

Top-quark physics highlights from ATLAS

Daniel Ernani Martins Neto

For the ATLAS Collaboration

XXXI Cracow Epiphany Conference, Kraków, 13/01/2025

Top quark physics: State of art

- Is the most massive of all known elementary particles, with a mass of approximately 173 GeV/c² and carries an electric charge of +²/₃e.
- Its **discovery in 1995** by the **CDF** and **DØ** collaborations at Fermilab completed the quark sector of the SM.

• <u>Decay characteristics:</u>

Predominantly into a W boson and a bottom quark (b), with a mean lifetime of about 5×10^{-25} seconds, decaying before it can hadronize.

Branching ratio of top decay

Top quark physics: State of art

- LHC center-of-mass energy of favors the gluons dominance in the PDFs of the colliding protons;
- tt production is the dominant top quark production;
- The inclusive $t\overline{t}$ cross section allows to test QCD predictions and constraining parameters;
- The final state topology is given in term of W-boson decay mode;

 $W \rightarrow lv (\sim 30\%) / qq' (\sim 70\%)$

Measurement of Single top + W @ \sqrt{s} = 13 TeV

- **Data Sample:** proton-proton **140 fb**⁻¹ (2015-2018);
- Event Selection:

Two charged oppositely leptons with lower pT threshold

- Electron: 24 GeV (26 GeV);
- Muons: 20 GeV (26 GeV);
- at least one jet (originating from a b-quark);
- Analysis Technique:
- Multivariate discriminant to distinguish the **tW** signal from the **tT** background;
- Final states:
- Exactly one selected jet that is also b-tagged (1j1b);
- Two selected jets one of which is b-tagged (2j1b);
- Exactly two jets where each are *b*-tagged (2j2b);

Cross section measurements

Phys.Rev.D 110 (2024) 7, 072010

• <u>MC simulation</u> for signal and background;

<u>tt and tW modelling: PowHegBoxv2@NLO</u>

- One BDT is trained for each analysis fit region: simulated tW events serving as signal and simulated tt events serving as background;
- Reconstructed final-state objects are used to construct various kinematic quantities ;

Inclusive cross-section for tW production

$$\mu_{tW} = 0.95^{+0.19}_{-0.18} \qquad \mu_{t\bar{t}} = 0.99^{+0.07}_{-0.06}$$

 $\sigma_{tW} = 75^{+15}_{-14} \text{ pb} = 75 \pm 1(\text{stat})^{+15}_{-14}(\text{syst}) \pm 1(\text{lumi}) \text{ pb}$ $\sigma_{tW}^{\text{theory}} = 79.3^{+1.9}_{-1.8}(\text{scale}) \pm 2.2(\text{PDF}) \text{ pb}$

- Likelihood function are Poisson distribution terms that account for the probability of observing the expected yields in data;
- The strength (free) parameters for both the processes as the ratio of the measured cross-section and the MC prediction;

Major categories: Impact of relative uncertainties in the tW cross-section

Uncertainty source	$\Delta \sigma_{tW} / \sigma_{tW}$ [%]
$t\bar{t}$ modeling	13.2
Jet energy scale	12.0
$E_{\rm T}^{\rm miss}$ reconstruction and calibration	11.0
tW modeling	7.9
Jet energy resolution	7.0
Jet flavor tagging	3.7
Pileup	2.5
Lepton (e and μ) reconstruction and calibration	1.9
Other background modeling	0.9
Luminosity	0.8
PDF (tW and $t\bar{t}$)	0.6
MC statistical uncertainty	4.7
Total systematic uncertainty	19.2
Data statistical uncertainty	1.4
Total uncertainty	19.3

- <u>Conservative coverage</u>: some of modeling uncertainties are estimated from a comparison between two alternative MC generators;
- The uncertainty in the measured cross-section is reduced by around 40% compared with the previous ATLAS measurement using a partial Run 2 dataset;
- <u>Direct extraction of Wtb Vertex</u> <u>Constraint</u>: left-handed form factor at the Wtb vertex times CKM matrix element |fLvVtb| = 0.97 ± 0.10 compatible with SM prediction (unity);

tt + b-jets in e μ @ \sqrt{s} = 13 TeV

- **Data Sample:** proton-proton **140** fb⁻¹ (2015-2018);
- Event Selection
- electrons: *p*T = 26, 60 and 140 GeV;
- muons: *p*T = 26 and 50 GeV;
- Final states: tt+b-jets:
- Two oppositely charged leptons ($e \pm \mu \mp$);
- At least 3 or 4 b-jets;
- Backgrounds:
- **ttz**, **ttW**, **ttH** (prompt leptons);
- *tWZ*, *tWH*, *tHbj*, *tZ* and *tttt* (rare SM processes);
- Data-driven correction factors (tt events): mis-tagged jets in *ttc* and **ttl** (sig. background).

