

Top-quark physics highlights from ATLAS

Daniel Ernani Martins Neto For the ATLAS Collaboration

XXXI Cracow Epiphany Conference, Kraków, 13/01/2025

Recent results shown today

Measurement of single top-quark production in association with a W boson in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector - Aad, Georges *et al* - *Phys.Rev.D* 110 (2024) 7, 072010 CERN-EP-2024-168

Measurement of $t\bar{t}$ production in association with additional *b*-jets in the $e\mu$ final state in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector - Aad, Georges *et al* - arXiv:2407.13473 - CERN-EP-2024-191 (Submitted to JHEP)

Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at $\sqrt{s} = 13$ TeV - Aad, Georges *et al* - JHEP 2206 (2022) 063 - CERN-EP-2022-003

Measurement of differential cross-sections in $t\bar{t}$ and $t\bar{t}$ +jets production in the lepton+jets final state in pp collisions at $\sqrt{s} = 13$ TeV using 140 fb⁻¹ of ATLAS data - Aad, Georges *et al* - *JHEP* 2408 (2024) 182 - CERN-EP-2024-163

Measurements of inclusive and differential cross-sections of $t\bar{t}\gamma$ production in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector - Aad, Georges et al - JHEP 10 (2024) 191 - CERN-EP-2024-052

Recent results shown today

- Search for flavour-changing neutral-current couplings between the top quark and the Higgs boson in multi-lepton final states in 13 TeV pp collisions with the ATLAS detector - Aad, Georges et al - Eur. Phys. J. C 84 (2024) 757 - CERN-EP-2024-070
 - Search for heavy right-handed Majorana neutrinos in the decay of top quarks produced in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector Aad, Georges *et al Phys. Rev. D* 110 (2024) 112004 CERN-EP-2024-154
- Search for same-charge top-quark pair production in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector Aad, Georges et al arXiv:2409.14982 CERN-EP-2024-226 (submitted to JHEP)
- A search for $tW \rightarrow tW$ scattering in the multi-leptonic final state $t\bar{t}Wj$ at $\sqrt{s} = 13$ TeV with the ATLAS detector with bounds on Effective Field Theory operators ANA-TOPQ-2019-18

Quantum Effects and Novel Observations

Observation of quantum entanglement with top quarks at the ATLAS detector - Aad, Georges et al - Nature 633 (2024) 542 - CERN-EP-2023-230

-

Recent results shown today

Higgs Boson and Top Quark Properties

Constraint on the total width of the Higgs boson from Higgs boson and four-top-quark measurements in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector - Aad, Georges *et al* - arXiv:2407.10631 -CERN-EP-2024-190 (Submitted to Phys. Lett. B)

Tests of Universality

Test of lepton flavour universality in W-boson decays into electrons and -leptons using pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector - Aad, Georges *et al* - CERN-EP-2024-315 (Submitted to JHEP)

Precise test of lepton flavour universality in *W*-boson decays into muons and electrons in *pp* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector - Aad, Georges *et al* - *Eur. Phys. J. C* 84 (2024) 993-CERN-EP-2024-063

Heavy ion measurement

Observation of tt⁻production in the lepton+jets and dilepton channels in p+Pb collisions $\sqrt{S_{NN}} = 8.16$ TeV with the ATLAS detector - Aad, Georges *et al* - *JHEP* 2411 (2024) 101 - CERN-EP-2024-097

Top quark physics: State of art

- Is the most massive of all known elementary particles, with a mass of approximately 173 GeV/c² and carries an electric charge of $+\frac{2}{3}e$.
- Its discovery in 1995 by the CDF and DØ collaborations at Fermilab completed the quark sector of the SM.

Decay Characteristics: It decays predominantly into a W boson and a bottom quark (b), with a mean lifetime of about 5×10^{-25} seconds, decaying before it can hadronize.

Branching ratio of top decay

Top quark physics: State of art

- Given the actual center-of-mass energy of the LHC, gluons dominate the PDFs of the colliding protons;
- tt production is the dominant top quark production;
- The inclusive tt cross section allows to test QCD predictions and constraining parameters;
- The final state topology is given in term of W-boson decay mode;

 $W \rightarrow lv (\sim 30\%) / qq' (\sim 70\%)$

Measurement of single top-quark production in association with a W boson in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

- **<u>Data Sample</u>**: 140 fb⁻¹ @ √s = 13 TeV (2015-2018);
- <u>Event Selection</u>: Focused on events with two charged oppositely leptons with lower pT threshold of
- Electron: 24 GeV (26 GeV);
- Muons: 20 GeV (26 GeV);
- at least one jet identified as originating from a b-quark;
- <u>Analysis Technique</u>: Multivariate discriminant to distinguish the tW signal from the dominant tt background;
- Final states: events with exactly one selected jet that is also b-tagged (denoted 1j1b), events with exactly two selected jets one of which is b-tagged (2j1b), and events with exactly two jets where each are *b*-tagged (2j2b);

Cross section measurements

Phys.Rev.D 110 (2024) 7, 072010

<u>MC simulation</u> for signal and background;

<u>tt and tW modelling: PowHegBoxv2@NLO</u>

	1j1b	2j1b	2j2b
Pre-fit tW	13000 ± 1400	11900 ± 1200	2000 ± 400
Pre-fit tī	28000 ± 4000	112000 ± 8000	43000 ± 4000
Pre-fit Z+jets	1130 ± 160	750 ± 100	38 ± 12
Pre-fit diboson	380 ± 80	570 ± 130	8.5 ± 1.3
Pre-fit non-prompt	140 ± 70	450 ± 220	54 ± 27
Pre-fit total prediction	43000 ± 5000	126000 ± 8000	45000 ± 4000
Post-fit tW	12500 ± 2000	11400 ± 2200	2000 ± 400
Post-fit tī	27400 ± 2000	110300 ± 2200	42100 ± 500
Post-fit Z+jets	1100 ± 120	750 ± 80	38 ± 6
Post-fit diboson	380 ± 80	570 ± 120	8.6 ± 1.1
Post-fit non-prompt	140 ± 70	450 ± 220	53 ± 27
Post-fit total prediction	41600 ± 210	123500 ± 400	44150 ± 210
Data	41 591	123 531	44 149

CÉRN

BDTs : separate the signal from the dominant tt background.

Region	Learning rate	Number of leaves	Minimum data in a leaf	Maximum depth
1j1b	0.2	20	50	4
2j1b	0.1	20	120	7
2j2b	0.2	20	50	4

Results: Inclusive cross-section for tW production

 $\mu_{tW} = 0.95^{+0.19}_{-0.18} \qquad \mu_{t\bar{t}} = 0.99$

$$\sigma_{tW} = 75^{+15}_{-14} \text{ pb} = 75 \pm 1 \text{ (stat.)}^{+15}_{-14} \text{ (syst.)} \pm 1 \text{ (lumi.) pb}$$

- Wtb Vertex Constraint: left-handed form factor at the Wtb vertex times CKM matrix element |fLvVtb| = 0.97 ± 0.10;
- This precise measurement enhances our understanding of electroweak interactions involving the top quark and provides stringent tests of the SM.

