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Abstract

Extracting anomaly causality facilitates diagnostics once system faults are detected by monitoring
systems. Identifying anomaly causes in large systems involves investigating a more extensive set of
monitoring variables across multiple subsystems. However, learning causal graphs comes with a sig-
nificant computational burden that restrains the applicability of most existing methods in real-time and
large-scale deployments. In addition, modern monitoring applications for large systems often gener-
ate large amounts of binary alarm flags, and the distinct characteristics of binary anomaly data—the
meaning of state transition and data sparsity—challenge existing causality learning mechanisms. This
study proposes an anomaly causal discovery approach (AnomalyCD), addressing the accuracy and
computational challenges of generating causal graphs from binary flag data sets. The AnomalyCD
framework presents several strategies, such as anomaly flag characteristics incorporating causality
testing, sparse data and link compression, and edge pruning adjustment approaches. We validate the
performance of this framework on two datasets: monitoring sensor data of the readout-box system
of the Compact Muon Solenoid experiment at CERN, and a public data set for information technol-
ogy monitoring. The result demonstrates the significant reduction of the computation overhead and
moderate enhancement of the accuracy of causal discovery on temporal binary anomaly data sets.
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ABSTRACT

Extracting anomaly causality facilitates diagnostics once monitoring systems detect system faults.
Identifying anomaly causes in large systems involves investigating a more extensive set of monitoring
variables across multiple subsystems. However, learning causal graphs comes with a significant
computational burden that restrains the applicability of most existing methods in real-time and large-
scale deployments. In addition, modern monitoring applications for large systems often generate
large amounts of binary alarm flags, and the distinct characteristics of binary anomaly data—the
meaning of state transition and data sparsity—challenge existing causality learning mechanisms. This
study proposes an anomaly causal discovery approach (ANOMALYCD), addressing the accuracy and
computational challenges of generating causal graphs from binary flag data sets. The ANOMALYCD
framework presents several strategies, such as anomaly flag characteristics incorporating causality
testing, sparse data and link compression, and edge pruning adjustment approaches. We validate the
performance of this framework on two datasets: monitoring sensor data of the readout-box system of
the Compact Muon Solenoid experiment at CERN, and a public data set for information technology
monitoring. The results demonstrate the considerable reduction of the computation overhead and
moderate enhancement of the accuracy of temporal causal discovery on binary anomaly data sets.
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1 Introduction

Anomaly detection (AD) approaches are commonly employed in industrial monitoring systems to capture anomalies
that require attention that would improve efficiency, safety, and reliability while lowering maintenance expenses [1, 2].
Machine learning for AD has been proposed for front-end electronics sensors [3, 4], and data quality monitoring at the
Compact Muon Solenoid (CMS) experiment at CERN’s Large Hadron Collider (LHC) [5–8]. Discovering causality
from a broader range of sensors, including variables that are not monitored by pre-trained AD models, for captured
anomalies is essential to facilitate fault diagnostics through root cause discovery and analysis. Causal knowledge
of direct and indirect effects, interaction pathways, and time-lags can assist in comprehending fault root causes and
modeling physical systems to predict the impact of anomaly occurrence or interventions [9].

The propagating nature of malfunctions makes fault diagnosis challenging in most multivariate processes [1]. Causal
knowledge of faults is traditionally acquired through inductive and deductive risk analysis using variants of failure
mode and effects analysis, and fault tree analysis, respectively [10]. These approaches provide rules for modeling
expert knowledge for prior known malfunctions; they may also incorporate querying mechanisms [11]. The approaches
require extensive domain knowledge from many experts and are a time-consuming process in addition to the possible
ambiguity and incompleteness in large systems [10]. Data-driven approaches directly learn causality from the data
collected by the sensor monitoring systems [1, 12–18]. AD and causal discovery (CD) often remain highly intractable
due to widely diverse operational modes, disparate data types, and complex fault propagation mechanisms [2, 13, 14].
Recent advances in AD for large complex systems focus on specific subsystems because of the curse of dimensionality,
data annotation challenges, and the need for accuracy improvement; this results in multiple AD models for monitoring
different subsystems [3, 4, 7, 8, 19–21]. Identifying the causes of an anomaly requires investigating an extensive set
of monitoring variables across subsystems that the trained AD models may not cover. An end-to-end framework for
anomaly CD that addresses the challenges pertaining to large systems is thus of interest in various domains.

We propose an anomaly causal discovery framework (ANOMALYCD) consisting of several methods to address various
challenges related to generating causal knowledge discovery on multivariate anomaly data. We employ anomaly alert
aggregation from multiple systems ameliorated with a temporal online AD method, sparse data handling, causal graph
structure learning, and causality inference with Bayesian network modeling. Our study focuses on discovering anomaly
causality from time series (TS) binary flags. Binary flag data lessens the impact of data heterogeneity streamed from
from diverse AD models, and provides data normalization. Although there are some recent efforts for inferring empirical
causal graphs from binary data [22] or outlier signals [23], there is still a gap in addressing the unique challenges
of binary anomaly data for large systems. Time series binary anomaly data has distinctive characteristics that are
different from ordinary categorical or discrete data: it has transition awareness from normal flag 0 to alert flag 1 during
anomaly occurrence, and it may exhibit severe data sparsity because of long uniform status regions. The existing
causality learning mechanisms have yet to be established effectively to handle these characteristics. We present a
customized conditional independence test to incorporate anomaly data attributes, a Peter-Clark momentary conditional
independence (PCMCI) algorithm—a popular constraint-based estimator for CD on TS data [24–27])—to generate the
anomaly causal graph structure, and Bayesian network [28] to query causality inference. We also propose a simple
but promising compression method for binary anomaly-flag data that substantially reduces the computational cost of
the causal graph learning process. We have applied the proposed framework to monitor multivariate sensor data from
the readout box systems of the Hadron Calorimeter (HCAL) of the CMS experiment. The results establish that our
approach accurately detects outlier behaviors and generates causal networks consistent with the actual physical circuit
connections and environmental associations. The proposed approach considerably reduces the computational cost of
causal graph learning, making it more efficient.

We discuss the background on CD in Section 2. We briefly describe the HCAL readout box system and its monitoring
sensor data sets in Section 3. We present our approaches in Section 4, and provide results and discussion in Section 5.
We summarize the contribution of our study in Section 6.
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2 Background

In this section, we will discuss background concepts and review recent studies on causal graph learning for TS data.

2.1 Anomaly Causal Discovery and Analysis

In the realm of system monitoring for complex systems, it is imperative to delve beyond predictive or descriptive machine
learning tasks to fully comprehend the cause-effect relationship among different variables and systems [13, 14]. The
investigation of causality is a prominent area of interest in diverse fields, including but not limited to IT systems [29,30],
transportation [10], medical science [31, 32], meteorology [13], and social science [22]. Causal presentation of
multivariate is an essential component in root-cause analysis (RCA) that deals with the identification of the underlying
root causes and provides an explanation of how the faults are impacting the monitored system [23, 30, 33]. Models of
causal relationships may answer additional diagnostic questions, such as what would happen if faults occur in particular
variables and predicting how specific variables trigger faults in other variables or systems. Causal discovery and analysis
are becoming increasingly essential in the industry for identifying the underlying behaviors and evolution of process
faults [12, 13]. The relationship among different variables or components often involves multiple time lags in modern
cyber-physical industrial systems. These time lags produce a delay of the fault propagation on the causally connected
process variables [34]. Although temporal data provides valuable context that enhances AD and CD, it requires special
handling to address the specific challenges often posed by the temporal data characteristics or the complexity of causal
processes emanating from slower data acquisition rates than the underlying rate of changes, missing data, measurement
error, non-stationarity, unmeasured confounding factors, and causality heterogeneity and non-linearity (concept drift on
the causal relationship) [12, 13].

Here we discuss some of the recent data-driven approaches for CD and RCA, which include statistical [1, 16, 35–
38], information theory [1], and machine learning algorithms [2, 14, 18, 34, 35]. Rashidi et al. [1] present kernel
principal component analysis (KERNEL-PCA) transformation and symbolic transfer entropy to reduce causality
analysis computation for RCA fault diagnosis on multivariate nonlinear variables. The residual data of KERNEL-PCA
detects system faults, and normalized transfer entropy determines the causal pathways from process variables to the
residual signal. The proposed method identifies only potential root causes and does not provide causal interactions
among TS variables. Tian et al. [16] propose convergent cross-mapping to build a causal network for TS alarm data
root cause tracing in industrial processes. The study assumes only deterministic system theory that the data is a
chaotic TS generated by a nonlinear deterministic system. Chen et al. [35] combine multivariate nonlinear chirp mode
decomposition with Granger causality to detect and analyze root causes for multiple plant-wide oscillations in a process
control system. The approach involves oscillating variable clustering and Granger causality to each group to obtain
the root causes. Liu et al. [14] employ a spatio-temporal pattern network for RCA on TS anomalies in distributed
complex systems. The anomalies are detected from changes in the causality dependency networks generated from a
restricted Boltzmann machine model trained on symbolic representation of the healthy TS data. The energy strength of
switching or flipping a symbolic pattern indicates potential root causes. Steenwinckel et al. [10] discuss fusing expert
knowledge with a data-driven semantic rule mining for adaptive AD and RCA for predictive maintenance of trains. They
employ matrix profiling [38], a sliding time window pattern matching through z-normalized Euclidean distance, to find
abnormal discords in sensors and match incoming patterns against those previously confirmed anomalies. Liu et al. [37]
discuss fine-tuning Spearman’s rank correlation analysis with domain knowledge rules to build a Bayesian network
for fault detection and diagnosis. Qin et al. [36] utilize PCA-based fault detection and variable selection using feature
importance from extreme gradient boosting for RCA. The study adopts the temporal CD network from [17] to analyze
the root cause of faults without historical fault information. Leonhardt et al. [2] employ deep graph convolution neural
networks to solve the sparse and nonlinear problem of the state space models for RCA.