Cross section measurements

arXiv:2407.13473

• Helps to probe the MC event generators;

Measured normalised differential cross-section in the phase space with at least three *b*-jets;

Dedicated measurement of $tar{t}+\geq 2c$ and $tar{t}+1c$

 Custom flavor-tagging algorithm: simultaneous identification of b-jets and c-jets; https://arxiv.org/abs/2409.11305

CÉRN

Main systematic uncertainties: particle-level measurement of fid. cross sections

Source	Fiducial cross-section phase space			
	≥ 3 <i>b</i> Unc. [%]	$\geq 3b \geq 1l/c$ Unc. [%]	$\geq 4b$ Unc. [%]	$\geq 4b \geq 1l/c$ Unc. [%]
Data statistical uncertainty	1.0	1.2	3.9	4.8
Luminosity	0.8	0.8	0.8	0.8
Jet	3.4	5.2	6.6	8.5
b-tagging	5.1	4.9	6.5	6.4
Lepton and trigger	1.4	1.4	1.2	1.2
Pile-up	0.9	0.7	0.6	0.3
$t\bar{t}c/t\bar{t}l$ fit variation	1.7	1.7	0.8	0.8
$t\bar{t}c/t\bar{t}l$ shape variation	0.2	0.5	0.3	1.6
$t\bar{t}H/t\bar{t}V$ and non- $t\bar{t}$ background	1.1	1.1	2.2	2.4
Detector+background total syst.	6.7	7.6	9.7	11.2
Parton shower and hadronisation	2.9	3.5	1.5	3.6
$\mu_{\rm R}$ and $\mu_{\rm F}$ scale variations	0.7	0.6	0.2	0.3
Matrix element matching (p_T^{hard})	1.3	1.1	4.8	7.0
h _{damp}	1.8	1.5	2.9	3.2
ISR	0.1	0.4	0.2	0.3
FSR	3.1	3.6	3.3	3.1
RecoilToTop	1.8	1.9	2.4	3.4
PDF	0.2	0.2	0.1	0.1
NNLO reweighting	0.6	0.5	0.5	0.5
MC statistical uncertainty	0.2	0.2	0.5	0.6
$t\bar{t}$ modelling total syst.	5.2	5.7	7.2	9.7
Total syst.	8.5	9.6	12.1	14.8
Total	8.5	9.6	12.7	15.5

- **Dominant sources (unc.)**: *b*-tagging, jet energy scale tt modelling uncertainties;
- All models are consistent with data for 2-bjets -The main challenge is to accurately describe the additional *b*-jets production in events with three or more *b*-jets;
- The large uncertainties due to scale variations in the matrix elements are expected to largely cancel in the normalised predictions in fiducial phase space with three or more *b*-jets;
- More data is required to study event with 4 or more b-jets;
- Differences between any two nominal predictions are often smaller than the QCD scale variations of the theory predictions and the uncertainty of the measurement. Further refinement (theo + exp) is required;

Differential Cross-Sections in tt and tt+jets in lepton+jets channel

- **Data Sample:** proton-proton 140 fb⁻¹;
- <u>Event Selection</u>:
- Final states: e+jets, µ + jets.
- **Electrons**:pT > 27 GeV, |η|<2.47*;
- **Muons:** pT > 27 GeV, |η|< 2.5;
- <u>Background estimate:</u>
- Single top (t- and s- channel), W+jets and Z+jets @ NNLO;
- Diboson production: WW,ZZ,WZ (had + lep) decay;
- <u>Convention</u>: jet-rad1(highest pT jet outside the ttbar system)

