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Introduction

At the LHC energies near chemical freeze-
out, the chemical potential is expected to be
zero due to particles and antiparticles being
produced almost in equal numbers. However,
considering the same case at the kinetic freeze-
out temperature is not trivial. The kinetic
freeze-out of particles is a highly complex phe-
nomenon. We argue that there can be a finite
total chemical potential at the kinetic freeze-
out, and its importance cannot be ignored.
Primarily, this study considers the importance
of chemical potentials at the kinetic freeze-out
stage. During the hadronic phase, several pro-
cesses may occur, contributing to an imbal-
ance in particle-antiparticle, giving rise to a
finite chemical potential (µ). This prompts us
to look into the effect of chemical potential in
TeV pp collisions at the kinetic freeze-out using
the non-extensive Tsallis distribution function.
The thermodynamically consistent form of the
Tsallis distribution function for non-zero µ is
given by [1],
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The four parameters T, V, q and µ in Eqn. 1
have a redundancy for µ 6= 0 .The redundancy
is not present when µ = 0. Then, the trans-
verse momentum distribution in terms of mod-
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ified variables can be written as,
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Please refer to Ref. [1] for a more detailed

discussion.

Results and Discussion
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FIG. 1: Comparison of the non-extensive param-
eter (q) at (µ = 0) and (µ 6= 0) for pp collisions at√
s = 7 TeV for different final state particles as a

function of final state multiplicity [1].

Fig. 1 demonstrates the variation of non-
extensive parameter (q) for both the cases i .e.
(µ = 0) and (µ 6= 0) as a function of charged
particle multiplicity for pp collisions at

√
s =

7 TeV for different final state particles. The
bottom panel depicts a ratio indicating a near-
independency of the q-parameter on the chem-
ical potential of the system.

In the left panel of figure 2, we observe
that the temperature for all the hadrons in-
creases with increasing charged-particle multi-
plicity. A mass-ordering trend is observed with
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FIG. 2: The left and right panels represent the temperature parameters T0(µ = 0) and T (µ 6= 0) as a
function of charged-particle multiplicity for pp collisions at

√
s = 7 for different final state particles [1].

systems with heavier mass particles having a
higher temperature than lighter mass parti-
cles at all charged-particle multiplicities. This
corresponds to a mass-dependent differential
freeze-out scenario, where particles freeze out
at different times, corresponding to different
volumes and temperatures for different par-
ticle species. However, in the right panel of
figure 2, we observe that the kinetic freeze-out
temperature for all the particle species investi-
gated in this study seems to be the same when
considering a finite chemical potential at the
kinetic freeze-out of the produced fireball.
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FIG. 3: Chemical potential (µ) as a function of
charged-particle multiplicity for pp collisions at

√
s

= 7 for different final state particles [1].

In figure 3, a non-zero value of the chemical
potential at kinetic freeze-out temperature is
observed for all the considered particle species.
As we move towards systems with massive par-
ticles, the chemical potentials move towards a
negative value. However, we observe positive
chemical potentials for all the charged-particle
multiplicity for lighter particles such as π, K,
and p. However, in the case of more mas-
sive particles, such as baryons, the chemical
potential transits from positive to negative as
the rate of change of particle multiplicity with
respect to pseudo-rapidity increases. As we
advance towards higher massive particles, the
chemical potential shifts towards a -ve value,
which suggests that heavy mass particle pro-
duction is less favorable.
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