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This paper reviews recent developments in the field of analytical Feyn-
man integral calculations. The central theme is the geometry associated to
a given Feynman integral. In the simplest case, this is a complex curve of
genus zero (aka the Riemann sphere). In this article, we discuss Feynman
integrals related to more complicated geometries such as curves of higher
genus or manifolds of higher dimensions. In the latter case, we encounter
Calabi–Yau manifolds. We also discuss how to compute these Feynman
integrals.
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1. Introduction

Feynman integrals occur in higher-order calculations in perturbative
quantum field theory. They are indispensable for precision calculations,
as the achievable precision is directly related to the order to which we trun-
cate the perturbative expansion. The perturbative expansion of a scattering
amplitude can be organised in terms of Feynman diagrams, such that the
scattering amplitude is given by the sum of the evaluations of the contribut-
ing Feynman diagrams.
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Figure 1 shows several examples, where precision calculations are re-
quired. These examples include LHC physics, low-energy precision experi-
ments, gravitational physics and spectroscopy. Although the loop order is
not too high (they are all two-loop or three-loop graphs), it is the presence
of internal non-zero masses which makes the calculation of these diagrams
challenging.
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Fig. 1. Examples of Feynman diagrams relevant to (from left to right): the decay
of a Higgs boson, Møller scattering, gravitational waves and the Lamb shift.

It is a natural question to ask, what special functions appear in the final
answer for a given Feynman integral. The answer to this question reveals
a deep connection between Feynman integrals, geometry, and differential
equations. The simplest Feynman integrals evaluate to multiple polyloga-
rithms. Multiple polylogarithms are associated to a complex curve of genus
zero, more precisely, they are iterated integrals on such a curve with a certain
number of marked points. The next more complicated Feynman integrals
are related to a curve of genus one with a certain number of marked points.
These are known as elliptic Feynman integrals and have received signifi-
cant attention in recent years. If we go beyond elliptic Feynman integrals,
there are two directions for further generalisations: On the one hand, we
may consider curves of higher genus [1–4], on the other hand, we may go
to manifolds of higher dimension. In the latter case, one considers Calabi–
Yau manifolds [5–26], which are generalisations of elliptic curves (a complex
manifold of dimension one) to higher dimensions. The latter case occurs
already for rather simple Feynman integrals, for example in the family of
banana graphs.

It is common practice to use dimensional regularisation in order to reg-
ulate ultraviolet and infrared divergences. We set the number of space-time
dimensions to D = Dint − 2ε, where Dint is the integer number of space-
time dimensions we are interested in and ε is the dimensional regularisation
parameter. Integration-by-parts identities [27] allow us to express any Feyn-
man integral from a family of Feynman integrals as a finite linear combina-
tion of a subset of this family. The integrals of this subset are called master
integrals and define a basis of a vector space. We denote the master integrals
by I = (I1, I2, . . . , INF

) and the kinematic variables by x = (x1, . . . , xNB
). A

popular technique for the computation of Feynman integrals is the method of
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differential equations [28]. We may express the derivatives of the master in-
tegrals with respect to the kinematic variables again as a linear combination
of the master integrals. This leads to the differential equation

dI = A (x, ε) . (1)

It is worth mentioning that there are no conceptional issues in obtaining
the differential equation, as it involves only linear algebra. However, there
can be practical problems, if the size of the linear system gets too large.
This reduces the problem of computing a Feynman integral to the problem
of solving a system of differential equations. The next step is based on an
observation by Henn [29]: If a transformation can be found, that brings the
system of differential equations to an ε-factorised form

dI = εA (x) I , (2)

where the only dependence on the dimensional regularisation parameter ε
is through the explicit prefactor on the right-hand side, a solution in terms
of iterated integrals is straightforward. This assumes that boundary values
are known. These however constitute a simpler problem. Often they can be
obtained rather easily from regularity conditions. This reduces the problem
of computing a Feynman integral to finding an appropriate transformation
to bring the differential equation into the form of Eq. (2). A simple example
for the matrix A(x) in an ε-factorised differential equation is given by

