
ROOT’s RNTuple I/O Subsystem: The Path to Production

Jakob Blomer1,∗, Philippe Canal2, Florine de Geus1, Jonas Hahnfeld1, Axel Naumann1,
Javier Lopez-Gomez1, Giovanna Lazzari Miotto1, and Vincenzo Eduardo Padulano1

1CERN
2Fermilab

Abstract. The RNTuple I/O subsystem is ROOT’s future event data file for-
mat and access API. It is driven by the expected data volume increase at up-
coming HEP experiments, e.g. at the HL-LHC, and recent opportunities in
the storage hardware and software landscape such as NVMe drives and dis-
tributed object stores. RNTuple is a redesign of the TTree binary format and
API and has shown to deliver substantially faster data throughput and better
data compression both compared to TTree and to industry standard formats.
In order to let HENP computing workflows benefit from RNTuple’s superior
performance, however, the I/O stack needs to connect efficiently to the rest of
the ecosystem, from grid storage to (distributed) analysis frameworks to (mul-
tithreaded) experiment frameworks for reconstruction and ntuple derivation.
With the RNTuple binary format soon arriving at its first production release, we
present RNTuple’s feature set, integration efforts, and its performance impact on
the time-to-solution. We show the latest performance figures of RDataFrame
analysis code of realistic complexity, comparing RNTuple and TTree as data
sources. We discuss RNTuple’s approach to functionality critical to the HENP
I/O (such as multithreaded writes, fast data merging, schema evolution) and we
provide an outlook on the road to its use in production.

1 Introduction

The ROOT RNTuple project is a multi-year R&D effort to re-design the TTree event data
storage system for the HL-LHC era. [1–3] More than 1 EB of data of LHC Runs 1–3 are
stored worldwide in the TTree format. The RNTuple format is expected to store in the order
of 10 EB Run 4–6 data comprising all the experiment event data models (EDMs) stored in
TTree today.

Developed in the context of ROOT 7 [4], RNTuple comes with a carefully updated event
data binary layout and new C++ interfaces. RNTuple breaks backwards compatibility to
TTree in order to fully exploit optimization opportunities on modern storage hardware and
systems, such as SSDs, distributed object stores, and heterogeneous and highly parallel plat-
forms. Our previous performance studies (summarized in Section 3) show that RNTuple
compared to TTree produces significantly smaller files, often 15 % or more, and has signifi-
cantly better throughput, often by factors from compressed data to histograms. Furthermore,
RNTuple has shown to scale well on a small high-performance cluster served by a distributed
object store [5], a technology that is hard to access with TTree. LHC experiments expressed
∗e-mail: jblomer@cern.ch

EPJ Web of Conferences 295, 06020 (2024) https://doi.org/10.1051/epjconf/202429506020
CHEP 2023

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

interest to change the event data format to the RNTuple format within a timeline compatible
with HL-LHC.

Excellent performance for typical analysis workflows is a key motivation for the RNTuple
development. Yet, a useful I/O system for High Energy and Nuclear Physics has many more
facets. Data needs to be efficiently written, so the I/O system needs to be integrated with
potentially highly parallel experiment frameworks, and include means to efficiently derive
data sets without full recompression (“fast merging and cloning”). With experiment life times
of several decades, backward and forward compatibility are critical, both for the RNTuple
data format itself and for the user-defined data models stored in RNTuple files (“schema
evolution”). The I/O system furthermore needs to provide the flexibility to efficiently connect
to current and future Grid and HPC storage systems, such as XRootD, high-performance
cluster file systems or object stores.

This contribution summarizes the challenges and plans of moving the RNTuple prototype
to ROOT’s future production event I/O system. Figure 1 provides the timeline of the shift
from TTree to RNTuple. We foresee to finalize the RNTuple binary format by the end of
2024. Afterwards, the RNTuple file format will be limited to backward-compatible (and to
the possible extent forward-compatible) changes. We expect that the majority of TTree data
will remain in that format; hence TTree will stay available in ROOT as a legacy option.

Figure 1. RNTuple release timeline. The version 1 binary format is expected by the end of 2024,
followed by a ROOT 7 release that reads and writes the version 1 format. Future releases remain
backward compatible.

2 State of the RNTuple prototype

The RNTuple system is developed within the ROOT sources [6]. It is part of the root7
module. The classes are currently in the ROOT::Experimental namespace, i. e. they are
still subject to changes. The RNTuple sources also comprise the format specification, which
has been used already by third parties to build readers.

In its current state, RNTuple can read and write data with an API similar to the TTree one,
including bulk reading. RDataFrame processes RNTuple and TTree data alike. RNTuple’s
supported type system is more limited than TTree’s, yet already powerful enough to repre-
sent, for instance, CMS nanoAODs, and ATLAS PHYS, PHYSLITE, and full AOD files. The
ATLAS and CMS frameworks have included experimental RNTuple models in their integra-
tion builds.

