

# ATLAS TRIGGER UPGRADES

Stephen Hillier (University of Birmingham) on behalf of the ATLAS Collaboration





#### Overview of talk



# CHALLENGES OF HL-LHC

And a generic guide to solutions

#### How did we get here?

- Never forget that triggering at LHC is already a great achievement
  - Average of 65 proton-proton collisions every 25 ns
    - Already at 2+ times nominal LHC instantaneous luminosity
  - Synchronisation of trigger and readout to select correct data associated to interesting event
  - Data spread over multiple time-slices at different points of detector (and buffers)



# Triggering Challenges of High-Luminosity LHC

- What makes HL-LHC harder?
- Luminosity increases by ~3.5
  - For the same physics (same trigger menu) record at least 3.5 times rate
- Energy potentially increases to 14 TeV
  - Small increase in cross-sections
- Physics signatures become harder to distinguish
  - Denser particle flow environments
  - Greater pile-up effects and ambiguities
- Physics goals more challenging
  - Easier channels already well covered in initial LHC running periods
  - Ambition to push to lower thresholds and more complex physics signatures

# Triggering Challenges of High-Luminosity: Mitigations

- How do we solve these challenges?
- Luminosity increases by ~3.5
  - For the same physics (same trigger menu) record at least 3.5 times rate Record more events, x 3.5
- Energy potentially increases to 14 TeV
  - Small increase in cross-sections
- Physics signatures become harder to distinguish
  - Denser particle flow environments
  - Greater pile-up effects and ambiguities
- Physics goals more challenging
  - Easier channels already well covered in initial LHC running periods
  - Ambition to push to lower thresholds and more complex physics signatures

Record more events, say x 4

Increase detector (and trigger) granularity

Record more events, x 5 Be more selective

#### High Pile-up and Tracking

- Pile-up (μ) increases from current ~65 to ~200 interactions per bunch crossing
- Requires higher granularity tracking
  - Old tracker reaching end of lifetime
- New Inner Tracker (ITK) entirely Silicon detector
  - Shorter strips, more channels
  - 5.1G channels pixels, 60M channels strips
    - c.f. current 92M and 6M
  - Also covers larger angular range
    - η up to 4.0 rather than 2.5
  - Higher radiation tolerance
- Consequence for Trigger/DAQ
  - Increased data size (about 2.5 x current)
  - Large combinatorial problem to extract tracks High Level Trigger (EF) only



#### Simulated Top Event: UNSG-2021-58

- Consequences of pile-up for calorimetry are not so obvious
  - Occupancy not as high as tracking... mostly (see Forward Calorimeter)
  - Orders of magnitude fewer channels
- However, it's not just about in-time pile-up
  - Calorimeter signals are shaped
  - Stretched over several bunch-crossings
  - Shaped to give best energy resolution at nominal luminosity
- Out-of-time pileup degrades energy resolution, increases noise
  - Affects all levels, trigger and offline reconstruction
  - Particularly for energy sums used in first level trigger
- Detector won't be upgraded
  - The most that can be done is improve electronics



## High Pile-up and Muon Detection

- Again, physics occupancy is not high
- Issues limiting trigger performance at HL-LHC
  - Coverage and chamber aging
  - Running with reduced voltage, loosened coincidence
  - Beam background generating fake triggers
- Requires additional chambers and improved logic
  - Fill in existing coverage gaps
  - Expected efficiency x acceptance increase 65% to 95%
  - Better background rejection, particularly in endcap
- Current muon system will mostly be in place
  - Including Phase-1 New Small Wheel upgrade and trigger logic
  - Original MDT (precision) chambers included in Level-0 trigger



# Triggering Challenges of High-Luminosity: Phase-2 Upgrade

- How do these solutions affect Trigger/DAQ?
- Luminosity increases by ~3.5
  - For the same physics (same trigger menu) record at least 3.5 times rate Record more events, x 3.5
- Energy potentially increases to 14 TeV
  - Small increase in cross-sections
- Physics signatures become harder to distinguish
  - Denser particle flow environments
  - Greater pile-up effects and ambiguities
- Physics goals more challenging
  - Easier channels already well covered in initial LHC running periods
  - Ambition to push to lower thresholds and more complex physics signatures

Record more events, say x 4

Increase detector (and trigger) granularity

Record more events, x 5 Be more selective

# Triggering Challenges of High-Luminosity LHC: DAQ

How do these solutions affect DAQ?