Cross section measurements

JHEP 2408 (2024) 182

Observables

tī:pT(jet-W1), pT(jet-W2); **tī+1jet:**pT(jet-rad1), $\Delta \phi$ (jet-W1-jet-rad1), m(tī-jet-rad1); **tī+2jets**: $\Delta \phi$ (jet-W1-jet-rad2)

Total relative systematic uncertainty in the absolute (normalised) cross-sections

- <u>tt</u>: ≈ 7% and dominated by the *b*-tagging calibration uncertainty;
- <u>tt + 1jet</u>: ≈ 10% dominated by the detector energy scale and resolution;
- <u>tt +2jets</u>: ≈ 13% dominated by the detector energy scale and resolution;

<u>tt</u>

<u>tt + 1 jet</u>

<u>tt + 2 jets</u>

- Measured differential cross-sections for \underline{tt} production in the ℓ +jets decay modes;
- For the transverse momentum and invariant mass observables, the NNLO QCD predictions provide a significant improvement;
- NNLO predictions are compared with the measured cross-sections for the first time;

Inclusive and Differential Cross-Sections in $t\bar{t}\gamma$

Cross section measurements

JHEP 10 (2024) 191

- <u>Data Sample</u>: proton-proton 140 fb⁻¹;
- <u>Inclusive fiducial cross-section</u> for the ttγ production process;
- <u>Differential cross-sections</u>: measured in both single-lepton and dilepton decay channels compared with predictions from NLO simulations (MadGraph5_aMC@NLO + Pythia 8 and Herwig 7);
- <u>Single-Lepton Channel Selection:</u> =1 (e or μ)
 >= 4 jets (>= 1 jet id as a *b*-jet with W.P. 70%);
 =1γ: E_T > 20 GeV, |η| < 2.37 (1.37 < |η| < 1.52);
- Double-Lepton Channel Selection: =2 (e or μ)
 >= 4 jets (>= 2 jet id as a *b*-jet with W.P. 70%);
 =1γ: E_T > 20 GeV, |η| < 2.37 (1.37 < |η| < 1.52);
 MET > 30 GeV;

• <u>SMEFT</u>: setting limits on parameters related to the electroweak dipole moments of the top quark;

Single-Lepton - Fiducial cross sections

 $t\bar{t}\gamma$ Total relative uncertainties: 7.8%

$$\sigma_{t\bar{t}\gamma \text{ production}}^{\text{Single lepton}} = 288^{+21}_{-19} \text{ fb} = 288 \pm 5(\text{stat})^{+20}_{-19}(\text{syst}) \text{ fb}$$

MADGRAPH5 AMC@NLO + Pythia 8

$$255^{+25}_{-26}$$
(scale) $^{+6}_{-4}$ (PDF) fb

 $f\gamma$ - All decay modes All $f\gamma$ events are considered (prod+ decay)

$$\sigma_{t\bar{t}\gamma}^{\text{Single lepton}} = 704^{+49}_{-46} \text{ fb} = 704 \pm 5 \text{ (stat)}^{+49}_{-46} \text{ (syst) fb}$$

Syst. uncertainties (most relevant)

Stat: 1.8%, MC stat: 1.5%, $tar \gamma$ prod modelling 5.1%, Experimental jet unc: 3.5%, Experimental B-tagging unc: 2.6%

Di-Lepton - Fiducial cross sections

ftγ Total relative uncertainties: 7.7%

$$\sigma_{t\bar{t}\gamma\text{ production}}^{\text{Dilepton}} = 45.7^{+3.3}_{-3.1} \text{ fb} = 45.7^{+1.4}_{-1.3} (\text{stat})^{+3.0}_{-2.8} (\text{syst}) \text{ fb}$$

MADGRAPH5_AMC@NLO + Pythia 8

 $40.9^{+3.9}_{-4.0}$ (scale) $^{+0.9}_{-0.5}$ (PDF) fb

 $ft\gamma$ - All decay modes All $ft\gamma$ events are considered (prod+ decay)

$$\sigma_{t\bar{t}\gamma}^{\text{Dilepton}} = 116.1^{+8.2}_{-7.7} \text{ fb} = 116.1 \pm 1.7 \text{ (stat)}^{+8.0}_{-7.6} \text{ (syst) fb}$$