Recent approaches have also integrated causality inference into the AD deep learning models [18, 34]. Zhou et al. [18]
present a framework using temporal convolution and multi-head self-attention networks for CD and a contrastive causal
graph for RCA in multivariate TS. They propose modifying the convolutional neural networks with feature reconstruction
and skip connections to improve feature extraction and detect delay-time causalities. Their attention method employs
threshold normalization for quantifiable causal inference. Chen et al. [34] propose a sparse causal residual neural
network model to extract multi-time-lag causal relations for industrial process fault diagnosis concurrently. The
parameters of the model describe the integral causal structure by optimizing a multivariate TS forecasting objective
with hierarchical sparsity constraints.

Causal graph networks are popular for their intuitive presentation capability [23, 29, 33, 39]; they provide a visual
presentation of the causality using graphs. The graphs show influence and effect paths, provide strength and direction
of leakage, and allow calculation of influence propagation on the paths; these attributes make causal graphs popular
for identifying the CD and RCA applications [23, 33]. Wang et al. [29] presents CLOUDRANGER that utilizes the
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non-temporal Peter-Clark (PC) algorithm for TS data to discover the causal graph between anomalies and identifies
root causes through a random walk on a transition matrix. They employ correlation between variable pairs to generate
the transition matrix. MICROCAUSE in Ref. [30] enhances the CLOUDRANGER by inferring the causal graph discovery
using the PCMCI algorithm [25]. The MICROCAUSE estimates the partial correlation between causally related variables
given their parents in the graph to compute the transition matrix for the random walk. WHYMDC in Ref. [39] identifies
root causes from non-temporal data by searching for changes in causality on a given directed acyclic causal graph.
CAUSALRCA in Ref. [23] employs the SHAPLEY value [40] to quantify contributions and rank root causes of a point
anomaly score using non-temporal structural causal models. EASYRCA in Ref. [33] identifies the root causes of
collective anomalies in TS data from an acyclic causal graph. The approach utilizes a summary causal graph (without
time lag specification) of the TS data in a normal operation. The root causes are captured for each group either directly
from the graph and appearance time of the anomalies or by comparing causal effects in the normal and abnormal
regimes. The study does not address the problem of causal graph discovery, and it assumes that the graph already exists,
which is a challenging assumption to hold in several real-world complex systems. The above recent approaches for
anomaly RCA either consider non-temporal modeling approaches, requiring the availability of a causal network of the
normal operation, or are not adequately optimized for binary anomaly-flag data [23, 29, 33, 39].

2.2 Causal Graph Discovery Methods

The first step of graph-based causality analysis is to construct the causal graph model of the variables (see Definition 1).
The graph model captures direct dependencies and shared drivers among multiple data variables, the graph nodes.

Definition 1 Graphical causal model (GCM) states that if two variables have an edge in between X → Y in the
directed graph, then X is a direct cause of Y ; there exist interventions on X that will directly change Y (distribution or
value). The edge of GCM between variables X and Y can model 1) a direct causal relationship (X → Y or Y → X),
2) a causal relationship in either direction (X—Y ), and 3) a non-causal association (X ↔ Y ) due to external common
causes.

Data-driven causal graph structure learning methods can broadly be categorized into:

• Constraint-based: Relies on conditional independence (CI) relationships X⊥Y |Z (X independent of Y
condition on Z) to infer the causal DAG structure. Some of the popular methods include PC [31], grow-shrink
(GS) [41], incremental association (IAMP) [42], max-min parents and children (MMPC) [43], and fast causal
inference (FCI) [31]). The PC algorithm in Refs. [31,44] is a widely used method that builds a causal graph by
adding edges based on CI tests. It learns a partial directed acyclic graph (PDAG) representing the dependencies
based on the causal Markov condition and the faithfulness assumption. When there is no latent confounder,
two variables are directly causally related with an edge in between if and only if there is no subset of the
remaining variables conditioning on which they are independent. Three main steps are involved in the PC: 1)
identifying the graph skeleton induced by those CI relations, 2) identifying v-structure (X → Y ← Z), and 3)
deriving edge directions. FCI [31] loosens the causal sufficiency assumption—the measured variables include
all common causes, and there is no unobserved confounding variable—of PC to deal with unmeasured latent
variables.

• Score-based: Employs optimization search for causal DAG structure to the observed data based on a scoring
metric [9, 12, 13, 45]; e.g., hill-climbing search (HC) [46], and greedy equivalent search (GES) [47, 48]. These
methods explore the space of PDAGs structure classes and minimize a global score—e.g., the Bayesian
information criterion and Bayesian Dirichlet equivalent uniform prior—using add, remove, and reverse edge
operators to return the optimal structure [47, 48].

• Hybrid: Combines the ideas from constraint-based and score-based algorithms to enhance accuracy and
computational efficiency; e.g., max-min hill climbing (MMHC) [45], and greedy FCI (GFCI) [49]. MMHC
algorithm first builds the skeleton network using CI tests and then performs a Bayesian-scoring greedy HC to
orient the edges [45]. Greedy FCI embarks with fast GES to get a first sketch of the graph rapidly, then uses
the FCI constraint-based rules to orient the edges in the presence of potential confounders [49].

• Functional causal model (FCM): is a recent CD approach that represents the effect as a function of the causes
and independent noise terms [45, 49]; e.g., causal additive models [50] and causal generative neural net-
works [51] and others [12, 13]. FCM captures the asymmetry between cause and effect variables, representing
the effect Y as a function of the direct causes X and noise factor ϑ as:

Y ← fθ(X,ϑ; θ) (1)

where ϑ is the noise term that is assumed to be independent of X , the function f explains how Y is generated
from X , and θ is the parameter set of f . Diverse FCM approaches have been proposed in the literature using
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regression models, structural equation models, autoregressive models, and neural network models as reviewed
in Refs. [12, 13].

Structured reviews on learning methods for GCM are available in Refs. [12, 13], and a more detailed explanation
of structural causal model properties in a textbook [52]. We limit our discussion to studies related to TS data as in
Refs. [9, 17, 18, 24–27, 34, 53–55].

2.2.1 Causal Discovery in Time Series Data

Causal graph modeling for TS data is a growing area of study in several scientific disciplines [24, 53]. Multivariate TS
data become abundant in several real-world domains with the proliferation of the sensor networks, but finding the causal
dynamics in such data is challenging for many reasons: non-linearity of the generating process, data non-stationarity,
concept drift over time, varying data rates, and missing data [12]. Time series GCM approaches need to capture time-lag
causality besides addressing the stated challenges of TS data (see Figure 1). Commonly employed TS GCM methods
include Granger causality [53, 54], constraint-based [9, 9, 24–27, 55], and machine learning [17, 18, 34].

Figure 1: A TS with time lag effect x1
t−1 → x2 and instantaneous effect x1

t → x3
t [52].

A popular method for TS data is the Granger causality [56] that formulates a notion of causality based on how well past
values of a TS yt could predict future values of another series xt. LetH<t be all the relevant history information up to
time t− 1 and f (xt | H<t) be the optimal prediction of xt givenH<t. Granger defined y to be causal for x if:

var [xt − f (xt | H<t)] < var [xt − f (xt | H<t/y<t)] (2)

where var denotes variance, and H<t/y<t indicates excluding the values of y<t from H<t. Granger assumes the
identifiability of a unique linear model with N TS variables as:

xi
t =

q∑
s=1

Aij
s x

j
t−s + eit, ∀j ̸= i (3)

where A1, . . . , AN−1 are N × q lag coefficient matrices with order N − 1. The et is a noise or error term with a
diagonal or nondiagonal covariance matrix. Granger’s equation corresponds to the TS vector autoregressive model
being treated as a simple causal model without or with contemporaneous causal effects at t = 0. Tank et al. [57] present
nonlinear Granger methods using structured multilayer perceptrons and recurrent neural networks. They combine
sparsity-inducing convex group-lasso penalties on the weights that attempt to extract the Granger causal structure by
encouraging specific sets of weights to be zero. The predictability characterization of Granger may not directly imply
a causal effect of y on x, improving the prediction of x does not necessarily mean y causes x. The effectiveness of
the Granger method in deducing causal connections has thus been a subject of ongoing discussion because of the
assumption that predictability implies causality, sensitivity to temporal aggregation and subsampling, and unmeasured
confounder effects [54]. Nonetheless, the Granger method remains a valuable tool for analyzing TS data and is widely
utilized across various domains, including economics, finance, genomics, and neuroscience [54].