Measurement of $t\bar{t}$ production in association with additional *b*-jets in the $e\mu$ final state in proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

- **Data Sample**: Utilized 140 fb⁻¹ @ √s = 13 (2015-2018);
- <u>Event Selection</u>:
- For electrons: *p*T = 26, 60 and 140 GeV;
- For muons the thresholds were *p*T = 26 and 50 GeV
- Isolation requirements.
- **<u>Final states:</u>** tt+b-jets: fiducial cross-sections;
- <u>tt event production</u>: PowhegBox v2 heavy-quark (hvq) at NLO with NNPDF3.0NLO;
- <u>Backgrounds:</u> ttZ, ttW,ttH (prompt leptons), *tWZ*, *tWH*, *tHb j*, *tZ* and tttt (rare SM processes). To assess the interference between *tW* and tt production, the diagram removal scheme is applied;

Cross section measurements arXiv:2407.13473

W bosons decay leptonically

tt+b-jets final state

- two oppositely charged leptons ($e \pm \mu \mp$);
- At least 3 or 4 b-jets;

Extraction of fiducial cross sections

 Data-driven correction factors for flavour composition of additional jets in tt events: mis-tagged jets in *ttc* and *ttl* events contribute as significant background to the *tt+b-jets* process.

	Inclusive region Global approach	Regions in terms of jet multiplicity and third-highest- p_T jet- p_T Kinematic-dependent approach			
	(nominal)	(systematic)			
Category	$\geq 3j \geq 2b@77\%$	$3j \ge 2b@77\%$	$\geq 4j \geq 2b@77\%$		
	$\geq 25 \text{ GeV}$	$ 25-35 \text{ GeV} 35-50 \text{ GeV} \ge 50 \text{ GeV}$	$ 25-50 \text{ GeV} 50-75 \text{ GeV} \ge 75 \text{ GeV}$		
tīb	$\geq 3 b$ -jets	$\geq 3 b$ -jets	-		
tībex	-	1-1	exactly 3 b-jets		
tībb	-	-	$\geq 4 b$ -jets		
tīc	$< 3 b$ -jets and $\geq 1 c$ -jet	$< 3 b$ -jets and $\geq 1 c$ -jet	$< 3 b$ -jets and $\geq 1 c$ -jet		
tīl	events that do not meet above criteria	events that do not meet above criteria	events that do not meet above criteria		

Best-fit values of the $t\overline{t}b$, $t\overline{t}b_{ex}$, $t\overline{t}b$ b, $t\overline{t}c$

	Fitted values of scale factors				Туре	
Regions	α_b^s	α_{bex}^s	α_{bb}^{s}	α_c^s	α_l^s	
$\geq 3j \geq 2b; \geq 25 \text{ GeV}$	1.20 ± 0.03	-	-	1.62 ± 0.09	0.92 ± 0.04	Global
$3j \ge 2b; (25-35) \text{ GeV}$	1.40 ± 0.15	-	-	1.99 ± 0.42	0.98 ± 0.08	
$3j \ge 2b; (35-50) \text{ GeV}$	1.30 ± 0.11	-	-	1.74 ± 0.27	0.77 ± 0.11	
$3j \ge 2b; \ge 50 \text{ GeV}$	1.26 ± 0.12	-	-	1.05 ± 0.27	1.09 ± 0.15	Kinematic
$\geq 4j \geq 2b;$ (25–50) GeV	_	1.31 ± 0.10	1.15 ± 0.14	1.93 ± 0.11	0.92 ± 0.01	dependen
$\geq 4j \geq 2b;$ (50–75) GeV	_	1.10 ± 0.09	1.20 ± 0.10	1.64 ± 0.09	0.86 ± 0.01	
$\geq 4j \geq 2b; \geq 75 \text{ GeV}$	_	1.10 ± 0.10	1.09 ± 0.10	1.25 ± 0.10	0.83 ± 0.02	

Process	$\geq 2j, 2b@77\%$	$\geq 3j, 3b@77\%$	$\geq 4j, \geq 4b@77\%$
$t\bar{t}$ +b-jets	4100 ± 790	3550 ± 650	474 ± 99
tīc	11600 ± 2200	2190 ± 430	57 ± 15
tīl	263000 ± 33000	2080 ± 440	25 ± 15
Wt	9100 ± 1800	227 ± 94	14 ± 11
tīV	740 ± 230	94 ± 30	16.3 ± 5.1
tīH	180 ± 22	108 ± 13	37.2 ± 5.3
Non-prompt lepton	340 ± 210	37 ± 20	10.9 ± 6.1
Z/γ^* +jets	96 ± 38	3.4 ± 1.4	0.15 ± 0.09
Diboson	85 ± 43	3.0 ± 1.5	0.11 ± 0.07
Others	41 ± 20	16.4 ± 8.2	6.4 ± 2.9
Total predicted	290000 ± 35000	8300 ± 1300	640 ± 120
Observed	281213	10235	798

		Fiducial cross	-sections [fb	1
Fiducial phase space	$\geq 3b$	$\geq 3b \geq 1l/c$	$\geq 4b$	$\geq 4b \geq 1l/c$
	143	87	22	14
Measured	± 1 (stat)	± 1 (stat)	± 1 (stat)	± 1 (stat)
	± 12 (syst)	± 8 (syst)	±3 (syst)	± 2 (syst)
Powheg+Pythia 8 $t\bar{t}b\bar{b}$ (4FS)	132	78	23	14
Powheg+Pythia 8 $t\bar{t}b\bar{b}$ h_{bzd} (4FS)	129	74	21	13
POWHEG+PYTHIA 8 $t\bar{t}b\bar{b}$ dipole (4FS)	128	71	22	13
POWHEG+PYTHIA 8 $t\bar{t}b\bar{b}$ p_{T}^{hard} (4FS)	129	68	21	12
Powheg+Herwig 7 $t\bar{t}b\bar{b}$ (4FS)	130	77	22	14
Sherpa $t\bar{t}b\bar{b}$ (4FS)	135	90	21	15
HELAC-NLO (off-shell) $e\mu + 4b$	-	-	20	-
Powheg+Pythia 8 $t\bar{t}$ (5FS)	120	74	18	11
Powheg+Herwig 7 $t\bar{t}$ (5FS)	128	75	18	11
MG5_AMC@NLO+Pythia8 tī (5FS)	122	72	18	11
MADGRAPH5_AMC@NLO+HERWIG7 tt (5FS)	110	66	13	8
Sherpa 2.2.12 <i>tī</i> (5FS)	124	73	16	10

Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at $\sqrt{s} = 13$ TeV

- **<u>Data Sample</u>**: **139** fb⁻¹ @ √s = 13 TeV;
- <u>Event Selection</u>:
- PV with at least two associated tracks with pT>0.5 GeV;
- **Electrons:** ET > 27GeV and pass the 'Tight' likelihood-based requirement with $|\eta| < 2.47$ outside $(1.37 < |\eta| < 1.52)$.
- Muons: pT > 27 GeV and |η|<2.5, 'Medium' identification requirements and 'Tight' isolation requirements;
- <u>Final states:</u> one selected lepton, at least one top-tagged jet and at least two b-tagged jets;

