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Abstract. The CernVM File System (CVMFS) provides the software distri-
bution backbone for High Energy and Nuclear Physics experiments and many
other scientific communities in the form of a globally available shared software
area. It has been designed for the software distribution problem of experiment
software for LHC Runs 1 and 2. For LHC Run 3 and even more so for HL-LHC
(Runs 4-6), the complexity of the experiment software stacks and their build
pipelines is substantially larger. For instance, software is being distributed for
several CPU architectures, often in the form of containers which includes base
and operating system libraries, the number of external packages such as ma-
chine learning libraries has multiplied, and there is a shift from C++ to more
Python-heavy software stacks that results in more and smaller files needing to
be distributed. For CVMFS, the new software landscape means an order of
magnitude increase of scale in several key metrics. This contribution reports on
the performance and reliability engineering on the file system client to sustain
current and expected future software access load. Concretely, the impact of the
newly designed file system cache management is shown, including significant
performance improvements for HEP-representative benchmark workloads, and
an up to 25% performance increase in software built-time when the build tools
reside on CVMFS. Operational improvements presented include better network
failure handling, error reporting, and integration with container runtimes. And
a pilot study using zstd as compression algorithm shows that it could bring sig-
nificant improvements for remote data access times.

1 Introduction

CernVM File System (CVMFS) [1] is a distributed read-only file system used as a software
distribution backbone for High Energy and Nuclear Physics experiments and many other
scientific communities [2]. It provides a globally shared software area that allows both end
users and grid jobs to stream on-demand software which is then run locally. CVMFS uses
aggressive data caching, deduplication and on-demand streaming to reduce network transfer
sizes and access times for consecutive data requests.

CVMFS was designed for LHC Runs 1 and 2. For HL-LHC, it is expected that growth in
infrastructure and increase of complexity of software stacks will lead to the CVMFS metrics
growing an order of magnitude. Already at this point in time, the increase of the complexity
of experiments’ software stacks and build pipelines can be seen. Contrary to LHC Runs 1 and
2, the standard nowadays is that each software stack version has a build matrix consisting of
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multiple architectures (x86_64, aarch64, ppc64le), multiple compilers (different versions of
gcc and clang), and operating systems (EL7 – EL9, Debian-based distribution, and macOS).
With CVMFS being the file system of choice to distribute the software stacks, the corre-
sponding increase of files cannot be hidden from it. Figure 1 shows this growth of files for
selected CERN-hosted repositories over the last couple of years. In 2020, there were about
400 million files in the hosted repositories. Nowadays, there are nearly 1.5 billion files. This
is an increase by nearly a factor of 4 within 3 years, with exponential tendencies.

20
12

20
14

20
16

20
18

20
20

20
22

20
24

0.0

0.5

1.0

1.5 ×109 Number of files in /cvmfs over time
lhcb.cern.ch
cms.cern.ch
atlas.cern.ch
alice.cern.ch
unpacked.cern.ch

Figure 1: Increase in size of repository for selected CERN-hosted repositories.

Current CVMFS growth is also due to the automation of build pipelines and parallel pub-
lishing on CVMFS that allows for faster software release cycles. In addition, experiments
tend to have now several repositories each (stable release, nightlies, ...). And, the availability
of containers on CVMFS allows for more flexible usage which increases the numbers of con-
tainers being deployed as can be seen by the larger growth of unpacked.cern.ch compared
to the other experiment-owned repositories. unpacked.cern.ch is a special repository that
only contains container images that are synced through container registries like Harbor or
GitLab.

While traditionally CVMFS has a storage backend that is directly connected to and man-
aged by the stratum 01, other configurations are possible. One of them allows the data exter-
nally stored and managed, e.g. in cloud storage. CVMFS then only provides the POSIX-API
as frontend access to it and stores the required metadata to be able to redirect data access
requests to the external storage [3]. This is how our knowledge transfer partner Jump Trading
uses CVMFS. With an CVMFS setup running already now at similar scales as anticipated
for WLCG during HL-LHC, many new areas were identified of improvements and rare bugs.
The Jump Trading deployment shows that CVMFS performance scales well even to very
large infrastructures. At Jump Trading, CVMFS provides access to more than 100 PB of data
(as of Q1 2023), although in a context slightly different from typical HEP use cases [4].

Overall, the growth of software complexity predicted for HL-LHC implies for CVMFS
an increase of an order of magnitude for several key metrics. To handle this growth and
the extension of its use case CVMFS has set the following goals for improvement to ensure
proper quality of service at HL-LHC scale

• Caching performance: Optimize application startup time for warm and hot caches

• Download improvements: Optimize application startup time for cold cache

• Operational improvements: Improve robustness and error diagnostics

1The origin server; single source of data for all CVMFS clients and replication servers
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2 Improvements to CVMFS to work with extreme data scales

This section gives an overview of planned or already implemented improvements for the
three work packages: caching performance, download improvements, and operational im-
provements.