Syst. uncertainties (most relevant)

Stat: 3.3%, MC stat: 1.5%, $t\bar{t}\gamma$ prod. PS 3.7%, Experimental jet unc: 3.0%, Experimental B-tagging unc: 2.1%

$\begin{aligned} & \mathcal{L}_{t\bar{t}X} = e\bar{t} \left[\gamma^{\mu} \left(C_{1,V}^{X} + \gamma_{5} C_{1,A}^{X} \right) + \frac{i\sigma^{\mu\nu}q_{\nu}}{m_{t}} \left(C_{2,V}^{X} + \gamma_{5} C_{2,A}^{X} \right) \right] t X_{\mu} \\ & C_{2,V}^{Z} = \frac{v^{2}m_{t}}{\sqrt{2}c_{w}s_{w}m_{Z}\Lambda^{2}} \Re \left[C_{tZ} \right], \quad C_{2,A}^{Z} = \frac{v^{2}m_{t}}{\sqrt{2}c_{w}s_{w}m_{Z}\Lambda^{2}} \Im \left[C_{tZ} \right] \\ & C_{2,V}^{\gamma} = \frac{\sqrt{2}vm_{t}}{\sqrt{2}c_{w}s_{w}m_{Z}\Lambda^{2}} \Re \left[C_{tZ} \right], \quad C_{2,A}^{\gamma} = \frac{\sqrt{2}vm_{t}}{\sqrt{2}c_{w}s_{w}m_{Z}\Lambda^{2}} \Im \left[C_{tZ} \right] \\ & C_{2,V}^{\gamma} = \frac{\sqrt{2}vm_{t}}{e\Lambda^{2}} \Re \left[C_{t\gamma} \right], \qquad C_{2,A}^{\gamma} = \frac{\sqrt{2}vm_{t}}{e\Lambda^{2}} \Im \left[C_{t\gamma} \right], \end{aligned}$

Wilson coe	fficient	68% CI (exp.)	95% CI (exp.)	68% CI (obs.)	95% CI (obs.)	Best-fit
B[C]	$O(\Lambda^{-4})$ (marg.)	[-0.35, 1.9]	[-1.0, 2.7]	[-0.55, 1.9]	[-1.2, 2.8]	-0.21
$\Lambda[C_{tW}]$	$O(\Lambda^{-4})$ (indep.)	[-0.52, 0.60]	[-0.90, 0.98]	[-0.44, 0.46]	[-0.78, 0.84]	-0.01
S[C]	$O(\Lambda^{-4})$ (marg.)	[-1.1, 1.1]	[-1.9, 2.0]	[-0.95, 0.95]	[-1.8, 1.8]	-0.01
	$O(\Lambda^{-4})$ (indep.)	[-0.58, 0.56]	[-0.96, 0.94]	[-0.48, 0.44]	[-0.84, 0.80]	-0.01
B[C.p]	$O(\Lambda^{-4})$ (marg.)	[-0.20, 1.0]	[-0.58, 1.5]	[-0.30, 1.0]	[-0.66, 1.5]	-0.13
24[CIB]	$O(\Lambda^{-4})$ (indep.)	[-0.31, 0.31]	[-0.51, 0.52]	[-0.26, 0.23]	[-0.44, 0.44]	-0.03
ñ[C.n]	$O(\Lambda^{-4})$ (marg.)	[-0.58, 0.62]	[-1.1, 1.1]	[-0.50, 0.54]	[-0.96, 0.98]	-0.01
	$O(\Lambda^{-4})$ (indep.)	[-0.32, 0.31]	[-0.53, 0.51]	[-0.26, 0.24]	[-0.45, 0.44]	-0.01

- SMEFT interpreted as a function of the photon *p*T;
- Combination with *ftZ* using Z-boson spectra slightly improves the limits;

Observation of quantum entanglement with t events @ $\sqrt{s} = 13$ TeV

- <u>Data Sample</u>: proton-proton 140 fb⁻¹;
- <u>Spin correlation between the top-antitop quark</u>: probe the effects of quantum entanglement;
- If two particles are entangled, the quantum state of one particle cannot be described independently;
- <u>Quantum entanglement</u> is a key test of the SM and probe for BSM physics;
- Event selection:
- 2 leptons: e±µ±,e±e±,µ±µ±;
- 2 b-jets;
- High missing transverse energy;