Cross section measurements

JHEP 2206 (2022) 063 - CERN-EP-2022-003

- <u>tt event production</u>: top-quark pair production where the hadronically decaying top quark has transverse momentum greater than 355 GeV and the other top quark decays into *lvb*;
- <u>Background estimate</u>
- Most dangerous: tW single top quark production and W+jets production
- Least important: (ttV,ttH, Z+jets, diboson production);

 <u>Cross-section</u> is measured differentially as a function of variables characterising the tt system and additional radiation in the events. Comparison with MC, also at parton-level calculation at NNLO;

Fiducial requirements:

Electrons, muons and neutrinos not originating, either directly or through a τ -lepton decay-> prompt; Particle-level: small-R jets with $|\eta| < 4.5$ with pT > 26 GeV and $|\eta| < 2.5$, large-R jets pT > 355 GeV and $|\eta| < 2.0$ in high pT order;

- Observables: m(tt),y(tt),m(t),y(t), Δφ(bι,th)
- <u>Fiducial cross section</u>
 σ = 1.267 ± 0.005 ± 0.053 pb

CERN

Limits on EFT operators

Differential cross section - Second degree - 2 Wilson Coeff.

$$\sigma^{j}(C_{tG}, C_{tq}^{(8)}) = p_{0}^{j} + p_{1}^{j} \cdot C_{tG} + p_{2}^{j} \cdot C_{tq}^{(8)} + p_{3}^{j} \cdot (C_{tG})^{2} + p_{4}^{j} \cdot (C_{tq}^{(8)})^{2} + p_{5}^{j} \cdot C_{tG} \cdot C_{tq}^{(8)}$$

Me	Measurement of differential cross-sections in $t\bar{t}$ and		Cross section measurements			
$t\bar{t}+j$	ets production in the lepton+jets final state in pp	cross section measurements				
col	lisions at $\sqrt{s} = 13$ TeV using 140 fb ⁻¹ of ATLAS		JHEP 2408	(2024) 182		
	data		<u>Obser</u>	vables		
•	<u>Data Sample</u> : 140 fb ⁻¹ @ $\int s = 13$ TeV;	tt :pT(jet-V	V1), pT(jet-\	N2), jet-rad	1(highest	
•	<u>Event Selection</u> :	pT jet out	side the ttba	ar system);		
-	PV(>=two associated tracks with pT>0.5 GeV,	tt+1jet:p1	(iet-rad1).	φ(iet-W1-ie	t-rad1).	
	z₀sin 0 < 0.5 mm and d₀ / 0 (d₀) < 5);	m(ff-iet-ra	d1).	TU		
-	Electrons: $pT>27GeV$ with $ \eta <2.47$ outside	tt+2iots	λ	et_rad2)		
	(1.37< ŋ < 1.52);					
-	Muons: pT > 27 GeV and ŋ <2.5;			Yield for channel		
•	Final states: $e+jets$, $\mu + jets$.	Process	$t\bar{t}$ inclusive	$t\bar{t}$ +1jet	$t\bar{t}$ +2jets	
•	Background estimate:	$t\bar{t}$	$4 \ 120 \ 000 \ \pm \ 690 \ 000$	$2\;110\;000\pm420\;000$	$860\ 000\ \pm\ 240\ 000$	
-	Single top in t- and s- channel with a W	single-top quark	$194\ 000\ \pm\ 33\ 000$	$82\ 000\ \pm\ 19\ 000$	$28 900 \pm 8 300$	
	boson(POWHEG-BOX v2 @ NNPDF3.0NLO PDF - Pythia	W+jets	$103\ 000\ \pm\ 53\ 000$	$44\ 000 \pm 23\ 000$	$17\ 200 \pm 8\ 900$	
	8.230 - A14 tune)	fakes	66000 ± 33000	$30\ 000 \pm 15\ 000$	$12\ 000\ \pm\ 6\ 000$	
1.1	W +iets and Z+iets @ NNLO	Z+jets	$37\ 000 \pm 19\ 000$	$14\ 600\ \pm\ 7\ 600$	$5\ 400\ \pm\ 2\ 800$	
-	Diboson production: (WW 77 W7) - (had + lep) decay:	$t\bar{t}V$	$13\ 100 \pm 1\ 100$	$10\ 300\pm 900$	$6\ 470 \pm 660$	
•	Unfolding method: RoolInfold - Repeated applications	diboson	$6\ 000\ \pm\ 600$	2820 ± 350	$1\ 220\ \pm\ 180$	
•	of the Bayes' theorem are used to invert the unfolding	ttH	$5\ 460\ \pm\ 320$	$4\ 710 \pm 310$	$3\ 260\ \pm\ 270$	
	matrix.	Total SM prediction	$4 \ 540 \ 000 \pm 710 \ 000$	$2\ 300\ 000\ \pm\ 440\ 000$	$940\ 000\ \pm\ 240\ 000$	
		Data	4 440 110	2 240 410	924 791	
CERN	Daniel Ernani Top-quark physics highlights from ATLAS		13-17 Jan	uary 2025	13	

Measurements of inclusive and differential cross-sections of $t\bar{t}\gamma$ production in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

JHEP 10 (2024) 191 - CERN-EP-2024-052

 Measurements of the associated production of a top quark pair and a photon (tt
γ) in proton-proton collisions at a center-of-mass energy of 13 TeV with 140 fb⁻¹;

Cross section measurements

- The inclusive fiducial cross-section for the ttγ production process;
- Differential cross-sections are measured for various kinematic variables in both single-lepton and dilepton decay channels.
- The measurements are interpreted in the context of the Standard Model Effective Field Theory (SMEFT), setting limits on parameters related to the electroweak dipole moments of the top quark.
- The measured cross-sections and differential distributions are compared with predictions from NLO simulations using MadGraph5_aMC@NLO interfaced with Pythia 8 and Herwig 7.