References [9, 24–27] introduce and extend variants of PCMCI, an extension of the PC algorithm [31] leveraged with
false-positive cleaning momentary conditional independence for TS CD. The PCMCI methods with linear and non-linear
conditional independence tests outperform state-of-the-art techniques in causality detection on large TS data sets across
a range of research fields [25]. Gerhardus et al. [9] propose Latent-PCMCI that relaxes the causal sufficiency assumption
of PC extends PCMCI to enhance recall CD with unknown latent confounders using FCI. Saggioro et al. [27] extend
the PCMCI to handle non-stationarity with regime-dependent causal graphs using a time-windowing method. A slightly
different approach is adopted in the time-aware PC (TPC); it employs the PC algorithm for TS by considering time
delay, bootstrapping, and pruning [55]. The approach proceeds by unrolling the TS data (adding new nodes with time
delay tags) and generating DAG by applying a set of conditions: using causality can only apply forward-in-time to direct
edges, and weight thresholding to prune the graph when rolling the DAG. The bootstrapping samples time-window data
iteratively to fine-tune the DAG.
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Deep learning (DL) models have also been explored for GCM on TS data [17]. Nauta et al. [17] present a temporal
CD framework (TCDF) using the attention scores of the prediction convolutional network. The TCDF consists
of k-independent prediction networks based on the temporal convolutional network, where k is the number of TS.
Each network performs CD through the attention mechanism that obtains the causal time delay information through
convolutional kernel weight routes. The sequences other than the target TS are fed into the network for the prediction
process of a given target. The sequence with a high attention score is the causal sequence of the target sequence.
Training prediction models for each variable may constrain the TCDF scalability when the number of variables increases,
which is the case in large complex systems.

2.3 Bayesian Networks

Once the causal graph structure is identified, the second stage of CD is parameterizing the links. Probabilistic
parameterization methods such as Bayesian networks allow flexible and faster querying for causal inference. A
Bayesian network (BN) is a probabilistic graphical model representing variables and their conditional dependencies
through a directed acyclic graph [28]. BNs are parameterized using conditional probability distributions (CPD), each
node n in the network is modeled as P (n | PA(n)) where PA(n) represents the parents of a node in the network.
Bayesian networks represent causal relationships between the variables using CPDs as measures of the causal strength
between nodes. Causality modeling with BNs from a given data involves two phases: 1) building the DAG topology
structure, and 2) estimating CPD parameters of the DAG. Although parameter estimation is considered a well-studied
subject and can be achieved with less computation cost even with limited data availability, learning the DAG structure is
more difficult with exponential computational cost as the data and number of variables grow.

Definition 2 A Bayesian network is a probabilistic representation of joint distributions over the variables using a DAG
model. The CPD is computed using the DAG from data using Bayes and chain rules of probability as follows:

P (A,B,C) = P (A|B,C)P (B|C)P (C) (4)

The equation shows that the joint distribution of all variables is the sum of all CPDs in the network. Representing
the joint distribution’s independence in a graph structure allows for storing fewer BN parameters overall. Maximum
likelihood estimation and Bayesian parameter estimator are widely employed BN parameter learning methods [46].
The maximum likelihood estimates the CPDs simply using the relative frequencies with which the variable states
have occurred. However, this approach has the problem of overfitting the data; for example, it will be extremely far
off for small data that are not fully representative of the underlying distribution. The Bayesian parameter estimator
mitigates the overfitting issue of the maximum likelihood estimation by starting with already existing CPDs using prior
histogram counts before the data was observed. For instance, the K2-prior adds prior initial pseudo-state counts (adds
1) to the actual counts before normalization. Those "priors" are then updated using the state counts from the observed
data. Another choice of prior is the Bayesian Dirichlet equivalent uniform prior which assumes the Dirichlet prior
distribution over the parameters of the network that reflect a uniform distribution over possible values [46].

3 Dataset Description

3.1 The HCAL Readout Box Monitoring Data set

The CMS HCAL is a specialized calorimeter that captures hadronic particles during a collision event in the CMS
experiment (see Figure 2) [58, 59]. The primary purpose of the HCAL is to measure the energy of hadrons by
absorbing their energy and converting it into measurable signals. The calorimeter is composed of brass and plastic
scintillators, and the scintillation light produced in the plastic is transmitted through wavelength-shifting fibers to Silicon
photomultipliers (SiPMs) (see Figure 3) [59, 60]. The HCAL front-end electronics consist of components responsible
for sensing and digitizing optical signals of the collision particles. The front-end electronics are divided into sectors of
readout boxes (RBXes) that house and provide voltage, backplane communications, and cooling to the data acquisition
electronics.

The HCAL is made of four subsystems (subdetectors): the HCAL Endcap (HE), the HCAL Barrel (HB), the HCAL
Forward (HF), and the HCAL Outer (HO) [62]. The front-end electronics of the HE, the use-case of our study, is made
of 36 RBXes arranged on the plus and minus hemispheres of the CMS detector [62,63]. Each RBX houses four readout
modules (RMs) for signal digitization [60]; each RM has a SiPM control card, 48 SiPMs, and four readout cards—each
includes 12 charge integrating and encoding chips (QIE11) and a field programmable gate array (Microsemi Igloo2
FPGA). The QIE integrates charge from each SiPM at 40 MHz, and the FPGA serializes and encodes the data from the
QIE. The encoded data is optically transmitted to the backend system through the CERN versatile twin transmitter
(VTTx) at 4.8 Gbps.
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(a)

Figure 2: Schematic of the CMS experiment [61].

Figure 3: The frontend electronics of the HE data acquisition chain, including the SiPMs, the frontend readout cards,
and the optical link connected to the back-end electronics [60]. Each readout card contains twelve QIE11 for charge
integration, an Igloo2 FPGA for data serialization and encoding, and a VTTx optical transmitter.

Our HCAL use case dataset includes sensor readings from the RMs of the thirty-six RBXes in the HE detector. Each
RM has twelve diagnostic sensors, four from the SiPM control card and eight from four QIE cards (see Table 1). The
dataset was obtained from the HCAL online software monitoring system (the ngCCM server) from 01/08/2022 to
30/11/2022. The monitoring sensor data comprises four-month data of 20.7M samples, around 12K per sensor per
RM. The dataset contains irregularly sampled and considerably sparse data, a few samples are logged every eight for
the SiPM control card and two hours for the QIE card sensors. We utilize data from all four RMs of the RBX-HEP07
at one-minute intervals for the online AD and CD evaluation; the RBX-HEP07 is one of the RBX with diverging
behavior [64]. We removed the extended reading gaps due to various non-physics activities on the LHC. We interpolated
(up to eight-hour gaps) the remaining time regions into one-minute intervals in data preprocessing. The final dataset
contains 100K samples per RM per sensor, 4.8M data samples.

Table 1: HE-RM monitoring sensor data variables description.
No. Notation Variable Name Remark
1 SPV PELTIER_VOLTAGE_F Voltage of the SiPM Peltier temperature controller
2 SPC PELTIER_CURRENT_F Current of the SiPM Peltier temperature controller
3 SRT RTDTEMPERATURE_F SiPM control card temperature averaged over 50 samples
4 SCH HUMIDITY_F SiPM control card humidity
5 Q1H 1-B-SHT_RH_F QIE card 1 humidity
6 Q2H 2-B-SHT_RH_F QIE card 2 humidity
7 Q3H 3-B-SHT_RH_F QIE card 3 humidity
8 Q4H 4-B-SHT_RH_F QIE card 4 humidity
9 Q1T 1-B-SHT_TEMP_F QIE card 1 temperature
10 Q2T 2-B-SHT_TEMP_F QIE card 2 temperature
11 Q3T 3-B-SHT_TEMP_F QIE card 3 temperature
12 Q4T 4-B-SHT_TEMP_F QIE card 4 temperature
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3.2 EasyVista Monitoring Public Data set

EasyVista [65] has provided a multivariate sensor dataset from their information technology monitoring system and
made the data publicly available in Ref. [66]. The dataset consists of eight TS variables collected with a one-minute
sampling rate (see Table 2). Following Assaad et al. [33], we utilize a data segment, indexed from 45683 to 50000, for
our CD evaluation; each of the sensors is considered anomalous with collective anomalies that have the same time of
appearance and duration.

Table 2: EasyVista monitoring data variables description.
No. Notation Remark
1 PMDB The extraction of some information about the messages received by the Storm ingestion system.
2 MDB Activity of a process that orients messages to another process with respect to different types of messages.
3 CMB Activity of extraction of metrics from messages
4 MB Activity of insertion of data in a database.
5 LMB Activity of updates of the last values of metrics in Cassandra.
6 RTMB Activity of searching to merge of data with information coming from the check message bolt.
7 GSIB Activity of insertion of historical status in database.
8 ESB Activity of writing data in Elasticsearch.

4 Methodology

This section presents our proposed ANOMALYCD approach for anomaly CD on TS data sets.

We present a framework for anomaly causality diagnostics that addresses the CD of binary anomaly data challenges.
The proposed framework comprises two main modules, i.e., causal graph discovery and causality inference (see
Figure 4). The causal graph discovery prepares temporal causal networks and trains a BN inference model on the input
anomaly data streamed from trained (or online) AD systems. The causality inference modules handle user queries with
observation conditions and provide causality and conditional probabilities using the BN model. The causality inference
queries on the causal graph network include:

• Conditional probability inference: Probabilistic inference allows users to query the BN model for any marginal
distribution of anomaly occurrence. The inference module provides features to estimate the causal effect
between two variables on a given observed anomaly evidence. We employ variable elimination algorithm, an
exact inference technique for solving Bayes’ equations, to estimate conditional distributions over a subset of
variables from the probabilistic graphical BN models.

Ci = ℘(B, xi, S) (5)

where Ci is the conditional probability of the ith sensor for its anomaly flag state si = 1 given the observed
evidence of states of S = {sj ∈ {0, 1}, ∀j ̸= i}. The ℘ is the inference engine with the BN B.

• Check for causality: Infers the status of common cause between two sensors with active anomaly flag given
evidence of anomaly condition status of the other sensors. It checks if there is an active trail, or d-connection
between the start and end nodes, given that the evidence is observed.