A (x) = C1ω1 + C2ω2 (3)

with differential one-forms

ω1 =
dx

x
, ω2 =

dx

x− 1
, (4)

and matrices

C1 =

 −2 0 0
0 0 0
1 0 −2

 , C2 =

 0 0 0
0 0 0

−1 1 1

 . (5)

In a more formal language, we are considering a vector bundle, where the
vector space in the fibre is spanned by the master integrals I = (I1, ..., INF

).
The base space is parameterised by the coordinates x = (x1, ..., xNB

), which
are the kinematic variables the Feynman integrals depend on. The vector
bundle is equipped with a flat connection defined by the matrix A made up
of differential one-forms ω = (ω1, ..., ωNL

). In the example above, we have
NF = 3, NB = 1, NL = 2. On this vector bundle, we have two operations
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at our disposal: We may change the basis in the fibre I ′ = UI, leading to a
new connection

A′ = UAU−1 − UdU−1 . (6)

We will look for a transformation U , such that the ε-dependence factors
out from the new connection A′. It is an open question for which Feynman
integrals such a transformation exists. Support for the conjecture that this
is always possible comes from Refs. [24, 30–35].

In addition, we may perform a coordinate transformation x′i = fi(x) on
the base manifold. If

A =

NB∑
i=1

Aidxi =

NB∑
i=1

A′
idx

′
i , (7)

then A′
i and Ai are related by

A′
i =

NB∑
j=1

Aj
∂xj
∂x′i

. (8)

This transformation is often used to introduce “nicer” coordinates, for ex-
ample coordinates which rationalise square roots [36, 37] in the genus zero
case.

2. Geometry

Let us consider coordinate transformations in more detail. Can we relate
the base space by a suitable coordinate transformation to a space known
from mathematics? Consider first the case of a complex curve of genus
zero: We may either view the complex curve as a complex manifold of
complex dimension one or as a real manifold of real dimension two. In
the latter case, we have the Riemann sphere. On this curve, we consider
n distinct points, which we denote by z1, . . . , zn. This is shown in Fig. 2.
On a Riemann sphere, we may perform Möbius transformations and we
mod out configurations that are related by Möbius transformations. The

complex curve
z1

z2
z3⇔

z1

z2

z3

real surface

Fig. 2. We may view a complex curve of genus zero alternatively as the Riemann
sphere: a real manifold of real dimension two.
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space of equivalence classes of n distinct points on the Riemann sphere
modulo Möbius transformations is known as the moduli space M0,n of a
smooth complex algebraic curve of genus zero with n marked points. The
dimension of M0,n is (n− 3), as we may use Möbius transformations to fix
three points to prescribed positions, for example zn−2 = 0, zn−1 = 1 and
zn = ∞. The requirement that the remaining points are distinct translates
to zi /∈ {0, 1,∞}, and zi ̸= zj . On this space, we consider the differential
one-forms

ω ∈ {d ln (z1) ,d ln (z2) , . . . ,d ln (zn−3) ,

d ln (z1 − 1) , . . . ,d ln (zn−3 − 1) ,

d ln (z1 − z2) , . . . ,d ln (zi − zj) , . . . ,d ln (zn−4 − zn−3)} . (9)

The iterated integrals built from these one-forms are the multiple polylog-
arithms. To see this, consider an integration path on M0,n. The pull-back
of the differential one-forms ω to the integration path leads to differential
one-forms of the type

ωmpl =
dλ

λ− cj
, (10)

and iterated integrals of these differential one-forms are the multiple poly-
logarithms

G(c1, . . . , ck;λ) =

λ∫
0

dλ1
λ1 − c1

λ1∫
0

dλ2
λ2 − c2

. . .