Quantum Effects and Novel Observations

Nature 633 (2024) 542

<u>Two-qubit system whose spin quantum state</u> <u>is described by the spin density matrix *o*</u>

$$\rho = \frac{1}{4} \left[I_4 + \sum_i \left(B_i^+ \sigma^i \otimes I_2 + B_i^- I_2 \otimes \sigma^i \right) + \sum_{i,j} C_{ij} \sigma^i \otimes \sigma^j \right]$$

<u>Angular direction of each of these leptons is</u> <u>correlated with the direction of the spin</u>

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_{+}\mathrm{d}\Omega_{-}} = \frac{1 + \mathbf{B}^{+} \cdot \hat{\mathbf{q}}_{+} - \mathbf{B}^{-} \cdot \hat{\mathbf{q}}_{-} - \hat{\mathbf{q}}_{+} \cdot \mathbf{C} \cdot \hat{\mathbf{q}}_{-}}{(4\pi)^{2}}$$

Entanglement marker - Experimental approach

$$D = -3 \cdot \langle \cos \varphi \rangle$$

Measurement of Entanglement Observable (D)

• Angle between charged leptons in the rest frames of their parent top and antitop quarks.

For $340 < m(t\bar{t}) < 380 \text{ GeV}$

 $D = -0.537 \ \pm 0.002 \ [{
m stat.} \] \pm 0.019 \ [{
m syst.} \]$ Obs

 $D = -0.470 \ \pm 0.002 \ [{\rm stat.} \,] \pm 0.017 \ [{\rm syst.} \,] \quad \text{Exp}$

<u>Validation regions</u>: $380 < m(t\bar{t}) < 500 \text{ GeV}, m(t\bar{t}) > 500 \text{ GeV}$

Uncertainties:

- Signal modelling: 3.2 (3.2)%;
- Backgrounds: 0.9 (1.1)%
- total: 3.5 (3.6)%;
- This result deviates from the non-entanglement scenario by more than five sigmas;

Precise test of lepton flavour universality in W-leptonic decay

- <u>Data Sample</u>: proton-proton 140 fb⁻¹;
- <u>Assumption</u>: lepton flavour universality in the SM by analyzing the ratios of decay widths of particles into leptons (electrons, muons, and taus);
- Event selection: 2 leptons(e, μ): pT > 27.3 GeV, $|\eta| < 2.47$ (2.5); Events categorized into: $f\bar{t}$ and Z-boson decay ($Z \rightarrow \ell \ell$) based on dilepton invariant mass and b-tagged jet multiplicity;
- <u>Fit</u>: number of selected events to predictions based on the assumed cross-sections and efficiencies(via maximum likelihood fit)

Eur. Phys. J. C 84 (2024) 993

Object selection			
Electrons	$p_{\rm T} > 27.3 {\rm GeV}, \eta < 1.$	37 or $1.52 < \eta < 2.47$	
Muons	$p_{\rm T} > 27.3 {\rm GeV}, \eta < 2.5$		
b-tagged jets	$p_{\rm T} > 30.0 {\rm GeV}, \eta < 2.5, b$ -tagging DL1r 70%		
Event selection	$t\bar{t} \rightarrow \ell\ell b\bar{b} v\bar{v}$	$Z \rightarrow \ell \ell$	
Dilepton flavour $(\ell^+\ell^-)$	ее, еµ, µµ	<i>ее, µµ</i>	
Dilepton invariant mass	$m_{\ell\ell} > 30 \mathrm{GeV}$	$66\mathrm{GeV} < m_{\ell\ell} < 116\mathrm{GeV}$	
b-tagged jet multiplicity	1 or 2	-	
210 ⁷ ATLAS ↓ s=13 TeV, 140 fb ⁻¹ 0 ee m ₁ ·m ₂ >10 GeV	Data tī Wt Z+jets Dibson Mic Dilatop	ATLAS	