We have previously trained deep-learning AD models on frontend electronics of the HE detector, including the next-
generation clock and control module (ngCCM), RM and data quality monitoring (DQM) [3, 4, 7, 8]. The HE-ngCCM
AD model monitors the HE clock and control module of the 36 RBXes, each with 28 sensors [3, 4]. The HE-RM
AD model, which adopted Ref. [3], monitors the readout module of the RBXes (each RBX has 4 RMs, and each RM
has 113 sensors). The DQM-AD monitors 3D spatial data of around 7K physics acquisition channels, 48 channels
per RM [7]. The HCAL also comprises several electronic components, and it is often essential to investigate several
systems in the pipeline to diagnose and identify root causes of system faults. We incorporate online temporal AD that
detects anomalies on variables that are not actively monitored by the previously trained models in Refs. [3, 4, 7, 8].
Since we have already discussed the above trained AD models in our previous works [3, 4, 7, 8], we will focus below on
the proposed online AD and CD approaches.

4.1 Online Time Series Anomaly Detection

We present an online AD algorithm to detect unusual temporal patterns and generate anomaly flags for sensor variables
that trained DL models do not actively monitor; we incorporate the algorithm into the proposed CD framework.
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Figure 4: Our anomaly causal discovery and analysis framework for the HCAL monitoring. The approach builds a
GCM and a BN on the binary anomaly-flag data generated from several systems using AD models.

Different types of variations can occur in TS data, including long-term trends, seasonal changes, periodic fluctuations,
and nonrandom sources of variations [67]; these variations can impact the modeling approach and algorithm choices.
The proposed online AD system detects anomalies, such as temporal outliers, slow trend drifts, and spectral outliers,
using an ensemble of temporal outlier detection algorithms. Building a generic one-fits-all approach is challenging as
the requirements depend on signal characteristics and target application. We propose online AD on univariate TS data
to capture typical points and collective anomalies, including transient changes in time and frequency, and gradual signal
trend drifts. The approach consists of an ensemble of three TS time- and frequency-domain outlier detection algorithms
(see Algorithm 1): 1) detecting temporal outliers, 2) detecting changes in temporal trends, and 3) detecting outliers in
the spectral domain.

1. Temporal outlier detection (see TEMPORALOUTLIERDETECTION in Algorithm 1): The temporal outlier
detection employs sliding z-score MOVINGSDOUTLIERDETECTION), and TRENDDRIFTDETECTION on
decomposed TS data. We apply seasonal and trend decomposition algorithm from Ref. [68] to estimate the
trend and residual signals, represented by xι and xϵ, respectively:

x(t) = xι(t) + xζ(t) + xϵ(t)

xι(t) = (hp ∗ x)(t), where hp(t) =
1

p
[1, 1, ...1]

(6)

The additive trend xι is obtained by applying a convolution (∗) filter hp with the shape of 1× p (a moving
average with period p ) to the data. The average of this de-trended series (after trend removal) for each period
is the returned seasonal component xζ , and the final remaining component of the series becomes the residual
error xϵ.
The value of p can be estimated using period estimation methods such as auto-correlation function, fast Fourier
transform (FFT), periodogram (based on FFT), summary statistics subsequence, and hybrid of method for
oscillatory signals [69, 70]. While the approaches show strong accuracy when dealing with cyclic signals
with multiplicative trends, we have observed a decline in their performance for additive trends, particularly
those with higher slopes. We employ FFT on ∆x(t) : x(t)− x(t− 1), in the SIGNALPERIODESTIMATION,
to enhance the period estimation accuracy in the presence of additive or multiplicative trends. The employed
decomposition method in Eq. (6) assumes an additive trend and single seasonality or cyclic pattern. One may
employ multiplicative trend or multi-seasonal component decomposition depending on the expected normal
signal characteristics [71].
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We utilize a sliding z-score outlier detection algorithm on the detrended residual signal xϵ (see
MOVINGSDOUTLIERDETECTION in Algorithm 1). The xϵ signal is normalized by subtracting the mean µw

and dividing it by the standard deviation σw using a sliding time window (wθ) to generate the outlier score
λθ. The sliding window localizes the outlier detection on the signal characteristics at the adjacent time data
points. The µw and σw can be affected by strong outliers in a given data, reducing outlier detection efficacy
and gets worse for smaller sliding windows; we utilize thus data quantiles Q = [10%, 90%] along with a
median centering instead of mean to reduce the sensitivity to outlier contamination. We apply a threshold on
the outlier score to generate the outlier flags Λθ.
We develop a cumulative-based algorithm to detect trend drifts in the trend signal xι (see
TRENDDRIFTDETECTION in Algorithm 1). We estimate the trend score λι using cumulative sum on the
first-order difference of the trend xι signal, and steps are given in lines 17–25. The trend score resets when
more significant jumps are detected, often during system operation configuration changes. We apply threshold
αι to get the drift outlier flags Λι.

2. Spectral outlier detection (see SPECTRALOUTLIERDETECTION in Algorithm 1): We employ spectral residual
(SR) saliency detection to identify frequency spectrum or data rate change outliers. The SR method has been
employed as a preprocessing technique for cleaning outliers and transforming data in semi-supervised AD
research, as demonstrated in Refs. [3] and [72], respectively. The SR algorithm consists of three major steps
for a given univariate sequence x [72]: 1) FFT F to get the log amplitude spectrum; 2) calculation of spectral
residual; and 3) inverse FFT F−1 that transforms the sequence back to the time domain and generate saliency
outlier scores:

A(f) = Amplitude(F(x))

P (f) = Phase(F(x))

L(f) = log(A(f))

Lh(f) = hq(f) ∗ L(f)
R(f) = L(f)− Lh(f)

η(x) =
∥∥ℑ−1(exp(R(f) + iP (f)))

∥∥
(7)

where x is the input sequence with shape n× 1; A(f) is the amplitude spectrum; P (f) is the corresponding
phase spectrum; L(f) is the log representation of A(f); and Lh(f) is the average spectrum of L(f) which
can be approximated by convoluting with hq(f), where hq(f) =

1
q [1, 1, ...1] is averaging filter with an 1× q

vector. R(f) is the spectral residual, the difference between the log spectrum L(f) and the averaged log
spectrum Lh(f). The sequence is transferred back to the time domain via F−1 to get the saliency signal η. We
apply a threshold αη to detect anomaly points on η and generate flags, Λη .

4.2 Anomaly Causal Discovery

Graph-based anomaly CD generates an equivalent DAG representing the causal interaction among the monitored
variables. The process of computing a DAG for the temporal CD of anomalies in large systems with multiple variables
and large data is challenging. We have incorporated several methods to address CD challenges from binary anomaly
data Λ; the approaches include data size compression using sparse handling algorithms, sparsity-driven prior time-delay
link assumption compression, one-side edge independence testing for anomaly triggering from flag 0 to 1 transitions,
and post-processing link adjustment to avoid cyclic edges on different time-lags. The techniques help to alleviate the
computational burden and improve the accuracy of the anomaly CD.

Our proposed anomaly CD approach includes three main modules: data preprocessing, causal graph structure generation,
and building the BN inference model. The approach infers temporal causal interaction among monitoring variables or
sensors using time-lagged and contemporaneous CD algorithms (see Figure 5). We employ PCMCI for its accuracy in
temporal CD and propose additional augmentation algorithms to enhance its effectiveness with particular challenges of
binary anomaly data. The PCMCI may result in cyclic links even if the expected causal graph is acyclic due to errors in
estimation when dealing with a long sequence of overlapping binary anomaly regions among sensors [33]. Through
sparse data and graph edge compression, CI testing sensitive to binary flag transitions, and link pruning, we reduce the
computational cost and enhance the accuracy of causal graph building at the data pre- and post-processing stages.

4.2.1 Sparse Data Handling

The computational cost of CD for TS data varies with the numbers of variables N , data sample sizes n, and maximum
time-lag τmax [24]. The complexity of the CI test, X⊥Y |Z: X independent of Y conditioned on Z, is one major factor
affecting the computational workload in a constraint-based algorithm [24]; for instance, partial correlation CI test scales
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Algorithm 1 Online temporal anomaly detection
1: procedure ONLINETEMPORALANOMALYDETECTION(x, αθ, αι, αη, wθ, pι, kι, qη)

▷ Ensemble online temporal AD ▷ x is a univariate TS signal data
2: Λθ, Λι ← TEMPORALOUTLIERDETECTION(x, αθ, αι, wθ, pι, kι)
3: Λη ← SPECTRALOUTLIERDETECTION(x, αη, qη)

4: Λ← Λθ ∪ Λι ∪ Λη

return Λ
5: procedure TEMPORALOUTLIERDETECTION(x, αθ, αι, wθ, pι, kι)

▷ Temporal outlier detection
▷ pι is the window size of the convolutional filter for trend estimation

6: if pι is NULL then ▷ for auto period estimation
7: pι ← SignalPeriodEstimation(x) ▷ signal period estimation using FFT
8: xι, xζ , xϵ ← TimeSeriesDecomposition(x, pι) ▷ decomposition into a trend, cyclic and residual components
9: Λθ ← MOVINGSDOUTLIERDETECTION(xϵ, αθ, wθ)

10: Λι ← TRENDDRIFTDETECTION(xι, αι, pι, kι)
return Λθ, Λι

11: procedure MOVINGSDOUTLIERDETECTION(xϵ, αθ, wθ)
▷ Residual moving standard deviation temporal outlier detection
▷ αθ is the detection threshold ▷ wθ is sliding time-window size