λk−1∫
0

dλk
λk − ck

, ck ̸= 0 . (11)

We see that Feynman integrals, which evaluate to multiple polylogarithms
are related to the complex curve of genus zero. We remark that usually
the zi are functions of the kinematic variables x and the arguments of the
dlog-forms are related to the Landau singularities.

Multiple polylogarithms are not the end of the story. Starting from
two-loops, we encounter more complicated functions. The next-to-simplest
Feynman integrals are related to a complex curve of genus one (aka an
elliptic curve). The simplest example is the two-loop electron self-energy
in QED [38]: The three Feynman diagrams contributing to the self-energy
are shown in Fig. 3. All master integrals are (sub-)topologies of the kite
graph, shown on the left in Fig. 4. One sub-topology of the kite graph is the
sunrise graph with three equal non-zero masses, shown on the right in Fig. 4.
The geometry associated with the sunrise graph is an elliptic curve. This is
most easily seen in the Feynman parameter representation, where the second
graph polynomial defines an elliptic curve in Feynman parameter space:

−p2a1a2a3 + (a1 + a2 + a3) (a1a2 + a2a3 + a3a1)m
2 = 0 . (12)
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Fig. 3. The Feynman graphs contributing to the two-loop electron self-energy in
QED.

Fig. 4. The kite graph (left) and the sunrise graph (right).

The relevant moduli space is now M1,n, the moduli space of isomorphism
classes of smooth complex algebraic curves of genus 1 with n marked points.
The dimension of M1,n is n. Standard coordinates on M1,n are
(τ, z1, . . . , zn−1), where the modular parameter τ describes the shape of the
elliptic curve. On a curve of genus one, we have a translation symmetry,
which we may use to fix one marked point at a prescribed position, say
zn = 0. The remaining ones are then coordinates of the moduli space.
Iterated integrals on M1,n are built from differential one-forms

ωmodular
k = 2πi fk(τ)dτ , (13)

where fk(τ) is a modular form [39], and differential one-forms [40]

ωKronecker
k = (2πi)2−k

[
g(k−1) (z, τ) dz + (k − 1) g(k) (z, τ)

dτ

2πi

]
, (14)

where g(k)(z, τ) denote the coefficients of the expansion of the Kronecker
function. Integrating the latter differential one-forms along dz yields elliptic
multiple polylogarithms. The iterated integrals on M1,n can be evaluated
numerically within GiNaC with arbitrary precision [41].

3. Higher genus curves

The obvious generalisation of the genus zero and genus one case is a
complex curve of genus g. Up to now, this case has not received too much
attention in the literature [1–4]. Going to genus two or higher, there is
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one subtlety: Naively we would expect that the genus of the curve is in-
dependent of the representation of the Feynman integral. This is not the
case: The genus may depend on the representation. There are examples of
Feynman integrals where we obtain a different genus in the loop momenta
representation as compared to the genus we obtain from the Baikov repre-
sentation. The explanation of this phenomenon is as follows: The curve of
higher genus will have an extra symmetry, which can be used to relate this
curve algebraically to the curve of lower genus [4].

Let us discuss this phenomenon in more detail: A hyperelliptic curve is
an algebraic curve of genus g ≥ 2 whose defining equation takes the form

y2 = P (z) , (15)

for some polynomial P (z) of degree (2g + 1) or (2g + 2). They generalise
elliptic curves, whose defining equation takes the same form when g = 1.
We are interested in Feynman integrals, where the maximal cut takes the
form ∫

dz
N(z)√
P (z)

. (16)

Non-planar double boxes (with sufficient internal/external masses) provide
examples of higher-genus Feynman integrals. In the loop momentum repre-
sentation, one obtains for the example shown in Fig. 5 a genus 3 curve [2],
whereas in the Baikov representation, one obtains a genus 2 curve. The

Fig. 5. A nonplanar crossed box diagram, with massive internal propagators.

solution to this riddle is as follows: Any hyperelliptic curve H : y2 = P (z)
has an involution symmetry e0 : y → −y. The higher genus curve has an
extra involution. In the simplest case, if P (z) is of the form

P (z) = Q
(
z2
)

=
(
z2 − α2

1

)
. . .