Single-Lepton Channel Selection

- Exactly one photon, exactly one isolated lepton (electron or muon) with pT > 25 GeV and at least four jets, with at least one jet identified as a *b*-jet (*b*-tagged);
- Jets with pT > 25 GeV with anti-kt algorithm (ΔR = 0.4); One b-jet with W.P. 70%;
- Events are rejected if there are additional lepton candidates with pT > 7 GeV;
- Invariant mass of the lepton and photon must be outside a ±5 GeV window around Z mass;
- Photon: $E_T > 20$ GeV, pseudorapidity range $|\eta| < 2.37$, excluding the transition region between the barrel and endcap calorimeters (1.37 < $|\eta| < 1.52$);
- Method:multi-class NN is used to separate the $7t\gamma$ production signal from the background;

Category	Single-lepton channel	Dilepton channel
$t\bar{t}\gamma$ production	12450 ± 740	2400 ± 99
$t\bar{t}\gamma$ decay	13400 ± 3100	3100 ± 640
h-fake	3600 ± 1200	220 ± 82
e-fake	6900 ± 980	57.9 ± 7.0
$W\gamma$	2700 ± 1400	-
tWγ	1180 ± 580	290 ± 150
Other prompt γ	2500 ± 600	820 ± 170
Lepton fake	640 ± 110	-
Total	43900 ± 4600	6900 ± 710
Data	47767	7379

Fiducial $t\bar{t}\gamma$ cross-section

 $\sigma_{t\bar{t}\gamma \text{ production}}^{\text{Single lepton}} = 288^{+21}_{-19} \text{ fb} = 288 \pm 5(\text{stat})^{+20}_{-19}(\text{syst}) \text{ fb}.$

Fiducial $fr \gamma$ cross-section- All decay modes

$$\sigma_{t\bar{t}\gamma}^{\text{Single lepton}} = 704^{+49}_{-46} \text{ fb} = 704 \pm 5 \text{ (stat)}^{+49}_{-46} \text{ (syst) fb}$$

Dilepton Channel Selection

- Exactly one photon, exactly two isolated oppositely charged leptons (electron or muon) with pT > 25 GeV, with at least two jets identified as a *b*-jet (*b*-tagged);
- Jets with pT > 25 GeV with anti-kt algorithm (ΔR = 0.4); One b-jet with W.P. 70%;
- Invariant mass of the lepton pair smaller than 15 GeV are rejected to suppress contributions from low-mass Drell-Yan processes;
- MET > 30 GeV;
- Photon: ET > 20 GeV, pseudorapidity range

 |η| < 2.37, excluding the transition region
 between the barrel and endcap calorimeters
 (1.37 < |η| < 1.52);
- Method: multi-class NN is used to separate the tt_γ production signal from all backgrounds;

Fiducial $\pi\gamma$ cross-section

$$\sigma_{t\bar{t}\gamma \text{ production}}^{\text{Dilepton}} = 45.7^{+3.3}_{-3.1} \text{ fb} = 45.7^{+1.4}_{-1.3} (\text{stat})^{+3.0}_{-2.8} (\text{syst}) \text{ fb}$$

Combined results - Single Lepton

$$\sigma_{t\bar{t}\gamma \text{ production}} = 319 \pm 15 \text{ fb} = 319 \pm 4 \text{ (stat)}^{+15}_{-14} \text{ (syst) fb}$$

Fiducial $free \gamma$ cross-section - All decay modes

$$\sigma_{t\bar{t}\gamma}^{\text{Dilepton}} = 116.1^{+8.2}_{-7.7} \text{ fb} = 116.1 \pm 1.7 \text{ (stat)} ^{+8.0}_{-7.6} \text{ (syst) fb}$$

Combined results - Dilepton

$$\sigma_{t\bar{t}\gamma} = 788^{+38}_{-37} \text{ fb} = 788 \pm 5 \text{ (stat)}^{+38}_{-37} \text{ (syst) fb}$$

Search for flavour-changing neutral-current couplings between the top quark and the Higgs boson in multi-lepton final states in 13 TeV *p p* collisions with the ATLAS detector

- Following the discovery of the Higgs boson at the LHC in 2012, various properties of the Higgs have been studied, including potential flavor-changing neutral currents (FCNC) involving top quarks;
- This analysis aims to investigate the FCNC processes in Higgs production, specifically targeting the tHq interactions, Data sample: (2015-2018) with an integrated luminosity of 140.1 fb⁻¹;
- Event Selection: at least one vertex with two tracks with pT > 0.5 GeV;
- At least one lepton with **pT>28 GeV**;
- Electrons: pT>10 GeV and |η|<2.47(*);
- Muons: pT>10 GeV and |η|<2.5;
- Jets: pT>20 GeV and|η|<2.5

Signal region

SR2IDec: $N_{jets} \geq 4$ (exactly 1 *b-tag*)

SR2IProd: $N_{jets} \leq 3$ (exactly 1 *b-tag*)

	SR2ℓDec	SR2ℓProd	SR3 <i>l</i> Dec	SR3ℓProd
N _{jets}	≥ 4	≤ 3	≥ 3	≤ 2
$N_{b-\text{tags}}$	= 1	= 1	= 1	= 1
$p_{\mathrm{T}}(\ell_1)$	$\geq 12 \text{GeV}$	$\geq 16 \text{GeV}$	$\geq 20 \text{GeV}$	$\geq 20 \text{GeV}$
$p_{\mathrm{T}}(\ell_2)$	_	-	$\geq 16 \text{GeV}$	$\geq 16 \text{GeV}$
$ m(e,e)-m_Z $	$\geq 10 \text{GeV}$	$\geq 10 \text{GeV}$	-	-

Background region

	$CR2\ell HFe$	$CR2\ell HF\mu$	CR3ℓHFe	$CR3\ell HF\mu$
N _{jets}	<i>≤</i> 3	≤ 3	≥ 1	≥ 1
N _{b-tags}	≥ 1	≥ 1	= 1	= 1
ℓ_0 flavour	μ	μ	_	_
ℓ_1 flavour	е	μ	_	_
$p_{\mathrm{T}}(\ell_1)$	< 16 GeV	< 16 GeV	$\geq 20 \text{GeV}$	$\geq 20 \text{GeV}$
ℓ_2 flavour	-	_	е	μ
$p_{\mathrm{T}}(\ell_2)$	_	_	< 16 GeV	< 16 GeV

 No significant evidence for FCNC couplings was observed, indicating results are compatible with the SM;

Upper limits at 95% Confidence Level (CL) were established on the branching ratios

- B(t \rightarrow Hu) < 2.8 × 10⁻⁴ (observed), 3.0 × 10⁻⁴ (expected)
 - $B(t \rightarrow Hc) < 3.3 \times 10^{-4}$ (observed), 3.8×10^{-4} (expected)

Limits on the absolute value of the dimension-6 Wilson coefficients

- |Cuφ| < 0.78 (observed), 0.64 (expected)

Results combined with other ATLAS searches: $H \rightarrow \tau \tau$, *bb*, $\gamma \gamma$;

Event selection: two light leptons (electrons or muons) of the same charge and flavor; <u>Trigger Criteria</u>: The leading lepton must have a transverse momentum (pT) greater than 27 GeV; <u>Jet Requirements</u>: At least two b-tagged jets and at least four non-b-tagged jets are required; <u>Invariant Mass</u>: invariant mass of the lepton pair must higher than 12 GeV (background from Drell-Yan);

Signal and Control Regions

- <u>Signal Regions (SR)</u>: Defined for both ee and µµ channels, with tighter isolation criteria and invariant mass requirements to minimize background contamination.
- <u>Control Regions (CR)</u>: Established to study specific background processes, ensuring less than 1% signal contamination.
- <u>Multivariate Analysis</u>: BDTs is performed to enhance the separation between signal and background events. Key input variables include the invariant mass of the lepton pair and missing transverse momentum.

m_N [GeV]	15	25	35	40	45	50	55	60	70	75
Exp. $\sigma_{e,N}$ [fb]	21	9.8	7.3	6.9	6.9	6.7	7.2	8.5	18	36
Obs. $\sigma_{e,N}$ [fb]	26	12	8.2	7.8	10	9.7	10	12	26	52
Exp. $\sigma_{\mu,N}$ [fb]	9.3	5.0	3.7	3.5	3.2	3.1	3.2	4.0	8.2	15
Obs. $\sigma_{\mu,N}$ [fb]	7.5	3.9	2.8	2.6	3.2	3.1	3.3	4.2	8.3	15
Exp. $\sigma_{\tau,N}$ [pb]	8.9	2.6	2.1	1.7	1.8	1.8	2.0	3.7	7.0	19
Obs. $\sigma_{\tau,N}$ [pb]	13	3.6	2.7	2.3	2.5	2.2	3.2	5.5	7.3	20

No Significant Excess: of events above the expected background. The presence of HNLs in the studied mass range is not supported by the data.