12: λθ ← []
13: for xω ∈ GetSlicedT imeWindowData(xϵ, wθ, step = 1) : do ▷ get of data slice from sliding time-windows
14: µw, σw ← GetStats(xw) ▷ sliding window median and standard deviation using quantile Q = [10%, 90%]
15: λθ ← Append(λθ, |x− µw|/σw given σw ̸= 0) ▷ outlier score
16: Λθ ← λθ > αθ ▷ outlier flag

return Λθ

17: procedure TRENDDRIFTDETECTION(xι, αι, kι)
▷ Cumulative sum-based trend drift outlier detection
▷ αι is the detection threshold
▷ kι is a scaling constant

18: dι ← ∆(xι) : xι(t)− xι(t− 1) ▷ step change of trend data points
19: µdι ←MEDIAN(|dι|) ▷ average set change on the trend
20: d̄ι ← |dι|> kιµdι ▷ check for large step changes in the trend
21: λι ← Zeros(LENGTH(xι))
22: for tr, d̄ιr ∈ GetContinuousRegion(d̄ι) : do
23: if d̄ιr then
24: λι(tr[j])←

∑tr [j]

i=tr(1)
dι(tr), for j = [1, ..., Ntr ] ▷ calculates trend drift score using cumulative sum

25: Λι ← λι > αι ▷ outlier flag
return Λι

26: procedure SPECTRALOUTLIERDETECTION(x, αη, qη)
▷ Spectral residual (SR) temporal outlier saliency detection
▷ αη is the detection threshold
▷ qη is siding spectral kernel size

27: η ← SpectralResidualSaliency(x, qη) ▷ spectral residual saliency score
28: λη ← η−η

η ▷ normalized outlier score
29: Λη ← λη > αη ▷ outlier flag

return Λη

Figure 5: Temporal anomaly CD approach diagram. The approach infers causal interaction among monitoring sensor
variables from binary anomaly data.
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with a complexity ofO(n(Nτmax)
2). Optimizing computational efficiency by reducing n to n′ for a given N and τmax is

advantageous. The processing speed gain also allows longer τmax for extended causality search on n′ without additional
cost. We propose to lessen the computational cost by reducing the sample data size of Λ, exploiting the anomaly data
sparsity. Data sparsity is inevitable in binary anomaly data since anomalies occur rarely and may persist for some time.
Our module incorporates sparse data handling that compresses the long-time regions with uniform anomaly status.
Hence, anomaly CD can better be captured from the anomaly status transitions with much lower computational cost on
the compressed flag data Λc (see Algorithm 2). We preserve the first lm indices of the region to capture the time-lag
causality that ensures inference within time-adjacent anomaly occurrences while substantially reducing the size of the
sparse data. We compress the time regions into time length lm slightly greater than the causality searching τmax to avoid
false adjacency between anomalies at different time stamps after the uniform anomaly regions compression. The lm
also regulates the contribution between collective trend drift anomalies and transient anomalies; longer lm increases the
influence of the collective anomalies on the causality estimation. Our method aims to reduce the sample size to partially
resolve the computational burden in the GCM learning process for large-scale deployment.

4.2.2 Causal Graph Network Generation

We build a causal graph network generation method for binary anomaly data; we leverage the PCMCI algorithm [9, 26]
to learn the graph skeleton G(V, E) from a TS data, where V is the set of sensor node vertices υ, ν ∈ V , and E is
the edge matrix E ⊆ V × V : ε(υ, ν) ∈ E . We limit the discussion to our algorithms and leave readers to refer to
Refs. [9, 25, 26] for a comprehensive discussion on the working principle of the PCMCI algorithm. Our modification
revolves around customization for handling binary anomaly data, reducing computation by prior link assumption, and
removing cyclic links from causality confusion in long overlapped anomaly regions.

Constraint-based graph CD methods rely on CI tests to estimate links among variables. The independence score function
I(X,Y ) answers CI queries of the form X ⊥ Y | Z on given dataset D that the variables assumed to be generated
independently from some (unknown) Bayesian system as:

I(X,Y ) : P (X,Y | Z) = P (X | Z)P (Y | Z) (8)

The independence test may result in Type I errors (false positive that rejects true independence) and Type II errors (false
negative that accepts false independence), as P (derived from D) is an approximate description of the actual underlying
system behavior. The trade-off controlling the error is obtained by a significance level threshold α given independence
measuring function fI(D). The pv , probability of observing independence of the test, is given as:

pv(α) = fI(D) > α (9)

We aim to capture the causality linkages behind binary anomaly data, particularly the transition from being healthy with
flag 0 to experiencing an anomaly with flag 1. The popular CI tests for categorical data, such as statistical G-squared [73]
and information-theory conditional mutual information tests [9], may not easily distinguish the significance of the
anomaly transition behavior; these methods could result in incorrect causality inferred from the association influenced
by the zeros instead of the ones. We propose anomaly-flag aware CI test (ANAC) using a partial-correlation CI test that
only considers links with positive associations corresponding to anomaly occurrence. The PCMCI estimates GCM of a
given TS variable (anomaly flag Λi in our case) with a time-lagged function of the multivariate:

Λi = F(wj(t− s),Λj(t− s)), for s = 0, . . . , τmax and j ∈ PAi (10)

where the Λ is the multivariate anomaly data; the w is the causal time-lagged strength weights; the τmax is the maximum
time-lag for causal inference; the PAi is the set of the parent nodes or variables of i; the F is a binary GCM function.
The CI test influences the w: the positive w indicates a positive correlation, in increasing together during anomaly
occurrence, on the prediction Λi. We leverage the PCMCI [26] with ANAC to detect anomaly occurrence causality
by selecting causal time-lags with w > 0. The partial correlation is estimated through linear ordinary least squares
regression and positive Pearson’s correlation (ρ) CI test on the residuals. To test X ⊥ Y | Z, first Z is regressed out
from X and Y using the regression model:

X = βXZ + ϵX
Y = βY Z + ϵY

(11)

The independence of the residuals is evaluated using Student’s t-test on the ρ (ϵX , ϵY ) to generate the pv .

CD may remain complex for high-dimensional data with large N despite the partial reduction of the computation
by sparse data compression. We propose a method that assumes prior links to reduce the link searching space. The
proposed approach aims to relieve the computation by reducing the number of conditional tests and enhancing accuracy
in capturing causality among the variables. We integrate a prior link assumption that excludes self-lag causality and
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non-overlapping links on the binary anomaly data that PAi ∈ Xj(t− s), ∀j ̸= i. The assumption of self-lag exclusion
reduces the computational cost of the link search from O(n′(Nτmax)

2) to O(n′N(N − 1)τ2max). We present the sparse
link handling algorithm to exclude links from temporally non-overlapping signals (see Algorithm 3). The algorithm
extends the anomaly flag regions by τmax to measure the time-lagged co-occurrence among a pair of variables; a link is
not considered during the learning phase if its overlap score is below a certain threshold, e.g., zero indicates no overlap.

4.2.3 Causal Edge Pruning and Adjustment

Multiple sensor variables can report anomaly flags simultaneously for continuous time ranges that might cause the
PCMCI [9,26] to generate PDAG, which includes spurious edges—multiple time-lags, undirected, or cyclic links—
when dealing with a temporal anomaly data. Bidirected edges also occur when there is no time delay causality; the
correlation-based CI tests are symmetric and cannot distinguish the edge direction at t = 0. We present a pruning
algorithm as post-processing to overcome this challenge (see Algorithm 4). The algorithm groups linked nodes and
keeps the lag with the highest weight or earliest time-lag from the reported causal lags; higher link weights indicate
strength, and older time-lags correspond to earlier causality that are temporally close to the transitioning edges. We
employ a different CI test (the chi-square test) to direct the bidirected edges at t = 0 when the correlation CI test falls
short in detecting the directions. The positive transition association of the anomaly flags on the directed edges holds
even in the chi-square test since the edges are first detected using positive correlation scores. The pruning excludes
the spurious links caused by the continuously overlapped regions and enables the correlation test to generate a curated
DAG that meets the requirement for building the inference BN model for causality query in the later stages, i.e., BN
requires a GCM without cyclic links.

4.3 Building Bayesian Network Model

We employ a BN to qualify and enable causality inference for user query conditions beyond having a static graph
skeleton. We utilize a Bayesian parameter estimator [46] using a Bayesian Dirichlet equivalent uniform prior scoring
to learn the Bayesian CPD parameters of the discovered network skeleton structure of the PCMCI temporal GCM. The
edges of the generated temporal causal graph G ((υ, ν), ε(w, s)) have weight w and time-lag s attributes. To build a
temporal causal BN, we reformulate Ĝ(V, E) : (υ, ν) → (υs, ν), ε(w, s) → ε(ws) that source node υ with an edge
ε(w, s) is represented by new nodes υs and an edge ε(ws) for every active time-lag s. We prepare the data for the υs
by unrolling the TS data of the υ(t) into structural data, a new column with υs is added by shifting the data ahead by
the amount of time-lag s (see Algorithm 5, similar unrolling approach was adopted in TPC [55] for TS CD using PC).
There are also other tools to build TS BN, such as dynamic BNs, but most are restricted to 2-time step temporal BN that
requires only unit time-lag links or existence of self-lag connections [74, 75].

