Home > CMS Collection > CMS Preprints > Scalable Temporal Anomaly Causality Discovery in Large Systems: Achieving Computational Efficiency with Binary Anomaly Flag Data > Plots |
A TS with time lag effect $\mathbf{x}^1_{t - 1} \rightarrow \mathbf{x}^2$ and instantaneous effect $\mathbf{x}^1_t \rightarrow \mathbf{x}^3_t$~\cite{peters2017elements}. |
Schematic of the CMS experiment~\cite{focardi2012status}. |
Temporal anomaly CD approach diagram. The approach infers causal interaction among monitoring sensor variables from binary anomaly data. |
Sensor TS reading data from all four RMs of the RBX-HEP07. The HEP07\_i denotes the $i^{\text{th}}$ RM of the RBX. |
Online temporal AD on the RBX-HEP07-RM-1 sensors. |
Number of detected anomaly flags from all RMs of RBX-HEP07. The humidity sensors have a higher count due to drifting trends. |
Temporal GCM of HEP07-RM using time-lag $t=0, \dots, 5$. |
Temporal GCM-DAG network of HEP07-RM after edges pruning. |
Causal graph of EasyVista's monitoring system during normal operation. |
The generated TS anomaly-flag data using our online-AD on the EasyVista sensors. |
The generated TS anomaly-flag data using our online-AD on the EasyVista sensors. |
The estimated TS GCM using \textsc{AnomalyCD} for the EasyVista system from binary anomaly data: a) \textsc{AnomalyCD}, and b) \textsc{AnomalyCD}-Directed. |
The estimated TS GCM using \textsc{AnomalyCD} for the EasyVista system from binary anomaly data: a) \textsc{AnomalyCD}, and b) \textsc{AnomalyCD}-Directed. |