2.1 Caching Performance

Caching performance has a huge impact on the CVMFS overall performance. CVMFS caches
both data and meta-data on different cache levels: kernel cache, local worker node disk and
site-wide proxy caches (squid).

Depending on from where CVMFS client retrieves the data, the following terminology
will be used

• Cold cache: client has no data cached on local disk

• Warm cache: client has data cached on local disk

• Hot cache: client has data cached on local disk and kernel cache

The recently added feature Page Cache Tracker allows for a much better use of kernel
page cache (see section 3, Figure 4). In addition, support for in-place replacement of files
was added. This prevents crashing long-running software that uses (compared to the current
file system state) an old version of these files.

Before, it was needed to install immutable software stacks into their own directory each
(which is still the general recommendation) in order to prevent crashes, e.g. when updating
glibc to a new version, but some software is still running and using the old glibc version.

CVMFS now also supports kernel caching of resolved symlinks for fuse3 and linux
kernel 6.2. A backporting request was opened with RedHat to make this available also to
older kernel versions. Furthermore, statfs calls can now be cached. This was added to
workaround software that would call statfs multiple times in short succession, e.g. during
startup.

Ongoing work is to provide custom load balancing policies to be able to reduce data
duplication when multiple site proxies are used. These will improve cold cache access times
as it is more likely that the data is already cached within the requested site proxy. Future
work will focus on an efficient prefetching policy for known file clusters (e.g. Python cluster,
ROOT cluster, ...) to reduce cold cache access times.

2.2 Download Improvements

This work package only consists of two items but offers a chance for large performance
improvements. The first one being parallel file decompression during download. With the
current implementation downloads are executed in parallel, but decompression is done se-
quentially [5]. This will require large refactoring work for the download part.

The second one is to introduce a new compression algorithm zstd [6]. This algorithm is a
good replacement for zlib [7] as it achieves similar compression ratios while being multiple
factors faster. In section 3.3 a first exploration of using zstd for CVMFS cached data is
performed.
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2.3 Operational Improvements

This section summarizes recent efforts to streamline operations and user experience, and to
increase the support for automatic error detection and handling, even for rare failure cases.

Containers make-up a large portion of data on CVMFS. CVMFS provides tooling to load
and extract container images from registries to a repository. As an operational improvement,
it is now supported to unpack container images through Harbor registry proxies. Harbor [8]
allows for offloading aspects related to image management and image checking, such as role-
based access control, vulnerability scanning and to pull through docker images with safety
check.

With the more varied client deployment modes, monitoring and scoping user access rights
becomes more important. For this it is now possible to protect magic extended attributes2 so
that only users with specific group ids can access them. Furthermore, a new telemetry
feature allows for the internal counters of clients to be exposed as InfluxDB format to a
socket3.

Further improvements include the speed-up of garbage collection and cvmfs_server
check. Disk operations within those commands will only be performed exactly once per
data chunk, independent of to how many files the chunk actually belongs to. For the OSG
Nebraska backup stratum 1 this reduced the cvmfs_server check runtime from greater
than 3 months to less than 3 days [9].

In addition, for future works the goal is to achieve feature parity between remote publish-
ers (with gateway) and local publishers [10]. Right now remote publishers are limited in their
functionality and actions performed on the gateway node require due diligence because no
automatic locking mechanism is available to prevent remote publishers performing actions at
the same time.

3 Results

This section evaluates performance benchmarks of different CVMFS versions and configura-
tions, and it provides a comparison between compression algorithms.

For the performance benchmarks, two dedicated physical servers were used. The CVMFS
client is run on a dual socket AMD EPYC 7302 server, that has 16 cores per processor and 2
threads per core, totaling up to 64 virtual cores. It has 256 GB RAM. The dedicated remote
cache (squid proxy) is run on single socket Intel Core i7-7820X, with 8 cores and 2 threads
per core, totaling up to 16 virtual cores. It has 32 GB RAM. Both servers were connected
with a 10 Gbit link. Testing with iperf3[11], the connection consistently achieved a transfer
rate over 9.4 Gbit/s.

Both servers used AlmaLinux9 as operating system. The CVMFS client was build from
scratch, manually linked to the latest libfuse 3 (built from source) to be able to enable the
symlink caching feature of CVMFS.

In total four different commands were benchmarked. The selection was based on common
software used by experiments and standard workflows they are executing. All software and
data is loaded from CVMFS.

