CPU time
needed, by setting the angles ϑ to a constant value, e.g., zero, thus performing only a 2D
scan over r and α. This is what is typically performed in standard numerical simulations of
DA for complex accelerator lattices and is also the approach used for the numerical studies
discussed in this paper. In this case, the transformation (A2) reads















x1 = r cos α

px1
= 0 r ∈ [0,+∞]

x2 = r sin α α ∈ [0, π/2]
px2 = 0 ,

(A10)

and the original integral is transformed to

∫ π/2

0

∫ ∞

0
r dr dα . (A11)

Having fixed α, let r(α, N) be the last value of r whose orbit is bounded after N
iterations. Then, the volume of a connected stability domain is

Aα,N =
1

2

∫ π/2

0
[rs(α, N)]2 dα . (A12)

In this case, we define the DA as the radius of the sphere that has the same volume as
the stability domain, namely

DA(N) = rα,N =

(

4Aα,N

π

)1/2

. (A13)

When Equation (A12) is implemented in a computer code, one considers K steps in
the angle α, and the dynamic aperture reads

DA(N) =

[

1

K

K

∑
k=1

[rs(αk, N)]2
]1/2

(A14)

In the case of the 2D scan, the numerical error in the computation of the integral (A12)
is given by the following contributions:

• The discretisation of the angle α gives a relative error proportional to K−1.

• The discretisation in the radius r gives a relative error proportional to J−1, where J is
the number of amplitude steps.

The integration steps should produce comparable errors, i.e., J ∝ K. In this way, one
can obtain a relative error of 1/(2J) by evaluating J2 orbits, i.e., NJ2 iterates (the factor 2 in
the error estimate is due to the dimensionality of the phase space).

Appendix B. Characteristics of the Hardware Used in Our Studies

The M3 Max is a system-on-chip designed by Apple. Featuring 14 CPU cores and
30 GPU cores, along with a dedicated neural engine for machine learning tasks, the M3
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Max can provide a peak performance of up to 120 teraflops in GPU computations. In our
study, we evaluated this chip using an Apple MacBook Pro equipped with 96 GB of RAM.
We utilised the TensorFlow-Metal plugin to leverage Metal’s acceleration capabilities,
optimising GPU performance for faster processing.

The V100 is a high-end GPU designed by NVIDIA for scientific computing and deep
learning. It has 5120 CUDA cores, 16 GB of high-bandwidth memory, and 640 Tensor Cores
for accelerating matrix computations, providing a peak of performance of 130 teraflops in
GPU computations. This GPU is complemented by an Intel Xeon CPU E5-2630 v4, which
provides 40 CPU cores running at 2.20 GHz. The system is also supported by 125.64 GB of
RAM, enabling the efficient handling of large data sets and demanding computations.
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