<u>Upper limits</u> obtained in this analysis are about one order of magnitude weaker than those from previous ATLAS searches for HNLs in W boson decays.

This study extends the search region for the first two generations of leptons beyond 50 GeV, probing HNL masses up to 75 GeV.

Search for same-charge top-quark pair production in *p p* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

- Data: The analysis utilized 140 fb⁻¹ of proton-proton collision data at a center-of-mass energy of 13 TeV;
- Study focused on events compatible with the production of two top quarks with the same electric charge, specifically -dilepton final state characterized by two same-sign leptons, two b-hadrons, and missing transverse momentum.
- Signal and Background Modeling: The signal samples were simulated using effective field theory (EFT) with three Wilson coefficients associated with operators O(1)^{¬u} and O(1)^{¬u}, and O(8)^{¬u}.
 - The dominant background processes included **ItW**, **ItZ**, and **ItH**, with normalization constrained through likelihood fits to data.

Same-charge dilepton events e±µ±,e±e±,µ±µ±

- Require **two same-charge leptons** (ee or µµ) with high transverse momentum (pT). Isolation criteria helps reduce contamination from non-prompt leptons.
- <u>Multiple jets</u>: at least one b-tagged jet, to identify a top-quark decays.
- A threshold is imposed on MET(for neutrinos);
- Fake Lepton Backgrounds: Suppressed using isolation and impact parameter cuts.
- <u>Charge Misidentification:</u> Mitigated using charge-flip probabilities, especially in ee events.
- <u>SM Processes:</u> Dominant contributions (e.g., ttW) modeled using MC simulations.
- <u>NN is trained</u> to optimize signal-to-background separation: multivariate correlations between observables: pT, jet and b-jet mult. and MET

- <u>No Significant Signal Observed</u> No evidence of same-charge top-quark pair production.
- Upper Limit on Cross Section
 - **σ(tt/tŧŧ) < 1.6** fb (95% CL).
- Limits on Wilson Coefficients (SMEFT):
 - \circ Operators: O(1)tu, O(1)Qu, O(8)Qu.
 - Tightened constraints on BSM couplings.
- <u>No deviations</u> from SM observed.
- <u>Strong constraints on models</u> predicting enhanced same-charge top-quark production.

A search for $tW \rightarrow tW$ scattering in the multi-leptonic $t\bar{t}Wj$ final state at $\sqrt{s} = 13$ TeV with the ATLAS detector with bounds on Effective Field Theory operators

- The search uses same-sign pairs of electrons and muons together with jets, out of which at least one is b-tagged;
- Dataset: Full Run 2 (2015-2018) with 140 fb-1;

	Preselection	Signal Region
Leptons	2 same-sign leptons	2 same-sign leptons
$p_{\mathrm{T}}(l_0)$	> 28 GeV	> 80 GeV
$p_{\mathrm{T}}(l_1)$	> 20 GeV	> 40 GeV
$\eta(e)$	<2.0	<2.0
$\eta(\mu)$	<2.5	<2.5
N (jets)	>=3	>=4
N (b-jets)	>=1	>=1
$p_{\mathrm{T}}(j_0)$	> 60 GeV	> 60 GeV
m _{ll}	>30 GeV	>125 GeV
Z veto (ee)	Applied	Applied
$\Delta \eta_i$	_	>2.0
$\sum p_{\mathrm{T}}(j)$	—	>250 GeV
Conversion radius	_	>50 mm

Signal region

Searches for new Physics

ttWj signature at the LHC

- 2 same-sign leptons and high jet multiplicity;
- Strong dependence in cross section in the presence of EFT coupling;

Backgrounds:

• ttW QCD and tt + fake leptons: estimated via data-driven technique;

Control Regions	3J-CR	$4J-lo\Delta\eta$ -CR	4J-hiΔη-CR	Conv-CR	CF-CR	3L-CR (ttZ)	3L-CR
Leptons	2 same-sign	2 same-sign	2 same-sign	2 same-sign (ee or $e\mu$)	2 same-sign ee	3 leptons	3 leptons
$p_{\mathrm{T}}(\ell_0)$	> 28 GeV	> 28 GeV	> 28 GeV	> 28 GeV	> 50 GeV	> 28 GeV	> 28 GeV
$p_{\mathrm{T}}(\ell_1)$	> 20 GeV	> 20 GeV	> 20 GeV	> 20 GeV	> 30 GeV	> 20 GeV	> 20 GeV
$p_{\mathrm{T}}(\ell_2)$	-	-	_	-		> 20 GeV	> 20 GeV
N(jets)	== 3	>= 4	>= 4	>= 4	>=3	>= 4	==3
N(b-jets)	>= 1	>= 1	>= 1	>= 1	>=1	>= 2	==1
$p_{\mathrm{T}}(j_0)$	_	>60 GeV	>60 GeV	>60 GeV	>60 GeV	>60 GeV	
m _{II}	> 160 GeV	> 30 GeV	> 30 GeV	> 30 GeV		OS AND > 81.1 GeV AND	
						< 101.1 GeV	
mee	< 81.1 GeV OR	< 81.1 GeV OR	< 81.1 GeV OR	> 81.1 GeV AND	> 81.1 GeV AND	_	
	> 101.1 GeV	> 101.1 GeV.	> 101.1 GeV	< 101.1 GeV	< 101.1 GeV		
SR-like cuts							
$-\Delta\eta_i$		$\Delta \eta_i < 2.0$	$\Delta \eta_i > 2.0$ AND NOT	$\Delta \eta_i < 2.0$			
$-\sum p_{\mathrm{T}}(j)$			$(\sum p_{\rm T}(j) > 250 \text{ GeV AND})$	$OR \sum p_T(j) < 250 \text{ GeV}$			
$-p_{\mathrm{T}}(\ell_0)$			$p_{\rm T}(\ell_0) > 80 {\rm GeV} {\rm AND}$				
$-p_{\mathrm{T}}(\ell_1)$			$p_{\rm T}(\ell_1) > 40 {\rm GeV} {\rm AND}$				
- mll			$m_{ll} > 125)$				
Conversion radius (e)	-	>=50 mm	>=50 mm	<50 mm	>=50 mm	-	-
Conv. invariant mass	-	—		<0.5GeV	-	_	—
E_T^{miss}	_	_	_	_	< 100 GeV	_	_

- Seven control regions;
- Fake leptons estimation via matrix method;

- SM signal process has a very low cross section compared to dominant QCD contribution;
- SM cross section: 47.7 fb

Upper limits at 95% C.L.