3 Latest performance results

In this section, we show the performance of RNTuple on several small but realistic analy-
sis benchmarks (see Table 1). Figure 2 compares the storage efficiency of the benchmark
input data for TTree and RNTuple. The main contributor of RNTuple’s space savings is a
more compact representation of collections and boolean values. Furthermore, RNTuple uses
type-dependent data encodings (such as byte shuffling, delta encoding, zigzag encoding) that
optimize certain columns for better compression ratio.

EPJ Web of Conferences 295, 06020 (2024) https://doi.org/10.1051/epjconf/202429506020
CHEP 2023

2

Table 1. Sample analyses for performance evaluation. The first three benchmarks have been
introduced earlier. [2]

LHCb run 1 open data B2HHH H1 micro dst [×10] CMS nanoAOD June 2019 ATLAS OpenData
18/26 fields (>75 %) 16/152 fields (∼10 %) 6/1479 fields (<1 %) 13/81 fields (∼15 %)
fully flat data model event sub collections event sub collections std::vectors
8.5 million events 2.8 million events 1.6 million events 7.8 million events
24 k selected events 75 k selected events 141 k selected events 76 k selected events

Figure 3 compares the throughput of an RDataFrame implementation of the benchmarks,
with RNTuple and TTree input data, respectively. The benchmarks compare single-core
performance, input data is zstd compressed and comes from different sources. In no case
RNTuple is slower than TTree, typically it is substantially faster. The main contributors to
higher throughput are the smaller input data size to start with, asynchronous reading by de-
fault in RNTuple, parallel I/O to SSDs, and fewer instructions in the hot I/O code path. Note
that our previous performance comparisons used hand-optimized event loops for TTree and
RNTuple. The RDataFrame based comparison is closer to real-world analysis use cases.

0

0.5

1

1.5

2

2.5

ki
B

 /
ev

en
t

RNTuple

TTree

0
0.2
0.4
0.6
0.8

1

R
N

T
up

le
 /

T
T

re
e

99 %
75 % 66 %

31 %

"LHCb" "H1" "CMS" "ATLAS OpenData"

Fully flat ntuple Objectified collections (RVec<Muon>) All vectors (RVec<Muon_pt>)

Figure 2. Comparison between TTree and RNTuple for the average event size of the RNTuple standard
benchmarks. Input data is compressed with zstd.

Previous work compared RNTuple to HDF5 and Parquet [7] showing a clear performance
advantage of RNTuple. It’s noteworthy that the HDF5 results may vary depending on the ef-
fort put into adapting its inherent tensor layout to the columnar access pattern predominant in
HENP analyses. Furthermore, RNTuple has shown to scale on a >100 cores HPC cluster to
an aggregated throughput of more than 35 GB/s and more than 500MB/s single core through-
put [8]. Input data in this benchmark was a version of the “LHCb” benchmark scaled-up to
1 TB, served from a DAOS HPC object store. This benchmark validates basic scalability of
analysis code using distributed RDataFrame on RNTuple data sets.

4 Type system

High Energy Physics tends to use a rich type system in the experiment data models. Even
the simplest tasks typically require at least vectors of simple data types, i. e. a more complex

EPJ Web of Conferences 295, 06020 (2024) https://doi.org/10.1051/epjconf/202429506020
CHEP 2023

3

0

0.5

1

1.5

2

2.5

3
R

N
T

up
le

 S
pe

ed
up

 w
rt

. T
T

re
e "LHCb" "H1" "CMS" "ATLAS OpenData"

RAM Disk Solid State Disk Spinning Disk XRootD, 100GbE, 0.3ms

Figure 3. Throughput comparison between RNTuple and TTree for the RDataFrame implementation
of the RNTuple standard benchmarks, single threaded. Input data comes from different sources and is
zstd compressed. Benchmark environment is Alma Linux 9 with uring support (5.x mainline kernel),
AMD EPYC 7702P, 128 GB RAM, 100 GbE.

Table 2. Types that can be persistified with RNTuple. Precision cascades were recently introduced as a
mechanism to separate several levels of lossy compression into different files. [9]

PoD
bool, (unsigned) char, std::byte,
(u)int[8,16,32,64]_t, float, double

Flat n-tuple
Reduced

AOD

Full AOD /
ESD /
RECO

Available

(Nested) vectors std::vector, RVec, std::array,
C-style fixed-size arrays Available

String std::string Available
User-defined classes Non-cyclic classes with dictionaries Available
User-defined enums Scoped / unscoped enums with dictionaries Available
User-defined collections Non-associative collection proxy Available

stdlib types
std::atomic, std::pair, std::tuple,
std::bitset, std::(unordered)set,
std::(unordered)map

Available

Alternating types
std::variant, std::unique_ptr,
std::optional Available

Intra-event links "&Electrons[7]" In design

Low-precision
floating points

Double32_t, Float16_t, (b)float16

Optimization benefitting all EDMs
Available

Custom precision and range In design

Precision cascades In design

data representation than a flat table. Higher-level data formats that are used for simulation
and reconstruction by the frameworks typically persistify a broad set of C++ types. Table 2
summarizes the type support in RNTuple.