(
z2 − α2

g+1

)
, (17)

the extra involution is given by e1 : z → −z. To a hyperelliptic curve with
an extra involution, we can associate two curves of lower genus through the
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substitution w = z2

H1 : y21 = Q (w) , H2 : y22 = wQ (w) (18)

of genus ⌊g2⌋ and ⌈g2⌉, respectively. Of course, P (z) might not be in the form
of Eq. (17). However, there is an algorithm to detect the extra involution.

Why is there an extra involution? For our example, we can trace it
back to discrete Lorentz transformations like parity and time reversal: In
the Baikov representation, everything is manifestly Lorentz invariant, as the
Baikov variables are Lorentz invariants: z = k2−m2. On the other hand, in
the loop momentum representation, we choose a frame, we choose a parame-
terisation of the loop momenta, and we choose an elimination order. In this
case, the full Lorentz symmetry is not realised trivially, but manifests itself
through extra symmetries of the curve. Figure 6 shows two phenomenolog-
ical relevant examples of hyperelliptic Feynman integrals.

t

t

Z

Z

Z

Fig. 6. Examples of hyperelliptic Feynman integrals contributing to gg → tt with a
top loop, and Møller scattering e−e− → e−e− with the exchange of three Z bosons.

4. Calabi–Yau manifolds

In the previous section, we considered the generalisation to higher genus.
There is a second generalisation relevant to Feynman integrals, which gener-
alises curves to higher-dimensional manifolds, and to Calabi–Yau manifolds
in particular [5–9, 11–24]. This generalisation shows up already in relatively
simple Feynman integrals. The simplest example is the family of l-loop
banana graphs shown in Fig. 7.

Fig. 7. The banana graphs with two, three, and four loops.
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A Calabi–Yau manifold of complex dimension n is a compact Kähler
manifold M with vanishing first Chern class. An equivalent condition is
that M has a Kähler metric with vanishing Ricci curvature [42, 43]. Calabi–
Yau manifolds come in pairs, related by mirror symmetry [44]. The mirror
map relates a Calabi–Yau manifold A to another Calabi–Yau manifold B
with Hodge numbers hp,qB = hn−p,q

A . The l-loop banana integral with equal
non-zero masses is related to a Calabi–Yau (l − 1)-fold. An elliptic curve is
a Calabi–Yau 1-fold, corresponding to the sunrise graph already discussed.
The system of differential equations for the equal mass l-loop banana integral
can be transformed to an ε-factorised form [15–17]. It is helpful to perform
first a coordinate transformation from x = p2/m2 to a variable τ given by
a mirror map. In the case of a genus one curve, the variable τ corresponds
to the modular parameter. In this new variable, the Picard–Fuchs operator
for the l-loop banana integral has the simple form

L(l,0) = βθ2
1

Yl−2
θ

1

Yl−3
. . .

1

Y3
θ
1

Y2
θ2

1

ψ0
, (19)

where β denotes an (irrelevant) prefactor, θ = q d
dq the Euler operator in the

variable q = exp(2πiτ), and ψ0 the holomorphic solution of the Picard–Fuchs
differential equation around the point of maximal unipotent monodromy.
The functions Yj are called the Y -invariants and have the symmetry Yj =
Yl−j [45, 46]. A non-trivial Y -invariant enters for the first time at four-
loops. From the factorisation of the Picard–Fuchs operator in Eq. (19), one
derives a basis of master integrals, which put the differential equation into an
ε-factorised form. The ε-factorised differential equation is then solved order-
by- order in ε.

Phenomenological relevant examples of Feynman integrals related to
Calabi–Yau manifolds are shown in Fig. 8.

t t t t t

Fig. 8. Examples of Calabi–Yau Feynman integrals: Four-loop contribution to the
electron self-energy in QED, three-loop contribution to dijet production and four-
loop contribution to top-pair production.
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