Event selection	Variable	Bins	Event count
$e\mu$ +1 or 2 <i>b</i> -tagged jets	N _{b-tag}	2	$N_1^{e\mu}, N_2^{e\mu}$
ee+1 b-tagged jet	$m_{\ell\ell}$	6	$N_{1,m}^{ee}$
ee+2 b-tagged jets	$m_{\ell\ell}$	6	$N^{ee}_{2,m}$
$\mu\mu$ +1 <i>b</i> -tagged jet	$m_{\ell\ell}$	6	$N_{1,m}^{\mu\mu}$
$\mu\mu$ +2 <i>b</i> -tagged jets	$m_{\ell\ell}$	6	$N_{2,m}^{\mu\mu}$
$Z \rightarrow ee \text{ or } \mu\mu$	channel	2	$N_Z^{ee}, N_Z^{\mu\mu}$

$\sigma_{t\bar{t}}$	=	$809.5 \pm 1.1 \pm 20.1 \pm 7.5 \pm 1.9$ pl
$\sigma_{Z \to \ell \ell}$	=	$2019.4 \pm 0.2 \pm 20.7 \pm 16.8 \pm 1.8$ pl
$R_{WZ}^{\mu/e}$	=	$0.9990 \pm 0.0022 \pm 0.0036$
$R_{Z}^{\mu\mu/ee}$	=	$0.9913 \pm 0.0002 \pm 0.0045$

Uncertainty [%]	$\sigma_{t\bar{t}}$	$\sigma_{Z \to \ell \ell}$	$R_{WZ}^{\mu/e}$	$R_{7}^{\mu\mu/ee}$
Data statistics	0.13	0.01	0.22	0.02
tī modelling	1.68	0.03	0.10	0.00
Top-quark $p_{\rm T}$ modelling	1.42	0.00	0.06	0.00
Parton distribution functions	0.67	0.68	0.15	0.03
Single-top modelling	0.65	0.00	0.05	0.00

 $R_W^{\mu/e} = R_{WZ}^{\mu/e} \sqrt{R_{Z-\text{ext}}^{\mu\mu/ee}} = 0.9995 \pm 0.0022 \,(\text{stat}) \pm 0.0036 \,(\text{syst}) \pm 0.0014 \,(\text{ext})$

- Consistent with the assumption of LFU;
- Most precise measurement to date;
- Smaller unc. from the previous world average;

Observation of *ft* production in p+Pb collisions in lepton+jets and dilepton channels at $\sqrt{s_{NN}} = 8.16$ TeV

- <u>Data Sample</u>: proton-lead 165 nb⁻¹ (2016);
- Measurement of the nuclear modification factor for *ft* pair production in p+Pb collisions;
- Event selection: Single leptonic: =1 lepton

 (electron or muon) with pT > 15 GeV and >= 4
 jets (>= 1 b-tagged jet);
 Dileptonic: =2 opposite-charge leptons with
 additional Invariant mass cuts and >= 2 jets;
- <u>Top-quark pair cross section</u>: observed with a significance higher than 5 sigma in both channels with a total uncertainty of 9%;

$$\sigma_{t\bar{t}} = 58.1 \pm 2.0 \text{ (stat.)} ^{+4.8}_{-4.4} \text{ (syst.) nb}$$

$p+Pb \sqrt{s_{NN}} = 8.16 \text{ TeV}$ ATLAS 165 nb⁻¹ Data total unc. Data stat. unc. MCFM TUJU21 MCEM nNNPDE30 MCFM nCTEQ15HQ MCFM EPPS21 CMS 8.16TeV p+Pb PRL 119 (2017) 242001 ATLAS+CMS 8TeV pp (extrap.) JHEP 07 (2023) 213 20 40 60 80 100 σ_ [nb]

JHEP 2411 (2024) 101

Source	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$		
Source	unc. up [%]	unc. down [%]	
Jet energy scale	+4.6	-4.1	
$t\bar{t}$ generator	+4.5	-4.0	
Fake-lepton background	+3.1	-2.8	
Background	+3.1	-2.6	

 µtt are consistent with the SM predictions.
 Confirms the observation of tt production in p+Pb collisions for the first time at the LHC;

$$R_{pA} = 1.090 \pm 0.039 \text{ (stat.)} ^{+0.094}_{-0.087} \text{ (syst.)}$$

- The measured value is found to be consistent with unity within the uncertainty.
- New way to constrain nPDFs in the high Bjorken-x;
- Input for upcoming measurements involving the extraction of QGP properties in Pb+Pb collisions;