Increase DAQ data rates (to record, approximate)

- Luminosity increases by ~3.5
  - For the same physics (same trigger menu) record at least 3.5 times rate current x 3.5
- Energy potentially increases to 14 TeV
  - Small increase in cross-sections
- Physics signatures become harder to distinguish
  - Denser particle flow environments
  - Greater pile-up effects and ambiguities
- Physics goals more challenging
  - Easier channels already well covered in initial LHC running periods
  - Ambition to push to lower thresholds and more complex physics signatures

#### 4 GB/s increase to 50 GB/s

S. Hillier

ATLAS Trigger Upgrades, Triggering Discoveries in High Energy Physics III

current x 4.0

current x 4.0 x 2.5 = 10

current x 5.0 x 2.5 = 12.5

# Triggering Challenges of High-Luminosity LHC: L0 to EF

- How do these solutions affect Level-1 Trigger?
- Luminosity increases by ~3.5
  - For the same physics (same trigger menu) record at least 3.5 times rate 350 kHz
- Energy potentially increases to 14 TeV
  - Small increase in cross-sections
- Physics signatures become harder to distinguish
  - Denser particle flow environments
  - Greater pile-up effects and ambiguities
- Physics goals more challenging
  - Easier channels already well covered in initial LHC running periods
  - Ambition to push to lower thresholds and more complex physics signatures

High Level Trigger input 0.2 TB/s increase to 5 TB/s

400 kHz

500+ kHz

Level-0 rate increase,

1MHz = 10 x current

currently ~100 kHz (Level-1)

due to

non-linearities

#### Higher trigger rates, less rate reduction, more dataflow

- The fraction of events passing each trigger level will be higher than current system
  - Necessarily, since interesting physics is more common
  - But not necessarily easier to distinguish
    - EF has extra help from improved tracking
    - L0 does not use tracking data, relies on improvements elsewhere
- Dataflow at all levels needs to be increased enhanced readout/dataflow paradigm



#### Time to think: more latency, more buffering

- To improve trigger algorithms, need new hardware and more time
- Solution, extend first level latency
  - Current (Level-1) latency 2.5 µs (100 LHC clock ticks)
  - Phase-2 (Level-0) latency 10 µs
  - Increase is even more significant since signal delays eat up at least 1 µs
- Event Filter also requires more powerful algorithms and CPUs
  - May be able to cope with traditional CPU farm
  - Explore other architectures, GPU, FPGAs, AI engines
- All this requires more buffering
  - Detector front-end buffers larger quantities of data for longer periods
  - Readout system requires larger event data buffering

# ATLAS TRIGGER/DAQ UPGRADES

Quick overview of all system plans

#### ATLAS TDAQ Architecture for Phase-2

- Overall picture quite similar to the past
  - But all components updated or reprogrammed
  - Handles higher data and trigger rates
  - Some new components to improve trigger decisions
- Hardware Level-0 Trigger handles full granularity detector data
  - Latency 10 µs, input rate 40 MHz, output rate 1 MHz
- Software Event Filter
  - Input rate 1 MHz, Output rate 10 kHz
- DAQ handled by upgraded FELIX
  - All detectors move to low deadtime readout at 1 MHz
  - Event building, data distribution via Dataflow



# Level-0 Trigger

- Custom built hardware trigger
  - ATCA based modules
    - c.f. legacy VME based
  - Largely optical signals
    - c.f. legacy largely electrical
  - Optical data speeds up to 25 Gb/s per link
    - c.f. legacy typically up to 10 Gb/s
- ATCA modules with multiple FPGAs
  - Typically FPGAs with System on Chip
  - Potential for including AI engines
- Essentially four separate parts
  - LOCalo: calorimeter signal processing, Phase-1 system plus new module and firmware
  - LOMuon: muon detector processing, all new logic plus additional MDT information
  - LOGlobal: whole event processing, including full granularity calorimeter and muon data
  - LOCTP: final combinatorial decision, increased number of input items, new timing distribution



## Level-0 Calorimeter Trigger

- Consist of four Feature Extractors (FEX)
  - Input consists of reduced granularity digital calorimeter data
  - Three FEX systems already in place in Run-3
- Forms Trigger Objects (TOBs) for candidate physics signals
  - Electrons, Photons, Taus in eFEX
  - Jets, Taus, Forward Electrons, Missing Energy in jFEX
  - Large-R Jets, Missing Energy in gFEX
  - Improved Forward objects in fFEX (Phase-2)
- Inputs from Liquid Argon and Tile Calorimeters
  - Complex Optical plant required for signal routing
- Outputs sent as list of TOBs to L0-Global
  - TOB = Trigger OBject