Algorithm 2 Data compression on sparse binary anomaly flag
1: procedure SPARSEBINARYDATAHANDLER(Λ, lm)

▷ Λ ∈ RN×T is a matrix of anomaly flags with N sensors and T time length
▷ lm is the maximum time length for uniform states data compression

2: Λc ← [] ▷ the compressed anomaly flags data Λc ∈ RN×Tc

3: S ← AggregateAnomalyState(Λ) ▷ returns sequence of binary concatenation of from all variables
4: for I, ls ∈ GetUniformStateT imeRegions(S) : do

▷ I holds indices of the uniform status region with a time length of ls
5: ΛI ← Λ[I] ▷ ΛI is the selected uniform status flag region
6: if ls > lm then
7: Id ← GetRangeToRemove(ΛI , lm) ▷ the tail indices of the region, excluding the first lm data points
8: ΛI ← CompressBinayData(ΛI , Id) ▷ compressing time length of ΛI by removing Id data indices
9: Λc ← Append(Λc,ΛI)

return Λc

5 Results and Discussion

5.1 Experiment Results on the HCAL Anomaly Data

We discuss the performance of the proposed time-series anomaly CD and analysis framework using a use cause system
RBX-HEP07, one of the RBXes that exhibit divergent behavior in the multivariate interconnection analysis in Ref. [76].
We employ the anomaly flags, generated from our proposed online AD algorithm, for the CD experiment.

The dataset comprises 12 sensors of each RM system. Several extended reading gaps exist due to various non-physics
activities on the LHC. We generated a reading mask, shown in Figure 6, to filter out the irrelevant operational time
regions of the LHC and ensure any detected anomalies are within the normal operation of the calorimeter. We interpolate,
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Algorithm 3 Sparse link handling with refined prior link assumption
1: procedure SPARSELINKHANDLER(Λ, E, τmax, ατ )

▷ Λ is multivariate TS data, containing binary anomaly data
▷ E is a prior assumption of directed time-lagged edge links
▷ τmax is the causality search maximum time-lag
▷ ατ is time-lagged anomaly flag overlap strength threshold

2: dΛ← ∆Λ : Λ(t)− Λ(t− 1)
3: SdΛ ← TimeExtendAnomalyRegion(size = τmax) ▷ uses SlidingWindowSum with window = τmax and step = 1
4: Λτ ← SdΛ > 0 ▷ convert to binary
5: for Λτ (i),Λτ (j) ∈ GetUniquePairV ariables(Λτ ) : do
6: λτ ← SimultaneousAnomalyF lagCount(Λτ (i),Λτ (j))
7: if λτ > 0 then ▷ check if overlap exists
8: ni ← AnomalyF lagCount(Λτ (i))

9: nj ← AnomalyF lagCount(Λτ (j))

10: λij
τ ←

λτ
ni ▷ normalized overlap score from i to j

11: λji
τ ←

λτ
nj ▷ normalized overlap score from j to i

12: if λij
τ < ατ then

13: E ← RemoveEdges(E, i, j) ▷ remove all edges from node i to j

14: else if λji
τ < ατ then

15: E ← RemoveEdges(E, j, i) ▷ remove all edges from node j to i

16: else
17: E ← RemoveEdges(E, i, j) ▷ remove all edges from node i to j
18: E ← RemoveEdges(E, j, i) ▷ remove all edges from node j to i

return E

Algorithm 4 Pruning and adjusting time-lagged causality edges
1: procedure ADJUSTTEMPORALCAUSALITYLINKS(E,mOptions = [′edge_weight′,′ edge_tlag′])

▷ E ∈ RN×4 is a matrix of weighted directed time-lagged edge links ε(υ, ν, w, t)
2: Gε ← EdgeGroupMaxWeightedTimeLag(E) ▷ groups edges with the same nodes and selects the strongest time-lag
3: R← [ ] ▷ placeholder for edges to be removed
4: D← [ ] ▷ placeholder for undirected edges
5: for εs, εr ∈ GetBidirectLinkedNodes(Gε) : do ▷ the current edge εs and the reverse edge εr
6: εp ← COMPAREBIDIRECTLINKS(εs, εr,m = mOptions[0])
7: if εp is not Edge then
8: εp ← COMPAREBIDIRECTLINKS(εs, εr,m = mOptions[1])

9: if εp is not Edge then
10: D← Append(D, [εs, εr]) ▷ add the edges εs and εr into the undirected bucket
11: R← Append(R, [εs, εr]) ▷ add the edge εs and εr into remove bucket
12: else
13: R← Append(R, εp) ▷ add the edge εp into remove bucket
14: else
15: R← Append(R, εp) ▷ add the edge εp into remove bucket
16: ĒR ← PruneEdges(Gε,R) ▷ remove edges in the remove bucket
17: ĒD ← DirectEdges(Gε,D) ▷ get DAG for the undirected edges without affecting the directed edges in Gε

18: Ē ←Merge(ĒR, ĒD) ▷ merge pruned and directed edges
return Ē

19: procedure COMPAREBIDIRECTLINKS(Gε, εs, εr,m)
20: ts, ws ← GetEdgeAttributes(εs) ▷ get edge link time-lag and weight of link s
21: tr, wr ← GetEdgeAttributes(εr) ▷ get edge link time-lag and weight of the reverse link r
22: εp ← None ▷ placeholder for the edge to be pruned
23: if m ==′ edge_weight′ then ▷ use link weight values
24: if ws > wr then
25: εp ← εr
26: else if ws < wr then
27: εp ← εs

28: else if m ==′ edge_tlag′ then ▷ link time-lag values (negative)
29: if ts < tr then
30: εp ← εr
31: else if ts > tr then
32: εp ← εs

return εp
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Algorithm 5 Temporal Bayesian network model generation
1: procedure BAYESIANNETWORKMODELGENERATION(X,G)

▷ X ∈ RN×T is a multivariate TS data
▷ G is a graph network with G(υ, ν, ε(w, t))

2: Ĝ ← UnrollTemporalGraph(G) ▷ Update node names with edge time-lag value
▷ The loop below is for TS data unrolling adopted from TPC [55]

3: for ε(υt, ν) ∈ GetLinkedNodes(G) : do
4: t← GetEdgeTimeLag(υt) ▷ get source node time-lag
5: if t < 0 then ▷ checks the time delayed causality
6: x̂υ ← GetTimeDelayedData(xυ, t) ▷ shifts backward the TS xυ ∈ R1×T by t time steps
7: X ← Append(x̂υ)

8: B ← FitBayesianNetwork(X, Ĝ) ▷ build BN model
return B

up to eight-hour gaps, the remaining regions into one-minute intervals. We utilize data from all RM sensors of the
RBX-HEP07 system (RM-1, RM-2, RM-3, and RM-4) to discuss the performance of the proposed methods (see
Figure 7). The data comprise short-living transient and time-persistent anomalies, such as trend drifts. We employ data
from multiple RMs to capture the global causality of the RM of the HE. We will first discuss the performance of the
online AD approach and then proceed to the anomaly CD.

Figure 6: The active mask of the LHC operation status from August to December of 2022. The active mask = 1 refers
to the LHC during its normal operation run of collision experiment or idle, whereas the mask = 0 corresponds to the
LHC under other non-physics operation states, e.g., technical stop and maintenance development.

5.1.1 Online Anomaly Detection

We provide the hyperparameter settings of the online algorithms incorporated in our ensemble AD approach in Table 3.
We set the anomaly thresholds slightly higher to reduce noise contamination and preserve the causal faithfulness
assumption [12, 31, 51].

The LHC has undergone operations that result in distinct signal patterns on the sensors; we have further utilized
change point breaks (on 2022-09-27, 2022-10-19, and 2022-11-12) in which the AD system reinitializes. Change point
detection algorithms, such as PELT [77] and kernel-based [78], can detect changes in operation automatically from TS
signal data; we found their accuracy is sensitive to hyperparameters and unsatisfactory as false detection increases for
non-periodic and non-stationary signals.

Table 3: Hyperparameter settings for the outlier detection algorithms.
Algorithm Settings (at 1 minute sampling interval)
MOVINGSDOUTLIERDETECTION αθ = 10, wθ = 5760
TRENDDRIFTDETECTION ατ = 20, pτ = 5760, kτ = 5
SPECTRALOUTLIERDETECTION αη = 35, qη = 1440

Figure 8 depicts the SCH sensors of the four RMs of HEP07 along with the detected transient and trend outliers marked
on the outlier score signals of the outlier detection algorithm. The sensors show a drifting trend where they gradually
deviate away, dropping or increasing, from its expected optimal values. Figure 9 illustrates all the sensors from RM-1
with marked anomalies. Figure 10 portrays the anomaly flag count from all RMs of the HEP07; the humidity sensors
have higher counts due to the detected trend drift anomaly. The time of occurrence of anomalies on the SRT seems
temporally correlated with the Q[1-4]T, SPV, and SPC.

We have demonstrated the capability of our proposed online AD approach in detecting several types of outliers on TS
data with light computation overhead. The potential limitation of the approach is that it expects adequate healthy data
samples, as it is challenging to detect outliers without prior knowledge if the outlier is dominant in data that violates the
rare anomaly occurrence assumption. In such cases, using trained AD models is recommended instead. Finding the
optimal hyperparameters is also still an open challenge. Data normalization and standardization partially alleviate this
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Figure 7: Sensor TS reading data from all four RMs of the RBX-HEP07.

challenge, but the hyperparameters may remain dependent on the data or the target outlier characteristics which may
require domain knowledge for tuning. Some initial parameter-tuning effort is required when employing the approach in
a new environment. Hyperparameter setting adjustment, experimenting with statistical models, is a rather fast process
compared to hyperparameter tuning on DL models.

Figure 8: Online temporal AD on RBX-HEP07 SCH sensor. (Left to right) sensor signal, signal trend estimation, Λι of
TRENDDRIFTDETECTION, Λθ of MOVINGSDOUTLIERDETECTION, and Λη of SPECTRALOUTLIERDETECTION.