User-defined classes and enumerations require ROOT dictionaries, i. e. cling-provided
type reflection information. Conversely, simple and stdlib types in RNTuple can be seri-
alized without dictionaries. User-defined collections are supported through ROOT collection
proxies, identical to their support in TTree.

The TTree type system is more powerful still. For instance, it can store arbitrary ob-
ject relationships where objects hold (raw) pointers to each other and it supports dynamic
polymorphism, i. e. runtime type discovery when serializing a pointer to a base class. Those

EPJ Web of Conferences 295, 06020 (2024) https://doi.org/10.1051/epjconf/202429506020
CHEP 2023

4

two features will not be supported in RNTuple, following discussion with large experiments.
These features turned out to be both costly in terms of code maintenance and negatively
impacting overall performance.

While the columnar layout is desired for analysis workflows, reconstruction workflows
may require a row-wise data layout. During reconstruction, typically all the data members of
an event are read. Due to the larger event sizes, it is more difficult to fill the column buffers
given typical memory constraints. RNTuple support for row-wise storage is ongoing work.
It will be based on the support for BLOB fields, which have an on-disk layout comparable to
vectors of bytes.

5 Writing data and data derivation

In this section, we discuss the required mechanisms to create RNTuple data sets. RNTuple
provides an API to serialize C++ in-memory objects to disk entry-by-entry, similar to TTree.
RNTuple data generation through RDataFrame::Snapshot() is ongoing work.

Entry-by-entry writing becomes challenging in highly parallel environemnts. RNTuple
allows multi-threaded frameworks to prepare entries independently of each other and it can
leverage the available cores for the parallel compression of data pages. Still, object serializa-
tion and writing into a single file are synchronization points that impact scalability to high
core counts. Ongoing work implements a more scalable way of multi-threaded writing. The
RNTuple binary layout groups entry ranges in self-contained, relocatable clusters of the or-
der of 100 MB. Threads can, in principle, independently of each other prepare and write to a
single file entire clusters. In this write mode, synchronization points between cluster commits
from different threads will be very short and compatible with spin locks.

A particular challenge posed by the experiment frameworks is the need to extend the data
schema after the write process started. TTree addresses this challenge through “backfilling”,
i. e. the ability to add a new branch at any point and to set its values for the previous entries.
RNTuple provides a slimmed down version of this feature, called “late schema extension”,
that allows for adding deferred top-level data fields that are zero-initialized for the initial
entries.

5.1 Fast data re-shaping

An important mechanism in HENP data management is the ability to efficiently derive new
data sets from existing data without reprocessing and recompressing the entries. The ROOT
I/O provides “fast merging” (vertical merge of data sets with compatible schemas) and “fast
cloning” (discarding columns from existing data sets). Fast merging and fast cloning only
update meta-data and write the new data as carbon copy of existing blocks. This mechanism
has been successfully prototyped in RNTuple and is currently being implemented as produc-
tion code. The RNTuple format is prepared to implement horizontal merges (“materialized
friends”), which is a potential extension after the first production release.

An interesting variant is “zero copy merging and cloning” that leverages the copy-on-
write capability of modern file systems. In this mode, the physical data copy operation can
be avoided. RNTuple has shown a proof-of-concept exploitation of file system block sharing
support. [10]

5.2 Data joins

High-Energy Physics frequently uses a limited set of data joins: union of data sets (“chains”)
and 1:1 or 1:n joins (“friends”, possibly indexed). Support for these joins is already partially

EPJ Web of Conferences 295, 06020 (2024) https://doi.org/10.1051/epjconf/202429506020
CHEP 2023

5

available and planned to be complete for the first production release. An R&D program in
approval on more advanced use cases, such as stored filters (e.g., event bitmasks), indexed
joins, and provenance meta-data, is considered a potential extension after the first production
release

6 Format transition and compatibility

While the RNTuple binary format and the native API breaks backwards compatibility to
TTree, RNTuple aims at a smooth integration with the well-established ROOT/HEP ecosys-
tem. RNTuple data and TTree data can co-exist in (the same) ROOT files. RNTuple provides
automatic conversion of TTree data into RNTuple data (RNTupleImporter class).