# Level-0 Muon Trigger

- Several sequential and parallel trigger processors for each part of muon detector
  - New in Phase-2: MDT trigger
  - MDT processing seeded by other detectors
  - New detectors plugging gaps in coverage
    - sMDT, RPC regions
- Improved trigger processing in all regions
  - High granularity data streamed out optically
  - Trigger logic moved off detector
  - Allows for more precise and programmable decisions
  - Reduction of fakes, better efficiency
- Common processing sector logic platform
  - Programmability via FPGAs
- Prototyping and testing well underway



# Level-0 Global Trigger

- Time-multiplexed full event processor
  - Input data essentially full calorimeter granularity
- Multiple Global Common Module (GCM) boards behave as Level-0 farm
  - Need to maintain fixed latency
  - Each GCM processes 1/N events
    - N ~ 50
- Replaces and enhances current Topological Processor functionality
  - Refines input TOBs with more detailed data and complex algorithms
- Described in detail later



20

# Level-0 Central Trigger

- Responsible for several over-arching functions
  - Final Muon processor combination in MUCTPI
  - Formation of LOAccept based on inputs and Trigger Menu, Central Trigger Processor (CTP)
  - Distribution of clock, synchronisation and decisions Local Trigger Interface (LTI)
- MUCTPI and CTP share common ATCA platform
  - Functionality refined by FPGA load
  - Design based on current MUCTPI ATCA module
- CTP governs overall LOA rate and deadtime
  - More individual trigger inputs, more logic
  - Deadtime requirements looser than current system
    - Bigger demand on detector readout
    - But lower overall deadtime, even at 1 MHz LOA rate



#### **Event Filter**

- Event Filter forms the software level of trigger
  - Reduces 1 MHz LOA rate to 10 kHz recorded data
  - Possibility for higher rate streams with reduced data size
  - Full event data used at 1 MHz
- Typically performed by custom, fast algorithms in CPU farms
  - Exploring possibility of other (hybrid) architectures
    - GPU enhancement for some algorithms
    - FPGA accelerators being studied
  - Increased applicability of Machine Learning techniques
  - Larger data size provides opportunities (and challenges)
    - Particularly in Inner Tracker
    - Processing time very sensitive to pile-up levels



#### **Event Filter Tracking Evaluation**

- Inner Tracker has vastly more data
  - And also far more tracks
- Fast tracking has dedicated R&D task-force to evaluate architecture
  - CPU vs GPU vs FPGA, accelerator technologies
    - Focussed on AMD Xilinx FPGAs
  - Design of common language/interfaces for each possibility
- Multiple demonstrators benchmarking tracking algorithms
  - Seeding, track finding/fitting, pattern recognition, ambiguity removal
  - Neural network options considered
  - Exploring usage of High Level Synthesis (HLS)
- Common experiment independent tracking project, ACTS
  - A Common Tracking Software



#### Readout System: FELIX

- Original Readout completely replaced
  - Required for higher bandwidth
  - Complete system runs at 4.6 TB/s throughput
- Common FELIX hardware solution used for all detectors
  - First version of FELIX already used for new detectors in Run-3
  - Used in combination with commodity servers and network
- Data handlers used to collect data fragments and process for Event Building
- Prototyping well underway









#### Dataflow, Network and Online Software

- These provide the necessary glue to connect and organise data taking
  - Dataflow: managing buffering and provision the right data promptly wherever needed
    - Based on L0 and Event Filter decisions
  - Network: High speed communication between FELIX, Event Filter, event building, recording etc
  - Online Software: configuring TDAQ and detectors to coordinate activities
- Detailed simulation of dataflow/network to identify and mitigate bottlenecks
  - Buffer sizes
  - Network limitations
  - Needs model of detector data with respect to likely physics events and rates