16



Scalable Temporal Anomaly Causality Discovery in Large Systems: Achieving Computational Efficiency with Binary
Anomaly Flag Data

Figure 9: Online temporal AD on all RBX-HEP07-RM-1 sensors.

Figure 10: Number of detected anomaly flags from all RMs of RBX-HEP07. The humidity sensors have a higher count
due to drifting trends.
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Table 4: Causal graph learning comparison on different sparsity length lm. The SCt is the computation time of the
PCMCI skeleton structure learning.

lm Compressed Data Size SCt (sec)↓ Link Pruning Adjustment APRC↑ SHD↓

10 911 18.969 False - -
True - -

15 1274 21.625 False 0.741 29
True 0.748 12

20 1629 30.219 False 0.731 31
True 0.723 14

25 1974 30.703 False 0.692 35
True 0.748 12

30 2319 34.625 False 0.711 38
True 0.777 11

The black bold font is the better score. Downarrow (↓) means lower is better, and vice versa for uparrow (↑).

5.1.2 Anomaly Graph Causal Discovery and Inference

We capture the causal graph from the TS binary anomaly data generated by the online AD algorithm in the previous
section (see Figure 11). We set the maximum time-lag τmax = 5 to search for temporal causality dependency at
t− τmax, . . . , t− 1, t (equivalent to five minutes) and CI test significance threshold pv = 0.05 for the PCMCI algorithm.

We compute structural hamming distance (SHD) and area under the precision-recall curve (APRC) to measure the
discovered causal DAG quantitatively. SHD is a standard distance metric that compares acyclic graphs based on the
counts of the edges that do not match [45, 79]. It computes the difference between the two binary adjacency matrices so
that missing or false edges are counted as mistakes. SHD counts two errors for a directed link with the reversed edge,
for falsely directing the edge and for missing the correct edge.

SHD(G,H)← N (i, j) ∈ V | G(edge(i, j)) ̸= H(edge(i, j)) (12)

where V is the set of vertices or nodes of the G andH graphs, and N is the number of mismatched nodes between the
G andH. APRC is a classification metric that evaluates predictions with a confidence score of the area under the curve
of the precision (P) and recall (R) coordinates; the P and R are defined as:

P =
TP

TP + FP
, and R =

TP

TP + FN
(13)

where TP, FP, and FN are true positive, false positive, and false negative, respectively: TP is the number of edges
estimated with a correct direction; TN is the number of edges that are neither in the estimated graph nor in the true
graph; FP is the number of edges that are in the estimated graph but not in the true graph; FN is the number of edges
that are not in the estimated graph but in the true graph.

The sparse data handler, compressing long uniform regions of sparse binary data without anomaly status change across
sensors, reduces the data by 99.76% from around 400K to 900 samples. This greatly alleviates the computational cost
of the causal graph learning PCMCI algorithm [24, 26]. The compression takes roughly 8 seconds, and it squeezes the
uniform regions to lm = 10 samples, i.e., twice the τmax = 5 of the CD (see Figure 11b).

Figure 12 illustrates the temporal GCM structure on the time-lag of t = 0, . . . , τmax, captured by our ANOMALYCD
method before link-pruning. The GCM shows expected interconnection among the sensors: the clustering of environ-
mental temperature and humidity sensors, and the link between temperature regulator Peltier voltage and current and the
corresponding temperature sensors. Several bi-directed edges with multiple time-lags are also present in the network.
Figure 13 shows the final temporal DAG after applying Algorithm 4 for the pruning. An interesting time-lagged
causality link can be observed, where a temperature anomaly in SRT leads to anomalies in SPV and SPC; this is because
the Peltier regulator responds by increasing SPV and SPC to the upsurge on the SRT.

We have also evaluated the performance of causal structure learning while varying the sparse data compression length lm.
We have compared the graph accuracy and learning computational time at lm = 10 with those at lm ∈ {15, 20, 25, 30}
before and after pruning is applied (see Table 4). We conducted our experiment on a Windows 10 system with an Intel
i5-8265U CPU @ 1.60 GHz (8 CPUs) and 16 GB RAM. The PDAGs from the PCMCI algorithm, with spurious links
at multiple time lags, lead to higher mismatches among the PDAGs, resulting in lower APRC and higher SHD. The
graph matching has improved when we compare the DAGs with pruned links. The closeness of the captured graphs
also demonstrates the effectiveness of causality learning on binary anomaly data using the sparse handling algorithm.
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(a)

(b)

Figure 11: Anomaly binary flag data from our proposed online AD approach on RBX-HEP07 sensors: a) the raw
anomaly data with approximately 400K samples and the sparse regions are annotated, and b) sparse compressed data
through our sparse handling algorithm with lm = 10 and reducing the sample size to approximately 900.

We trained our BN model, the query engine for temporal causal inference shown in Figure 5, using unrolled TS data
and the captured anomaly DAG skeleton. Table 5 presents the probabilistic anomaly causality inference results using
the trained BN. We quantify causality by calculating the anomaly conditional probability (CP) of the causes or affected
sensors. The CP of anomaly occurrence for the Q1T sensor increases from 0.05 with no other evidence to above 0.90
with the evidence of a detected anomaly flag on the related Q[2-4]T sensors at a time-lag t = 0. The CP of an anomaly
on the Q1H sensor increases from 0.26 to above 0.85 when there is evidence of a detected anomaly flag on the Q[2-4]H
sensors at a time-lag of t = 0. The Q1H has a higher CP with no other evidence scenario due to trend drifts. We notice
the few sample differences during drift detection across the Q[1-4]H sensors lower the causality dependency strength.
The CP of SPC increases to 0.45 when SPV has an anomaly at t = 0. The SRT is causal to the SPC at a time-lag
t = −1 directly and at t = −5 through SPV, but with uneven strength of 0.32 and 0.15, respectively. The CP rises to
0.95 on the SPC when anomalies are detected on both the SPV and SRT, indicating the CP is influenced by edge weight
strength from multiple causal nodes.

The BN inference has generally produced CPs that are aligned with the link strength of the causal DAG, depicted in
Figure 13. But, caution should be taken when approaching the BN causality interpretation: 1) bidirectional edges
between Q[1-4]T and Q[1-4]H indicate the presence of confounding variables: the causal sufficiency assumption is not
held; the temperature and humidity anomalies are externally induced (affecting the closely placed QIE cards together),
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Figure 12: Temporal GCM of HEP07-RM using time-lag t = 0, . . . , 5.

Figure 13: Temporal GCM-DAG network of HEP07-RM after edges pruning.

and the BN inference depicts the anomaly relationship rather than the causality between the sensors, and 2) the CP,
whether it is causal or influenced by observed evidence, must be explained with link edge direction; for example, the
CP increase in the SPC is due to the observed anomaly on the causal SPV node, whereas the increase in the SPV is due
to the observed anomaly on the influenced SPC node.

Table 5: Anomaly conditional probability based on Bayesian causality inference.
Target Variable (A) at t = 0 Observed Variables (B) P(A = 1 | B = 1)

Q1T
- 0.051

Q2T (t = 0) 0.904
Q[2-4]T (t = 0) 0.927

Q1H
- 0.262

Q2H (t = 0) 0.846
Q[2-4]H (t = 0) 0.913

SPC

- 0.071
SPV (t = 0) 0.456

SRT (t = −1) 0.321
SRT (t = −5) 0.153

SPV (t = 0) and SRT (t = −1) 0.947

SPV - 0.057
SPC (t = 0) 0.366
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5.2 Experiment Results on Public Data

We have tested our ANOMALYCD approach on a publicly available dataset [66](see Section 3.2). Assaad et al. [33] has
utilized the dataset for a RCA study using a prior known causal graph network of the sensors (see Figure 14).

Figure 14: Causal graph of EasyVista’s monitoring system during normal operation.
We generated the anomaly flags dataset using our online AD approach before estimating the GCM of the EasyVista
system (see Figure 15a). We have utilized a low threshold αη = 2 to detect more outlier noise beyond the main
collective anomaly at indices 46683 to 46783; incorporating the noise outliers improves the CD since the collective
anomaly affects all TS variables at the same time, and limits the causality learning from the binary data. The generated
binary data contains roughly 4300 samples for each variable, and Figure 15b provide the anomaly flag count; the PMDB
and ESB variables generate the highest anomaly flags, and the EasyVista experts consider these two variables to be the
root causes of the anomalies.

(a)

(b)

Figure 15: The generated TS anomaly-flag data using our online-AD on the EasyVista sensors.
We utilize the causal graph of the normal operation, given in Figure 14, as a reference graph to evaluate the accuracy of
the estimated GCMs. We employ additional metrics for the evaluation to compare the performance of several existing
CD approaches:

F1 =
2× P ×R

P +R
, FPR =

RV + FP

TN + FP
, and SHDU = UE + UM +RV (14)

where the P is precision, R is recall, F1 is F1-score, and FPR is a false positive rate. The SHDU is undirected SHD that
penalizes once for edges with wrong directions instead of twice as SHD in Eq. (12) [80]. The TP, TN, FP, and FN stand
for true positive, true negative, false positive, and false negative, respectively (see definition in Eq. (13)). The RV, UE,
and UM denote the number of reversed edges, undirected extra edges, and undirected missing edges, respectively.

Table 6 presents some of the popular CD methods in the literature and used in our study for comparison. We have
preserved the undirected edges as bidirected for a fair comparison among the methods since some of the methods
generate PDAG. We convert the temporal GCM results into summary GCM for the PCMCI-based temporal CD since
the evaluation reference graph does not contain temporal information; we aggregate the time lag attributes of the edges
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into t = 0. We utilize partial correlation for the CI testing and pv = 0.05 for the constraint-based methods. We employ
BiC and BDeu scores [81] for the score-based algorithms.