 $egin{aligned} \mu_{tar{t}\,Wj_{EW}} &< 4.555 \ \sigma_{tar{t}\,Wj_{EW}} &< 217.27~{
m fb} \end{aligned}$

- Set constraints in the couplings that would increase this cross section;
- Next step: Compare the EFT limits in this work with the existent limits on ttZ and ttW cross sections;

Observation of quantum entanglement with top quarks at the ATLAS detector

- The spin correlation between the top quark and antitop quark is used to probe the effects of quantum entanglement, in proton-proton (*pp*) collision events recorded with the ATLAS detector at a center-of-mass energy of 13 TeV;
- If two particles are entangled, the quantum state of one particle cannot be described independently;
- Quantum entanglement is a key test of the SM and probe for BSM physics;
- Data: 140 fb⁻¹ @ 13 TeV;
- Event selection: **e**±**µ**±,**e**±**e**±,**µ**±**µ**±
- <u>Two high-pT leptons;</u>
- <u>2 b-jets;</u>
- High missing transverse energy;

Quantum Effects and Novel Observations

<u>Two-qubit system whose spin quantum state</u> is described by the spin density matrix ρ

$$\rho = \frac{1}{4} \left[I_4 + \sum_i \left(B_i^+ \sigma^i \otimes I_2 + B_i^- I_2 \otimes \sigma^i \right) + \sum_{i,j} C_{ij} \sigma^i \otimes \sigma^j \right]$$

<u>Angular direction of each of these leptons is</u> <u>correlated with the direction of the spin</u>

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_{+}\mathrm{d}\Omega_{-}} = \frac{1 + \mathbf{B}^{+} \cdot \hat{\mathbf{q}}_{+} - \mathbf{B}^{-} \cdot \hat{\mathbf{q}}_{-} - \hat{\mathbf{q}}_{+} \cdot \mathbf{C} \cdot \hat{\mathbf{q}}_{-}}{(4\pi)^{2}}$$

Entanglement marker - Experimental approach

$$D = -3 \cdot \langle \cos \varphi \rangle$$

- Measurement of Entanglement Observable (D)
 - The study measures the observable D, inferred from the angle between charged leptons in the rest frames of their parent top and antitop quarks.

For $340 < m(t\overline{t}) < 380 \text{ GeV}$

 $D = -0.537 \pm 0.002$ [stat.] ± 0.019 [syst.] (-0.470 ± 0.002 [stat.] ± 0.017 [syst.])

This result deviates from the **non-entanglement scenario by more than five standard deviations**, providing strong evidence for entanglement.

For 380 < m(tt) < 500 GeV

 $D = -0.265 \pm 0.001$ [stat.] ± 0.019 [syst.] (-0.258 ± 0.001 [stat.] ± 0.019 [syst.])

For $m(t\overline{t}) > 500 \text{ GeV}$

 $D = -0.093 \pm 0.001$ [stat.] ± 0.021 [syst.] (-0.103 ± 0.001 [stat.] ± 0.021 [syst.])

Constraint on the total width of the Higgs boson from Higgs boson and four-top-quark measurements in *p p* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

- Production of four top quarks in multi-lepton final states using data from the LHC Run 2;
- Measure the cross-section of the tttt signal and compare it with SM predictions;
- <u>Multi-lepton final states:</u>
- Two leptons of the same electric charge or at least three leptons (electrons or muons).
- At least two b-tagged jets.
- Most dangerous backgrounds: tfW, tfZ, and tfH.
- Data-driven is employed to estimate and correct for fake/non-prompt lepton backgrounds and charge mis-assignment.
- Graph Neural Network (GNN) classifier implemented to enhance signal-background separation.

Higgs Boson and Top Quark Properties

- Observed significance of the tttt signal: 6.1
 σ, with an expected significance of 4.3σ;
- Measured tttt production cross-section: 22.5 fb, consistent with the SM prediction of 12.0 \pm 2.4 fb within 1.8 σ .

On-shell and off-shell measurements used as input for the total width measurement

Target processes	
Off-shell measurement $pp \rightarrow t\bar{t}t\bar{t}$	
On-shell measurement	Decay
ggF, VBF, WH, ZH, tTH, tH	$H \rightarrow \gamma \gamma$
$t\bar{t}H + tH$	$H \rightarrow b\bar{b}$
VBF	$H \rightarrow b\bar{b}$ $H \rightarrow b\bar{b}$
ggF, VBF, $WH + ZH$, $t\bar{t}H + tH$	$H \rightarrow ZZ$
ggF, VBF WH, ZH	$H \to WW$ $H \to WW$
ggF, VBF, $WH + ZH$, $t\bar{t}H + tH$	$H \to \tau \tau$
ggF+ttH+tH, VBF+WH+ZH Inclusive	$H \rightarrow \mu \mu$ $H \rightarrow Z \gamma$

- The observed **95% confidence level (CL)** upper limit on the total width of the **Higgs boson is 450 MeV**, which is approximately 110 times the Standard Model (SM) prediction of 4.1 MeV;
- The expected upper limit is 75 MeV, corresponding to about 18 times the SM prediction;
- When considering constraints on the Higgs-top Yukawa coupling from loop-induced processes, the observed upper limit on $\Gamma_{\rm H}$ decreases to 160 MeV, while the expected limit becomes 55 MeV.
- The best-fit value for the total width is reported as $\Gamma_{\rm H} = 86 (+110,-49) \text{ MeV}$, which is 2.0 σ away from the SM expectation. This discrepancy is primarily driven by a 1.8 σ difference between the data and the SM prediction in the four-top-quark measurement.
- Strong channel to investigate potential BSM physics;

Test of lepton flavour universality in *W*-boson decays into electrons and τ -leptons using *p p* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

- Measure the lepton flavor universality (LFU) by analyzing the ratio of branching fractions RT/e=B(W→TVT)/B(W→eve);
- Investigate potential deviations from the SM that could indicate new physics;

Event selection

- One tagged lepton (muon or electron) and one probe electron with opposite charges;
- At least two *b*-tagged jets to enhance signal purity.
- Application of a jet vertex tagger (JVT) to mitigate pile-up effects;
- Exclusion of events with invariant mass close to the Z to reduce background from Drell-Yan Z production;

Number of same-sign events in the $ee,\mu e,e\mu$ and $\mu\mu$ channels where the first lepton is the tag lepton and the second is the probe lepton