RNTuple integrates with the commonly used ROOT I/O tooling, such as the browser and
the hadd utility1. Integration with the TBufferMerger and TMPIMerger parallel and dis-
tributed data merger infrastructure is planned. RNTuple will also adopt the TTree automatic
schema evolution rules as well as support for the infrastructure around the I/O customization
rules (“read rules”). Support for read rules affecting only transient data members is already
available. Full schema evolution support for user-defined classes is planned for the first pro-
duction release.

Analysis code written for RDataFrame needs no changes when the input data changes
from TTree to RNTuple. Direct users of the TTree API, such as experiment frameworks,
need to adapt to the new RNTuple interfaces. This is an intentional change. The new inter-
faces resemble the concepts established in TTree (such as filling and loading entries) but for
robustness they follow the modern C++ core guidelines.

There is no plan to implement the TTree::Draw() interface in RNTuple. However, there
is ongoing discussion on a ROOT plotting interface based on RDataFrame with a similar level
of expressiveness and conciseness.

7 Adoption

The RNTuple prototype, as available in the ROOT head of development, has been success-
fully integrated as experimental options in both the CMS and ATLAS software frameworks.
In CMSSW, a nanoAOD output module is able to write nanoAOD files in the RNTuple for-
mat. Athena can read and write ATLAS full AOD and derived AOD files in the RNTuple
format. These early adoption efforts provided very valuable feedback to the RNTuple devel-
opment, for instance regarding the required type support and modes of writing.

The uproot software [11] has re-implemented reading of RNTuple data, based on the
available RNTuple specification. In the future, we plan to provide as part of ROOT a C
interface that will give access to the RNTuple low-level functionality (e. g. schema informa-
tion, reading of columns). A C interface should significantly lower the barrier of providing
RNTuple functionality in languages other than C++ and Python, such as Julia or Rust.

8 Summary

In this contribution, we have shown the path for moving the ROOT RNTuple I/O system
from an R&D effort to a production event data I/O system for High-Energy and Nuclear
Physics. Besides fast reading of ragged, columnar data, a production I/O system for HENP
experiments needs to provide an additional, rich feature set catering both to end users and

1hadd integration to be completed at the time of writing

EPJ Web of Conferences 295, 06020 (2024) https://doi.org/10.1051/epjconf/202429506020
CHEP 2023

6

experiment frameworks. The additional feature set include automatic and manual schema
evolution for user-provided data models, mechanism for efficient writes in highly parallel
environments, fast merging and cloning for the efficient construction of derived data sets,
horizontal and vertical data joins, and support for a comprehensive type system covering a
substantial subset of the types available in C++. These features are difficult to find in off-the-
shelf I/O systems from industry or the HPC world.

At the same time, the RNTuple development aims at reducing the feature set for event data
compared to current production ROOT I/O in order to avoid, on the path forward, promoting
functionality with a severe performance impact or that becomes disproportionally difficult to
maintain. There is ongoing collaboration with large experiments on the final feature set of
the first production release, the timeline, the transition path, and the validation of RNTuple at
scale. These efforts are on track for mounting RNTuple as a production system for HL-LHC
data.

References

[1] R. Brun, F. Rademakers, Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment A 389, 81–86
(1997)

[2] J. Blomer, P. Canal, A. Naumann, D. Piparo, EPJ Web Conf 245, 02030 (2020)
[3] The ROOT Team, Tech. Rep. FERMILAB-FN-1165-SCD, Fermilab (2021)
[4] ROOT 7, https://root.cern/for_developers/root7/, accessed: 2023-11-27
[5] J. Lopez-Gomez, J. Blomer, EPJ Web Conf 251 (2021)
[6] The ROOT Team, ROOT, https://github.com/root-project/root (2023)
[7] J. Lopez-Gomez, J. Blomer, Journal of Physics: Conference Series 2438 (2023)
[8] V.E. Padulano, E.T. Saavedra, P. Alonso-Jordà, J.L. Gómez, J. Blomer, Cluster Com-

puting 25 (2022)
[9] Y. Ying, Precision Cascade: A novel algorithm for multi-precision extreme compres-

sion, in Proc. of 21st International Workshop on Advanced Computing and Analysis
Techniques in Physics Research (ACAT) (2022)

[10] E. Marinelli, Zero-copy merge with RNTuples, https://cds.cern.ch/record/2834291
(2022)

[11] J. Pivarski, P. Das, C. Burr, D. Smirnov, M. Feickert, T. Gal, L. Kreczko, N. Smith,
N. Biederbeck, O. Shadura et al., scikit-hep/uproot3: 3.14.4 (2021), https://doi.
org/10.5281/zenodo.4537826

EPJ Web of Conferences 295, 06020 (2024) https://doi.org/10.1051/epjconf/202429506020
CHEP 2023

7