Table 6: Causal discovery methods.
Method Category List of Methods
Constraint-based PC [44], GS [41], IAMP [42], MMPC [43], PCMCI [26]
Score-based HC [46], GES [47]
Hybrid-based MMHC [45]
Function-based Direct-LiNGAM [82], ICA-LiNGAM [83]
Gradient-based GraN-DAG [84], GOLEM [85], GAE [86], RL-BIC [87], CORL [88]

Table 7 and Table 8 provide the CD performance on the raw binary anomaly data and compressed data by sparse
handling algorithm, respectively. Most methods have reached higher R with lower P scores due to the bi-directed edges.
Only the graph autoencoder (GAE) [86] has succeeded from the DL models; the RL-BIC [87] and CORL [88] employs
reinforcement learning and have missed all relevant edges that require a wider search for optimal hyper-parameters to
improve the performance. The sparse handler reduces the input data size by 55% using lm = 10, which leads to lower
computation. It also decreases the number of estimated edges, which improves the accuracy of the causal graph; it
increases the F1 by improving the precision and reducing the false edges, which also decreases the SHD and SHDU.
The score-based HC [46] and its hybrid MMHC [45] algorithms have not provided accuracy leverage on the compressed
binary data. Our sparse handling method achieves an average relative improvement, compared to raw data in Table 7
and excluding the HC and MMHC algorithms, of 18.31%, 22.05%, and 15.45% in the F1, FPR, and SHDU, respectively
(see Table 8).

Our ANOMALYCD leads the performance in most metrics and is ranked first by the Nemenyi ranking diagram [89]
over the rank scores across the seven metrics (see Figure 16). The CD accuracy is not very high overall across the
different approaches. This might be because the reference system GCM used for the evaluation is derived from normal
operations, and the anomaly GCM, built from the anomaly data, may behave differently.

Table 7: Causal graph learning on EasyVista dataset without sparse data handling.
Metric P↑ R↑ F1↑ FPR↓ APRC↑ SHD↓ SHDU↓
PC [44] 0.118 0.222 0.154 0.790 0.225 34 18
GS [41] 0.174 0.889 0.291 0.790 0.539 56 16
IAMB [42] 0.174 0.889 0.291 0.790 0.539 56 16
MMPC [43] 0.174 0.889 0.291 0.790 0.539 56 16
HC-BicScore [46] 0.167 0.222 0.191 0.526 0.249 45 13
HC-BdeuScore [46] 0.222 0.444 0.296 0.737 0.372 21 17
GES-BicScore [47] 0.160 0.444 0.235 0.895 0.341 35 18
GES-BdeuScore [47] 0.191 0.444 0.267 0.526 0.357 48 15
MMHC [45] 0.182 0.222 0.200 0.474 0.257 44 12
Direct-LiNGAM [82] 0.167 0.444 0.242 1.050 0.345 37 21
ICA-LiNGAM [83] 0.160 0.444 0.235 1.105 0.341 33 22
GOLEM [85] 0.167 0.222 0.191 0.526 0.249 35 16
GraN-DAG [84] 0.222 0.222 0.222 0.368 0.277 38 13
GAE [86] 0.177 0.333 0.231 0.421 0.302 47 14
PCMCI [26] 0.182 0.889 0.302 0.895 0.543 50 17
ANOMALYCD (ours) 0.212 0.778 0.333 0.684 0.511 48 13

The black bold font is the best score. Downarrow (↓) means lower is better, and vice versa for uparrow (↑).

We present an ablation study in Table 9 for the ANOMALYCD approach to demonstrate the efficacy of the additional
complexity using ANAC, sparse handling, and temporal edge pruning methods leveraging the PCMCI algorithm [26].
ANOMALYCD has enhanced the CD by 20% in the F1 score. The P, FPR, and SHDU are substantially improved by
37%, -47%, and -41%, respectively, demonstrating improvement in the link detection accuracy. The performance
decrease on the SHD by 7% relative to ANOMALYCD** is due to the slight accuracy drop in the direction estimation
of the bi-directed edges at t = 0 (see Figure 17). The correlation-based CI test may remain symmetric and unable to
distinguish edge direction at t = 0 when there is no time-lagged factor, see Eq. (11). The ANOMALYCD-Directed
refers ANOMALYCD with updated edges using chi-square test for the bi-directed edges, line 17 in Algorithm 4 (see
Figure 17b). The ANOMALYCD-Directed attains the best performance in most metrics, improving the CD over the
PCMCI by 83%, 26%, -53%, -36%, and -41%, in the P, F1, FPR, SHD, and SHDU, respectively. The decrease in the R
is because some of the bi-directed edges are removed or direction reversed by the pruning chi-square test.
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Table 8: Causal graph learning on EasyVista dataset with our sparse data handling method. The ∆+
avg and ∆−avg

are the average relative gains (compared to the performance on the raw data, given in Table 7) of our sparse data
handling method over all the CD algorithms, including and excluding the low-performing HC and MMHC algorithms,
respectively.

Metric P↑ R↑ F1↑ FPR↓ APRC↑ SHD↓ SHDU↓
PC [44] 0.267 0.444 0.333 0.474 0.395 29 12
GS [41] 0.191 0.444 0.267 0.632 0.357 47 15
IAMB [42] 0.191 0.444 0.267 0.632 0.357 47 15
MMPC [43] 0.200 0.667 0.308 0.474 0.457 54 12
HC-BicScore [46] 0.091 0.111 0.100 0.526 0.164 35 15
HC-BdeuScore [46] 0.111 0.222 0.148 0.842 0.221 32 19
GES-BicScore [47] 0.227 0.556 0.323 0.632 0.423 36 14
GES-BdeuScore [47] 0.191 0.444 0.267 0.526 0.357 48 15
MMHC [45] 0.100 0.111 0.105 0.474 0.168 47 14
Direct-LiNGAM [82] 0.167 0.333 0.222 0.790 0.297 38 17
ICA-LiNGAM [83] 0.235 0.444 0.308 0.684 0.379 22 16
GOLEM [85] 0.167 0.222 0.191 0.526 0.249 35 16
GraN-DAG [85] 0.333 0.333 0.333 0.316 0.380 36 12
GAE [86] 0.200 0.333 0.250 0.421 0.314 41 13
PCMCI [26] 0.207 0.667 0.316 0.632 0.460 52 13
ANOMALYCD (ours) 0.250 0.667 0.364 0.474 0.482 44 10
∆+

avg (%) 12.72 -10.26 5.80 17.03 -4.69 3.97 9.81
∆−

avg (%) 26.47 -1.08 18.31 22.05 2.64 7.74 15.45
The green and red bold font represent an increase and decrease in performance, respectively.

(a) (b)

Figure 16: Performance ranking for pairwise comparisons using Nemenyi: a) without sparse data handling, and b) with
sparse data handling. The CD is the critical difference distance, and the horizontal bars denote mean rank differences
smaller than the value of the CD.

Table 9: Ablation study on our ANOMALYCD approach using the EasyVista dataset. ANOMALYCD is our proposed
temporal CD with ANAC, sparse handling, and edge pruning, ANOMALYCD* is without sparse handling, ANOMA-
LYCD** is with ANAC, and ANOMALYCD*** is without sparse handling and edge pruning, equivalent to the PCMCI
algorithm in Ref. [26]. The ANOMALYCD-Directed is ANOMALYCD with directed edges.

Metric P↑ R↑ F1↑ FPR↓ APRC↑ SHD↓ SHDU↓
ANOMALYCD-Directed 0.333 0.444 0.381 0.421 0.428 32 10
ANOMALYCD 0.250 0.667 0.364 0.474 0.482 44 10
ANOMALYCD* 0.212 0.778 0.333 0.684 0.511 48 13
ANOMALYCD** 0.184 0.778 0.298 0.947 0.497 41 18
ANOMALYCD*** [26] 0.182 0.889 0.302 0.895 0.543 50 17

6 Conclusion

We have developed a scalable framework for discovering causal graphs using computationally efficient methods with
binary anomaly flag datasets. Our framework incorporates various approaches to tackle the computational and accuracy
challenges of inferring causality in sparse binary anomaly data. We have systematically integrated the characteristics
of anomaly flag data into causal condition testing, sparse data compression, link compression based on prior time-
lag assumptions, and pruning adjustments to improve computation and accuracy. The results of our experiments
have demonstrated promising accuracy in unsupervised online anomaly detection and a significant reduction in the
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(a)
(b)

Figure 17: The estimated TS GCM using ANOMALYCD for the EasyVista system from binary anomaly data: a)
ANOMALYCD, and b) ANOMALYCD-Directed.

computational overhead associated with causal graph discovery on monitoring time series data sets. Our approaches
will facilitate diagnostic tasks across various subsystems of large systems, such as the Hadron Calorimeter and other
sectors related to Industry 4.0, addressing the demand for flexible, unsupervised, and lightweight approaches that are
capable of handling complex system configurations with limited annotated data sets. The causal networks identified
from the anomaly data can be further analyzed to identify root causes using various established methods. However, it is
essential to first define the time course of the target anomaly before learning the causal graph, as different anomalies
may have distinct root causes.
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using deep autoencoders for the assessment of the quality of the data acquired by the CMS experiment,” in European Physical
Journal Web of Conferences, vol. 214. EDP Sciences, 2019, p. 06008.
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