A study of local multiplicity fluctuations in charged particle production in Xe–Xe collisions at $\sqrt{s_{\rm NN}} = 5.44$ TeV using ALICE

Zarina Banoo[∗] and Ramni Gupta (On behalf of ALICE Collaboration) Department of Physics, University of Jammu, Jammu 180006, INDIA

I. INTRODUCTION

A fundamental characteristic of the critical behaviour of a system undergoing phase transition is that it exhibits fluctuations of all scales [1]. The most efficient way to address fluctuations of a system created in a heavy-ion collision is to investigate event-by-event (Eby-E) fluctuations, where a given observable is measured on an event-by-event basis, and the fluctuations are studied over the ensemble of the events. To detect such fluctuations in a system, a study of the scaling behaviour of the normalized factorial moments $F_q(M)$ with the number of bins (M) in (η, φ) space is performed. The normalized factorial moments are defined as

$$
F_q(M) = \frac{\frac{1}{N_{evt}} \sum_{e=1}^{N_{evt}} \frac{1}{M} \sum_{m=1}^{M} f_q(n_{me})}{\frac{1}{N_{evt}} \sum_{e=1}^{N_{evt}} \frac{1}{M} \sum_{m=1}^{M} f_1(n_{me})} \tag{1}
$$

with $f_{q(nme)} = \prod_{j=0}^{q-1} (n_{me} - j)$, where e stands for the event, $q \geq 2$ is the order of the moments, and $n_{me} \ge q$ is the number of particles in a given phase space bin [2]. A power-law behaviour of $F_q(M) \propto M^{\phi_q}$ is defined as Mscaling, where the scaling index $\phi_q \geq 0$ is a constant for any given q [3]. Observation of this scaling implies the absence of any spatial scale in the system, which has been observed in many collision systems with positive scaling index value [4, 5].

For the second-order phase transition in the Ginzburg-Landau (GL) formalism, F_a satisfies with high accuracy the following power law

behavior

$$
F_q \propto F_2^{\beta_q}.\tag{2}
$$

This scaling, which is referred to as F-scaling, can be valid even if the M-scaling is not valid [6, 7]. The scaling exponent ν , which is a universal quantity characterizing the scaling properties of the system, is derived from

$$
\beta_{\mathbf{q}} = (q-1)^{\nu}.
$$
 (3)

It is essentially independent of the details of the Ginzburg-Landau parameters, where temperature is not a controlling parameter; therefore, the numerical value of ν can be considered as an average value over all temperatures at which the phase transition occurs.

II. ANALYSIS

The analysis is performed for charged particles produced in central events in the midrapidity region $|\eta| \leq 0.8$ with full azimuthal coverage $(0 \leq \varphi \leq 2\pi)$ in the p_T intervals $0.4 \leq p_{\rm T} \leq 0.6$ GeV/c and $0.4 \leq p_{\rm T} \leq 1.0$ GeV/c . The factorial moments are calculated using the charged particles mapped into the two-dimensional (η, φ) space, where the total number of bins is M^2 . In this contribution, observations and results

from the intermittency study of charged parfrom the intermittency study of charged particles produced in Xe–Xe collisions at $\sqrt{s_{NN}}$ $= 5.44$ TeV, recorded with ALICE detector at LHC.

[∗]Electronic address: zarina.banoo@cern.ch

III. OBSERVATION AND RESULTS

The data from ALICE show the presence of M-scaling behavior for $q = 2, 3, 4$, and 5, indicating the presence of an intermittency signal in the data. The M- and F-scaling for the p_T interval of $0.4 \leq p_T \leq 1.0$ GeV/c are shown in Fig. 1 and Fig. 2, respectively. In addition, the value of the scaling exponent (ν) for two different p_T intervals is calculated as a function of collision centrality, as shown in Fig. 3.

FIG. 1: M-scaling for the p_T interval $0.4 \leq p_T \leq$ 1.0 GeV/ c .

FIG. 2: F-scaling for the p_T interval $0.4 \leq p_T \leq$ $1.0 \text{ GeV}/c$.

FIG. 3: Centrality dependence of scaling exponent (ν) for the p_T intervals $0.4 \leq p_T \leq 0.6$ GeV/c and $0.4 \leq p_{\text{T}} \leq 1.0 \text{ GeV}/c$.

References

- [1] X. Luo, N. Xu, Search for the QCD Critical Point with Fluctuations of Conserved Quantities in Relativistic Heavy-Ion Collisions at RHIC. Nucl. Sci. Tech. 28, 112 (2017).
- [2] R. C. Hwa, Recognizing Critical Behavior amidst Minijets at the Large Hadron Collider. Adv. High Energy Phys. 526908 (2015).
- [3] R. C. Hwa and C. B. Yang, Local Multiplicity Fluctuations as a Signature of Critical Hadronization at LHC. Phys. Rev. C 85, 044914 (2012).
- [4] W. Kittel and E. A. De Wolf. Soft multihadron dynamics. 2005.
- [5] E. A. De. Wolf et al. Phys. Rep., 270:1−141, (1996).
- [6] R. C. Hwa and M. T. Nazirov. Intermittency in second order phase transition. Phys. Rev. Lett. 69:741744, (1992).
- [7] A. Bialas and K. Zalewski, Phase Structure of Self-Similar Multiparticle System and Experimental determination of Intermittency Parameters. Phys. Lett. B. 238, (1990) 413-416.