# LEVEL-0 GLOBAL TRIGGER

A more detailed case study

# Level-0 Global Trigger, concept

- Maximize selectivity by processing full event in a single processor
  - Event Filter-like algorithms at Level-0
  - But limited time (10 µs) and bandwidth
- Direct input from many sources
  - Calorimeters at full granularity
  - L0Calo for calorimeter based objects
  - LOMuon for muon candidates
  - Input 50 Tb/s in total
- Data aggregation to a single node
  - Uses time multiplexing (MUX) to Global Event Processor (GEP)
- Farm of FPGA based processing units
  - Two main FPGAs with multiple functions



- Processing FPGA refines Level-0 results
  - Localised processing around Trigger Objects (TOBs)
  - Some event level processing algorithms
- Final decisions transmitted to LOCTP
  - On positive CTP result, processing data read out to DAQ

## Level-0 Global Trigger, Time Multiplexing

- Nominal 49 node MUX layer
  - Captures incoming data every BC and streams consecutive events to Event Processors in turn (round robin)
- Connected by full-mesh optical 'backplane' to every GEP node

- Nominal 49 node GEP layer
  - Each node receives a new event every 49 BCs, outputs results to single gCTPI node (global/CTP interface)
- gCTPi resynchronises results, and transmits in fixed latency to LOCTP



## Current Ideas for Global Algorithms

- Algorithms based around current High-Level Trigger algorithms
- Seeded algorithms based on TOBs from FEXes
  - Electron/Tau: improve jet fake rejection with full granularity data
    - Shapes in front EM layer
    - ML algorithms begin investigated
- Topo-clustering for Jets
  - Better energy resolution and pile-up rejection
  - Improved close-by jets and jet substructure measurements
- Global algorithms for full event triggering
  - MET with more sophisticated (ML) pile-up rejection
  - Underlying event subtraction for high-pt objects
  - Isolation energies for muon isolation





## Compromises in Global Architecture

- Is Global the ultimate hardware trigger processor (for non-tracking ATLAS data)?
- Ideal: all inputs into one processor, time to process
  - Essentially a software-like entity
- Reality is not quite so good
  - Still limited latency
    - And some inputs arrive quite late in latency window
  - Bandwidth is not enough for all data
    - 50 Tb/s input bandwidth
    - ATLAS calorimeters have almost 200,000 channels
      - 200000 x 10 bits x 40 MHz = 80 Tb/s
    - Have to restrict input to most significant signals
  - Modern FPGAs are not a single processor
    - Design FPGA contains 4 Super Logic Regions (SLR)
    - Must distribute algorithms between SLRs in a logical fashion
    - Transfer original and intermediate data between SLRs as required

#### Compact Integrated System





## Global Common Module Hardware

- Version 3 of GCM currently in prototyping stage
  - Five modules in full prototype run
  - Already undergoing extensive tests
    - Input and Output interfaces
    - Development of all versions of firmware
- Two Xilinx Versal Premium VP1802 on current version
  - One dedicated as MUX node, balanced input and output
    - Relatively low power
  - One dedicated as GEP node for algorithmic processing
    - Also repurposed as gCTPI in one module
  - Division of labour ensures similar power consumption across all GCM modules
- Final system consists of 50 GCMs (nominal)
  - Spread over 5 ATCA shelves
  - Plus supporting fibre management, PC control and readout



#### Plans for 10% Global Slice Test

- Next steps
  - Build up full slice through system
  - Test all input/output interfaces in tandem
  - Use FELIX readout to verify functionality
  - Follow testing strategy successfully deployed in previous system commissioning
- Full slice consists of 5 GCM prototypes
  - Need to be fully populated with transceivers
  - Full mesh connectivity as in final system, but only ~10% size
  - One gCTPi to complete path
  - Initially dummy algorithms
    - Once infrastructure works, can start to test with real algorithms and data



- Tests on individual components/links already well underway
  - Tests performed on FPGA demonstrator boards and prototype GCMs at BNL
- Expect combined slice test in early 2025
  - Initially at BNL, moving to test lab at CERN

- LHC-HL provides a set of challenges at all levels of TDAQ
  - Parameters for ATLAS solutions at LHC-HL have been shown
- ATLAS TDAQ preparations for Run-4 are already well advanced
- Hardware triggering (Level-0) converging on very similar module designs
  - Generic ATCA modules using modern FPGAs typically with SoC control
  - Usage of increasingly fast optical link technologies
  - Module functionality varies by firmware load
  - Investigation of Machine Learning techniques in several areas
- Software triggering (Event Filter) investigating several architectures
  - Traditional CPU based farms
  - GPU processors and accelerators
  - FPGA based solutions for specific problems