Observation of *ft* production in Pb+Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

- <u>Data Sample</u>: lead-lead 1.9 nb⁻¹ (2015 and 2018);
- Investigate the presence of all quark flavors in the pre-equilibrium stage of the QGP;
- Event selection: =1 electron and =1 muon with m(eµ)> 30 GeV; >= 2 jets with pT ≥ 35 GeV;
- Centrality intervals using a Glauber model, focusing on the 0-80% (prevent photon-induced processes);

Production cross section

$$\sigma_{tar{t}} = 3.6^{+1.0}_{-0.9}\, ext{(stat.)}\,^{+0.8}_{-0.5}\, ext{(syst.)}\,\mu b$$

Observed (expected) significance: 5.0 (4.1);

arXiv: 2411.10186 - Submitted to Phys. Rev. Lett.

- <u>Total relative uncertainty</u>: 31%, primarily stat. unc.-limited data sample size;
- <u>Statistical</u>: 26%;
- <u>Systematic</u>: 18%;
- Good agreement with SM predictions; indicating the presence of all quark flavors in the pre equilibrium stage of QGP.

Conclusions

Precision Cross-Sections

• High-accuracy measurements of tt cross-section for 13 TeV: differential studies exploring top quark kinematics and spin correlations;

Single Top Quark Production

• Detailed studies of electroweak production modes tW,tb,ttZ and observation of rare tWZ production;

Higgs-Top Coupling

• Direct measurements of the Yukawa coupling strength and evidence of top-mediated Higgs production;

New Physics searches and HI Physics

- Strong portal do look for BSM physics;
- Top quark in pPb and PbPb collisions;

Conclusions

- Joint contributions with CMS to (have) refine(d) SM predictions;
- Complementary results enhance understanding of the top quark's role in electroweak symmetry breaking;

More to come ...

<u>Toponium</u>

- Hypothetical bound state of a *tī* pair analogous to quarkonium predicted in scenarios of strong coupling or near-threshold production;
- Sheds light on QCD at high energies and potential new interactions and provides constraints on top quark-antiquark dynamics in the threshold region;

Challenges to overcome at LHC/ HL-LHC

• Precise id algorithms, solid computational setup to deal with high pile-up, quality of data acquisition.

See public results at: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

Behind every "plot", we have:

- Physicists, engineers, technicians and support staff from around the world;
- One of the largest collaborative efforts ever attempted in science;

Dziękuję bardzo!

Thank you!

Muito obrigado!

Back-up slides

Measurement of single top-quark production in association with a W boson in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Phys.Rev.D 110 (2024) 7, 072010

Table of events - yield

	1j1b	2j1b	2j2b
Pre-fit tW	13000 ± 1400	11900 ± 1200	2000 ± 400
Pre-fit tī	28000 ± 4000	112000 ± 8000	43000 ± 4000
Pre-fit Z+jets	1130 ± 160	750 ± 100	38 ± 12
Pre-fit diboson	380 ± 80	570 ± 130	8.5 ± 1.3
Pre-fit non-prompt	140 ± 70	450 ± 220	54 ± 27
Pre-fit total prediction	43000 ± 5000	126000 ± 8000	45000 ± 4000
Post-fit tW	12500 ± 2000	11400 ± 2200	2000 ± 400
Post-fit tī	27400 ± 2000	110300 ± 2200	42100 ± 500
Post-fit Z+jets	1100 ± 120	750 ± 80	38 ± 6
Post-fit diboson	380 ± 80	570 ± 120	8.6 ± 1.1
Post-fit non-prompt	140 ± 70	450 ± 220	53 ± 27
Post-fit total prediction	41600 ± 210	123500 ± 400	44150 ± 210
Data	41 591	123 531	44 149

BDT Parameters

Region	Learning rate	Number of leaves	Minimum data in a leaf	Maximum depth
1j1b	0.2	20	50	4
2j1b	0.1	20	120	7
2j2b	0.2	20	50	4