Number of events for µe channel

	$\mu e 7 < p_{\rm T} < 10 \text{ GeV}$	$\frac{\mu e}{10 < p_{\rm T} < 20 \text{ GeV}}$	$\frac{\mu e}{20 < p_{\rm T} < 250 \text{ GeV}}$
Prompt $e(t\bar{t})$	1278 ±28	13370 ±150	178000 ± 1000
$e \text{ from } \tau (t\bar{t})$	1092 ± 32	4490 ± 100	11670 ± 290
Prompt $e(Wt)$	34 ± 6	340 ± 60	5300 ± 900
<i>e</i> from τ (<i>Wt</i>)	28.0 ± 2.5	119 ± 16	380 ± 110
Prompt e (not from $t\bar{t}$ or Wt)	5.2 ± 1.5	23 ± 7	180 ± 50
$e \text{ from } Z \to \tau^+ \tau^-$	19.9 ± 0.4	85.4 ± 1.4	132.9 ± 2.2
Fake <i>e</i>	317 ± 22	380 ± 33	840 ± 60
Total predicted	2770 ± 40	18880 ± 120	$196500 \ \pm \ 400$
Data	2768	18783	196552

Number of events for ee channel

	<i>ee</i> 7 < p _T < 10 GeV	$ee \\ 10 < p_{\rm T} < 20 \text{ GeV}$	$ee \\ 20 < p_{\rm T} < 250 \text{ GeV}$
Prompt $e(t\bar{t})$	1238 ± 35	12210 ± 130	160300 ± 900
$e \text{ from } \tau (t\bar{t})$	1051 ± 30	4060 ± 100	10490 ± 260
Prompt $e(Wt)$	35 ± 7	320 ± 50	5000 ± 700
$e \text{ from } \tau (Wt)$	30 ± 4	116 ± 13	340 ± 100
$e \text{ from } Z \to e^+ e^-$	240 ± 50	1770 ± 120	12380 ± 200
Prompt e (not from $t\bar{t}$ or Wt)	11.7 ± 3.5	59 ± 17	560 ± 170
$e \text{ from } Z \to \tau^+ \tau^-$	19.7 ± 0.4	69.7 ± 0.9	105.3 ± 1.3
Fake e	302 ± 20	374 ± 32	810 ± 50
Total predicted	2930 ± 50	18970 ± 120	190000 ± 400
Data	2928	19047	189945

 The measured value of Rt/e was found to be consistent with the predictions of the SM, with a global fit p-value of 87%;

 $R_{\tau/e} = 0.975 \pm 0.012 \text{ (stat.)} \pm 0.020 \text{ (syst.)}$

For different pT bins					
$p_{\rm T}$ bin	$R_{ au/e}$				
$7 < p_{\rm T} < 10 {\rm GeV}$	$1.13 \pm 0.11 \text{ (stat)} \pm 0.07 \text{ (syst)}$				
$10 < p_{\rm T} < 20 {\rm GeV}$	0.93 ± 0.04 (stat) ± 0.02 (syst)				
$20 < p_{\rm T} < 250 { m GeV}$	0.98 ± 0.04 (stat) ± 0.02 (syst)				

Precise test of lepton flavour universality in *W*-boson decays into muons and electrons in *p p* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

- Testing the assumption of lepton flavour universality in the SM by analyzing the ratios of decay widths of particles into electrons, muons, and taus;
- Measure the inclusive top quark pair production cross-section and the Z boson decay to leptons;
 Event selection
- Exactly two leptons (electrons or muons) of opposite charges, with at least one lepton matched to a trigger.
- Electrons: p[□] > 27.3 GeV, |η| < 1.37 or 1.52 < |η| < 2.47;
- **Muons:** p^{\Box} > 27.3 GeV, $|\eta|$ < 2.5
- Events categorized into top quark pair production (tt) and Z boson decay ($Z \rightarrow \ell \ell$) based on dilepton invariant mass and b-tagged jet multiplicity.

Object selection				
Electrons	$p_{\rm T} > 27.3 {\rm GeV}, \eta <$	1.37 or $1.52 < \eta < 2.47$		
Muons	$p_{\rm T} > 27.3 {\rm GeV}, \eta < 2.5$			
b-tagged jets	$p_{\rm T} > 30.0 {\rm GeV}, \eta < 2.5, b$ -tagging DL1r 70%			
Event selection	$t\bar{t} \rightarrow \ell\ell b\bar{b}\nu\bar{\nu}$	$Z \to \ell \ell$		
Dilepton flavour $(\ell^+\ell^-)$	ее, еµ, µµ	<i>ее, µµ</i>		
Dilepton invariant mass	$m_{\ell\ell} > 30 \mathrm{GeV}$	$66\text{GeV} < m_{\ell\ell} < 116\text{GeV}$		
b-tagged jet multiplicity	1 or 2	-		

Results

• Fit the number of selected events to predictions based on the assumed cross-sections and efficiencies. Use a maximum likelihood fit to extract parameters of interest(cross-sections and background contributions).

Fitted distributions

Event selection	Variable	Bins	Event count
$e\mu$ +1 or 2 <i>b</i> -tagged jets	N _{b-tag}	2	$N_1^{e\mu}, N_2^{e\mu}$
ee+1 b-tagged jet	$m_{\ell\ell}$	6	$N_{1,m}^{ee}$
ee+2 b-tagged jets	$m_{\ell\ell}$	6	$N_{2,m}^{ee}$
$\mu\mu$ +1 <i>b</i> -tagged jet	$m_{\ell\ell}$	6	$N_{1,m}^{\mu\mu}$
$\mu\mu$ +2 <i>b</i> -tagged jets	$m_{\ell\ell}$	6	$N_{2,m}^{\mu\mu}$
$Z \rightarrow ee \text{ or } \mu\mu$	channel	2	$N_Z^{ee}, N_Z^{\mu\mu}$

$$\sigma_{t\bar{t}} = 809.5 \pm 1.1 \pm 20.1 \pm 7.5 \pm 1.9 \text{ pb}$$

$$\sigma_{Z \to \ell \ell} = 2019.4 \pm 0.2 \pm 20.7 \pm 16.8 \pm 1.8 \text{ pb}$$

Event counts	$N_{1,{ m off-Z}}^{ee}$	$N^{ee}_{1,{ m on-Z}}$	$N_1^{e\mu}$	$N_{1,{ m off-Z}}^{\mu\mu}$	$N_{1,\mathrm{on-Z}}^{\mu\mu}$
Data	222304	442108	405437	223085	448105
tī	154800 ± 1700	24830 ± 850	361000 ± 4200	152500 ± 1800	24070 ± 860
Wt	17500 ± 1600	2770 ± 240	41500 ± 3800	17800 ± 1700	2730 ± 250
Z+jets	46880 ± 400	410700 ± 2000	859 ± 21	51010 ± 780	418000 ± 2000
Diboson	770 ± 160	3940 ± 840	790 ± 280	770 ± 160	3880 ± 830
Mis-ID leptons	1300 ± 500	360 ± 260	1740 ± 610	390 ± 150	172 ± 87
Total prediction	221280 ± 550	442600 ± 1100	405900 ± 1800	222390 ± 670	448900 ± 1100
Event counts	$N^{ee}_{2,\mathrm{off}-\mathrm{Z}}$	$N^{ee}_{2,\mathrm{on-Z}}$	$N_2^{e\mu}$	$N_{2,\mathrm{off}-\mathrm{Z}}^{\mu\mu}$	$N_{2,\mathrm{on-Z}}^{\mu\mu}$
Data	85936	37704	198502	86169	38512
tī	79750 ± 920	13340 ± 480	191000 ± 1800	79770 ± 830	13180 ± 450
Wt	2860 ± 760	400 ± 110	6700 ± 1600	2940 ± 740	423 ± 90
Z+jets	2675 ± 68	23610 ± 590	78 ± 2	3095 ± 87	24110 ± 600
Diboson	67 ± 23	550 ± 110	29 ± 8	71 ± 30	570 ± 110
Mis-ID leptons	400 ± 290	96 ± 59	720 ± 520	350 ± 160	104 ± 56
Total prediction	85760 ± 360	38000 ± 190	198510 ± 440	86230 ± 300	38380 ± 210