#### From ATLAS TDAQ Phase-2 Upgrade TDR

https://cds.cern.ch/record/2285584

# TDR trigger menu

|                                                                                                                                                                                  | Run 1               | Run 2 (2017)                 | Planned                                   |       | After      | Event                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------|-------------------------------------------|-------|------------|--------------------------------|
|                                                                                                                                                                                  | Offline $p_{\rm T}$ | Offline $p_{\rm T}$          | HL-LHC                                    | L0    | regional   | Filter                         |
|                                                                                                                                                                                  | Threshold           | Threshold                    | Offline $p_{\rm T}$                       | Rate  | tracking   | Rate                           |
| Trigger Selection                                                                                                                                                                | [GeV]               | [GeV]                        | Threshold [GeV]                           | [kHz] | cuts [kHz] | [kHz]                          |
| isolated single $e$                                                                                                                                                              | 25                  | 27                           | 22                                        | 200   | 40         | 1.5                            |
| isolated single $\mu$                                                                                                                                                            | 25                  | 27                           | 20                                        | 45    | 45         | 1.5                            |
| single $\gamma$                                                                                                                                                                  | 120                 | 145                          | 120                                       | 5     | 5          | 0.3                            |
| forward $e$                                                                                                                                                                      |                     |                              | 35                                        | 40    | 8          | 0.2                            |
| di- $\gamma$                                                                                                                                                                     | 25                  | 25                           | $25,\!25$                                 |       | 20         | 0.2                            |
| di-e                                                                                                                                                                             | 15                  | 18                           | $10,\!10$                                 | 60    | 10         | 0.2                            |
| di- $\mu$                                                                                                                                                                        | 15                  | 15                           | $10,\!10$                                 | 10    | 2          | 0.2                            |
| $e-\mu$                                                                                                                                                                          | 17,6                | $8,\!25 \; / \; 18,\!15$     | $10,\!10$                                 | 45    | 10         | 0.2                            |
| single $\tau$                                                                                                                                                                    | 100                 | 170                          | 150                                       | 3     | 3          | 0.35                           |
| di- $	au$                                                                                                                                                                        | 40,30               | $40,\!30$                    | 40,30                                     | 200   | 40         | $0.5^{\dagger\dagger\dagger}$  |
| single $b$ -jet                                                                                                                                                                  | 200                 | 235                          | 180                                       | าะ    | 95         | $0.35^{\dagger\dagger\dagger}$ |
| single jet                                                                                                                                                                       | 370                 | 460                          | 400                                       | 23    | 20         | 0.25                           |
| large-R jet                                                                                                                                                                      | 470                 | 500                          | 300                                       | 40    | 40         | 0.5                            |
| four-jet (w/ $b$ -tags)                                                                                                                                                          |                     | $45^{\dagger}(1\text{-tag})$ | 65(2-tags)                                | 100   | 20         | 0.1                            |
| four-jet                                                                                                                                                                         | 85                  | 125                          | 100                                       | 100   | 20         | 0.2                            |
| $H_{\mathrm{T}}$                                                                                                                                                                 | 700                 | 700                          | 375                                       | 50    | 10         | $0.2^{\dagger\dagger\dagger}$  |
| $E_{\mathrm{T}}^{\mathrm{miss}}$                                                                                                                                                 | 150                 | 200                          | 210                                       | 60    | 5          | 0.4                            |
| VBF inclusive                                                                                                                                                                    |                     |                              | $2 \times 75 \text{ w/} (\Delta n > 2.5)$ | 33    | 5          | $0.5^{\dagger\dagger\dagger}$  |
|                                                                                                                                                                                  |                     |                              | & $\Delta \phi < 2.5$ )                   |       |            |                                |
| $B	ext{-physics}^{\dagger\dagger}$                                                                                                                                               |                     |                              |                                           | 50    | 10         | 0.5                            |
| Supporting Trigs                                                                                                                                                                 |                     |                              |                                           | 100   | 40         | 2                              |
| Total                                                                                                                                                                            |                     |                              |                                           | 1066  | 338        | 10.4                           |
| <sup>1</sup> In Rut 2, the idea being utigger operators below the efficiency plateau of the Level-1 trigger.<br><sup>11</sup> This is a platechnike for selections to be failed. | 1                   | 1                            | 1                                         |       | 1          |                                |

#### Inputs to L0Calo



#### More detail on Global