Measurements of inclusive and differential cross-sections of $t\bar{t}\gamma$ production in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Category	Single-lepton channel	Dilepton channel
$t\bar{t}\gamma$ production	12450 ± 740	2400 ± 99
$t\bar{t}\gamma$ decay	13400 ± 3100	3100 ± 640
h-fake	3600 ± 1200	220 ± 82
e-fake	6900 ± 980	57.9 ± 7.0
$W\gamma$	2700 ± 1400	_
tWγ	1180 ± 580	290 ± 150
Other prompt γ	2500 ± 600	820 ± 170
Lepton fake	640 ± 110	-
Total	43900 ± 4600	6900 ± 710
Data	47767	7379

Combined results - Single Lepton

 $\sigma_{t\bar{t}\gamma \text{ production}} = 319 \pm 15 \text{ fb} = 319 \pm 4 \text{ (stat)}^{+15}_{-14} \text{ (syst) fb}$

Combined results - Dilepton

 $\sigma_{t\bar{t}\gamma} = 788^{+38}_{-37} \text{ fb} = 788 \pm 5 \text{ (stat)}^{+38}_{-37} \text{ (syst) fb}$

JHEP 10 (2024) 191

SMEFT Approach

Lagrangian for the ttX vertex (with $X = \gamma$, Z)

$$\mathcal{L}_{t\bar{t}X} = e\bar{t}\left[\gamma^{\mu}\left(C_{1,\mathrm{V}}^{X} + \gamma_{5}C_{1,\mathrm{A}}^{X}\right) + \frac{i\sigma^{\mu\nu}q_{\nu}}{m_{t}}\left(C_{2,\mathrm{V}}^{X} + \gamma_{5}C_{2,\mathrm{A}}^{X}\right)\right]tX_{\mu}$$

$$\begin{split} C_{2,\mathrm{V}}^{Z} &= \frac{v^2 m_t}{\sqrt{2} c_w s_w m_Z \Lambda^2} \Re \left[C_{tZ} \right], \quad C_{2,\mathrm{A}}^{Z} &= \frac{v^2 m_t}{\sqrt{2} c_w s_w m_Z \Lambda^2} \Im \left[C_{tZ} \right], \\ C_{2,\mathrm{V}}^{\gamma} &= \frac{\sqrt{2} v m_t}{e \Lambda^2} \Re \left[C_{t\gamma} \right], \qquad C_{2,\mathrm{A}}^{\gamma} &= \frac{\sqrt{2} v m_t}{e \Lambda^2} \Im \left[C_{t\gamma} \right], \end{split}$$

$$C_{tZ} = c_w \cdot C_{tW} - s_w \cdot C_{tB}$$
$$C_{t\gamma} = s_w \cdot C_{tW} + c_w \cdot C_{tB}.$$

tt + b-jets in e μ @ \sqrt{s} = 13 TeV

Fiducial phase space	Fiducial cross-sections [fb]			
	$\geq 3b$	$\geq 3b \geq 1l/c$	$\geq 4b$	$\geq 4b \geq 1l/c$
	143	87	22	14
Measured	± 1 (stat)	± 1 (stat)	±1 (stat)	± 1 (stat)
	± 12 (syst)	±8 (syst)	± 3 (syst)	± 2 (syst)
Powheg+Pythia 8 $t\bar{t}b\bar{b}$ (4FS)	132	78	23	14
Powheg+Pythia 8 $t\bar{t}b\bar{b}$ h_{bzd} (4FS)	129	74	21	13
POWHEG+PYTHIA 8 $t\bar{t}b\bar{b}$ dipole (4FS)	128	71	22	13
Powheg+Pythia 8 $t\bar{t}b\bar{b}$ p_{T}^{hard} (4FS)	129	68	21	12
Powheg+Herwig 7 $t\bar{t}b\bar{b}$ (4FS)	130	77	22	14
Sherpa $t\bar{t}b\bar{b}$ (4FS)	135	90	21	15
HELAC-NLO (off-shell) $e\mu + 4b$	<u></u> -1	<u></u>	20	-
Powheg+Pythia 8 tī (5FS)	120	74	18	11
Powheg+Herwig 7 tt (5FS)	128	75	18	11
MG5_AMC@NLO+Pythia8 tt (5FS)	122	72	18	11
MADGRAPH5_AMC@NLO+HERWIG7 tt (5FS)	110	66	13	8
Sherpa 2.2.12 <i>tī</i> (5FS)	124	73	16	10