• Tensorflow: Starting a (local) Python3 session that imports Tensorflow and numpy

• ROOT: Creating a RDataFrame with 100 random entries and creating a 1D histogram of it

• DD4hep: Load detector description into ROOT
2Magic extended attributes are synthetic extended attributes custom to CVMFS (e.g. client version, repository

revision, proxy list, ...)
3Other formats can be created via a source code plugin

EPJ Web of Conferences 295, 04012 (2024) https://doi.org/10.1051/epjconf/202429504012
CHEP 2023

 
4



• CMS: TTbar_14 physics analysis of CMS. Nightly build of CMSSW_13_1_0_pre3 was
used to be able to run on EL9.

The benchmarks measure the majority of metrics provided by time (user time, system time,
real time, page faults, ...) and save the CVMFS internal counters for the different data access
patterns: cold cache, warm cache and hot cache4.

The benchmarks were run on two versions: 2.9.4 and 2.11 (Spring 2023) [12]5. This 2.11
(Spring 2023) was a work-in-progress version which achieved the same performance as the
final 2.11 release version. For each run of a command, a process of it was started on every
real core, totaling up to 64 processes being run in parallel on the server running the CVMFS
client.

3.1 Performance Comparison: 2.9 vs 2.11

The performance comparison was performed between version 2.9 and 2.11 shown in Figure 2.
Three caching scenarios were evaluated: cold cache means loading from a dedicated (remote)
proxy, no data is currently on the local machine; warm cache means the data is on the local
(disk) CVMFS cache, and hot cache means the data is additionally also in the kernel page
cache. In all caching scenarios but for Tensorflow, the new version is significantly faster. In
the Tensorflow cold cache scenario, the difference is within the error margin.
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Figure 2: Real time performance of the CVMFS versions 2.9 and 2.11 for benchmarks (a)
CMS and (b) Tensorflow. The performance is visualized for the different caching strategies
(cold = blue, warm = orange, hot = red) using boxplots. The box represents the 25th to 75th
percentile.

3.2 Performance Comparison Symlink Caching

Figure 3 shows the performance increase for 2.11 once with symlink caching being enabled
and once being disabled. Symlink caching refers to keeping the resolved symlinks6 in the

4The benchmarking tools and commands are becoming part of CVMFS. More information can be found on the
CVMFS GitHub repository.

5This CHEP2023 branch consists of commit: f28e0e16a7 + single patch 37e876eee4
6Resolving a symlink means to find out to which absolute location within the file system it points to.
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Table 1: Compression performance of zlib and zstd

Library uncompressed zlib zstd
#Files 1004 1004 1004

Size (MB) 2300 999 866
Time (min) - 1:36 0:15

Compression Ratio - 2.30 2.66

kernel page cache. This reduces access time of the data to which the symlink points. Like in
the previous performance comparison, using symlink caching increases the performance in
all cases but the cold cache scenario.
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Figure 3: Performance comparison of version 2.11 (Spring 2023) with and without symlink
caching for benchmarks (a) CMS and (b) Tensorflow. The performance is visualized for the
different caching strategies (cold = blue, warm = orange, hot = red) using boxplots. The box
represents the 25th to 75th percentile.

3.3 Pilot Study: Zstd Compression

As part of the download improvements (section 2.2) it has been foreseen to make zstd as
an additional compression algorithm available. For this a first study was performed where
around 2.2 GB of (uncompressed) data was downloaded by CVMFS. These chunks are once
compressed with the CVMFS internal zlib compression tool and once with the command
line tool for zstd using default parameters.

Table 1 lists the measurements. On average, zstd was 6 times faster than zlib and
needed 15% less space.

3.4 Performance Improvements in ATLAS build system

ATLAS has all its build tools on CVMFS to build its software stack. With the introduction
of the CVMFS page cache tracker feature, ATLAS reported that they noticed a significant
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performance increase. In Figure 4, when building ATLAS Athena with the build tools being
on CVMFS, it gained 10% in performance for building with gcc11 and even 25% for building
with clang14.

Figure 4: Speed-up for ATLAS Athena build after upgrade from CVMFS version 2.9 to 2.10.
Version 2.10 has the page cache tracker enabled. The y-axis shows the build times in units
of hours for the two different Athena build flavors and the x-axis show the different builds
during the different days over time [13].

4 Discussion and Conclusion

The upcoming HL-LHC and its software requirements mean for CVMFS unprecedented chal-
lenges. The projected growth of the WLCG infrastructure and increase of complexity of soft-
ware stacks imply the need for CVMFS to scale by an order of magnitude in several key
metrics.

By now, a rich set of performance and operational improvements are well underway
for CVMFS. They include optimizing performance by smarter caching strategies, increasing
ease-of-use for end users and operators, and optimizing download bottlenecks. They will en-
sure proper quality of service at HL-LHC scales. First performance studies and feedback from
experiments using newer CVMFS versions in production confirm significant performance
improvements. In addition, the pilot study using zstd as compression algorithm shows that
using zstd could bring significant improvements for cold cache application startup times.
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