 $R_W^{\mu/e} = R_{WZ}^{\mu/e} \sqrt{R_{Z-\text{ext}}^{\mu\mu/ee}} = 0.9995 \pm 0.0022 \text{ (stat) } \pm 0.0036 \text{ (syst) } \pm 0.0014 \text{ (ext)}$

Observation of $t\bar{t}$ production in the lepton+jets and dilepton channels in *p*+Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV with the ATLAS detector

- Observation of top-quark pair production in proton-lead (p+Pb) collisions at a center-of-mass energy of 8.16 TeV;
- Also includes the measurement of the nuclear modification factor for top-quark pair production in p+Pb collisions;

Single leptonic

- Events with exactly one lepton (electron or muon): single-lepton triggers with a minimum pT threshold of 15 GeV.
- At least four jets;
- At least 1 b-tagged jet;

Dileptonic

- Events with two opposite-charge leptons with additional Invariant mass cuts
- at least two jets;

13-17 January 2025

• Top-quark pair production is observed with a significance exceeding five standard deviations in both channels with a total systematic uncertainty of 8%;

 $\sigma_{t\bar{t}} = \mu_{t\bar{t}} \cdot A_{\rm Pb} \cdot \sigma_{t\bar{t}}^{\rm th}$

- µtt values are consistent with the SM^{tt} predictions;
- This confirmed the observation of tt production in p+Pb collisions for the first time at the LHC.

• The measured value is found to be consistent with unity within the uncertainty.

Conclusions

Precision Cross-Sections

• High-accuracy measurements of tt cross-section for 13 TeV: differential studies exploring top quark kinematics and spin correlations.

Single Top Quark Production

- Detailed studies of electroweak production modes tW,tb,ttZ;
- Observation of rare tWZ production; <u>Higgs-Top Coupling</u>
- Direct measurements of the Yukawa coupling strength.
- Evidence of top-mediated Higgs production. <u>New Physics searches</u>
- Strong portal do look for BSM physics

More to come ...

- Joint contributions with CMS to (have) refine(d) SM predictions.
- Complementary results enhance understanding of the top quark's role in electroweak symmetry breaking;

Toponium

- A hypothetical bound state of a *tt* pair analogous to quarkonium predicted in scenarios of strong coupling or near-threshold *tt* production.
 - Sheds light on QCD at high energies and potential new interactions.
 - Provides constraints on top quark-antiquark dynamics in the threshold region.

Back-up slides

*Measurement of single top-quark production in association with a W boson in pp collisions at s= 13 TeV with the ATLAS detector - Aad, Georges et al - Phys.Rev.D 110 (2024) 7, 072010 CERN-EP-2024-168

*Measurement of \$t\bar{t}\$ production in association with additional \$b\$-jets in the \$e\mu\$ final state in proton-proton collisions at \$\sqrt{s}=13 TeV with the ATLAS detector - Aad, Georges et al - arXiv:2407.13473 - CERN-EP-2024-191 (Sent to JHEP)

*Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at \$ \sqrt{s} = 13 TeV - Aad, Georges et al - JHEP 2206 (2022) 063 - CERN-EP-2022-003

*Search for heavy right-handed Majorana neutrinos in the decay of top quarks produced in proton-proton collisions at \$\sqrt{s}\$ = 13 TeV with the ATLAS detector - Aad, Georges et al - Phys. Rev. D 110 (2024) 112004 - CERN-EP-2024-154

*Search for same-charge top-quark pair production in pp collisions at \$\sqrt{s}\$ = 13 TeV with the ATLAS detector - Aad, Georges et al - arXiv:2409.14982 - CERN-EP-2024-226 (sent to JHEP)

*Constraint on the total width of the Higgs boson from Higgs boson and four-top-quark measurements in \$pp\$ collisions at \$\sqrt{s}\$ = 13 TeV with the ATLAS detector - Aad, Georges et al - arXiv:2407.10631 - CERN-EP-2024-190 (Submitted to Phys. Lett. B)

*Test of lepton flavour universality in \$W\$-boson decays into electrons and \$\tau\$-leptons using \$pp\$ collisions at \$\sqrt{s}=13\$ TeV with the ATLAS detector - Aad, Georges et al - CERN-EP-2024-315 (Submitted to JHEP)

*Measurement of differential cross-sections in \$ t\overline{t} \$ and \$ t\overline{t} \$+jets production in the lepton+jets final state in pp collisions at \$ \sqrt{s} \$ = 13 TeV using 140 fb\$^{-1}\$ of ATLAS data - Aad, Georges et al - JHEP 2408 (2024) 182 - CERN-EP-2024-163

*Observation of quantum entanglement with top quarks at the ATLAS detector - Aad, Georges et al - Nature 633 (2024) 542 - CERN-EP-2023-230 *Measurements of inclusive and differential cross-sections of tt⁻γ production in pp collisions at \$sqrt{s} = 13\$ TeV with the ATLAS detector - Aad, Georges et al - JHEP 10 (2024) 191 - CERN-EP-2024-052

* Search for flavour-changing neutral-current couplings between the top quark and the Higgs boson in multi-lepton final states in 13 TeV \$pp\$ collisions with the ATLAS detector - Aad, Georges et al - Eur. Phys. J. C 84 (2024) 757 - CERN-EP-2024-070

*Observation of tt⁻production in the lepton+jets and dilepton channels in p+Pb collisions $\sqrt{sNN} = 8.16$ TeV with the ATLAS detector - Aad, Georges et al - JHEP 2411 (2024) 101 - CERN-EP-2024-097

*Precise test of lepton flavour universality in *W*-boson decays into muons and electrons in *pp* collisions at \sqrt{s} = 13 TeV with the ATLAS detector - Aad, Georges et al - arXiv:2403.02133 - CERN-EP-2024-063

Search for ttW+jet production A search for \$tW \rightarrow \tW\$ scattering in the multi-leptonic \$t\bar{t}Wj\$ final state at \$\sqrt{s} = 13\$~TeV with the ATLAS detector with bounds on Effective Field Theory operators

