
A vendor-unlocked ITS GPU reconstruction in ALICE

Matteo Concas1,∗

1CERN

Abstract.
In LHC Run 3, ALICE experiment’s upgrades enable recording Pb-Pb colli-
sions at a 50 kHz rate using trigger-less continuous readout, managing a peak
data rate of 1 TB/s primarily through GPU utilization. Two main phases of data
processing exist: the synchronous phase, focused on TPC reconstruction con-
suming most computing resources, and the asynchronous phase with more GPU
resources available. The Inner Tracking System (ITS) has been successfully
ported to GPUs for primary vertex finding and track reconstruction, leveraging
automatic code generation to support multiple GPU brands with a single code
base. This work not only enhances ALICE’s computational capability but also
sets a precedent for offloading reconstruction tasks to GPUs in other detectors.

1 Introduction

During the Run 3 at the Large Hadron Collider (LHC), the accelerator will deliver a rate
of Pb-Pb collisions up to 50 kHz. The A Large Ion Collider Experiment (ALICE) [1] is
adopting a novel data acquisition strategy, the "continuous readout" consisting of a trigger-
less approach that steadily registers input from every sub-detector. Data are therefore split
along the time dimension in so-called timeframes of the duration of few ∼ ms. The aim is to
record an integrated luminosity greater than 10 nb−1 of minimum bias events, to enable the
study of very rare physics signals.

This translates into a huge sample of collected data, corresponding to a factor ×50 times
more minimum bias Pb-Pb collisions. To support and implement such a strategy, a lot of
challenges both on the hardware and software front have been faced. The ALICE computing
model for Run 3 relies on a completely rewritten framework encompassing both the online
and the offline software in a single stack called O2[2]. As briefly illustrated in Fig. 1, the
raw data input from the detectors is reduced from ∼3.5 TB/s in the First Level Processing
infrastructure, down to less ∼900 GB/s. Then the Event Processing Nodes (EPNs) farm
performs a data calibration and reduction via reconstruction. Such a reconstruction is split
in two phases: the synchronous phase performing the calibration and compression of the
data simultaneously with the data taking and the asynchronous phase that operates the full
processing of data previously staged on a temporary buffer. The usage of Graphics Processing
Units (GPUs) is envisioned to supercharge the computing capabilities of the EPN. During the
synchronous reconstruction the processing time is dominated by the data processing of the
Time Projection Chamber (TPC). The efficient usage of remaining GPU cycles is a key point
to maximise the efficiency in the usage of the EPNs. During the asynchronous reconstruction,
∗e-mail: matteo.concas@cern.ch

EPJ Web of Conferences 295, 02002 (2024) https://doi.org/10.1051/epjconf/202429502002
CHEP 2023

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

Figure 1. Schema of the data processing operated via synchronous and asynchronous reconstruction on
the EPN farm.

the estimated fraction of available GPUs increases. To this extent the ALICE Inner Tracking
System (ITS), among with other detectors, is porting its reconstruction on GPUs.

2 ITS reconstruction software for Run 3

The ALICE upgraded ITS is a brand new cylindrical silicon pixel detector counting more than
10 m2 of sensitive area and a total of ∼12.5 billion pixels. Its main goal is to provide spatial
measurement of charged particles crossing the detector in the form of clusters of fired pixels.
It operates within the continuous readout regime and it is responsible for the identification
of the interaction region, providing an improved resolution of the primary vertex position,
and is capable of tracking the charged particles produced in the collision and possibly their
secondary vertices.

The minimum frame of data it produces is the Readout Frame (ROF), which corresponds
to the data recorded in a ∼4µs time interval. A single timeframe may then include from hun-
dreds to up to few thousands of ROFs, depending on the collision system and the experimental
settings.

2.1 Seeding vertexer and tracker

The ITS reconstruction is designed to operate on a single timeframe at a time, performing the
preliminary interaction point identification (vertexing) and the track reconstruction (track-
ing). The same standalone vertexing and tracking algorithm is run during the synchronous
and asynchronous processing. During the synchronous phase the goal is to reconstruct 1% of
tracks, which are needed for TPC online reconstruction and calibration. The asynchronous
phase targets the reconstruction of all charged particle down to low transverse momentum

EPJ Web of Conferences 295, 02002 (2024) https://doi.org/10.1051/epjconf/202429502002
CHEP 2023

2

(pT) and it differs just in terms of algorithm configuration, quality selection criteria and sub-
sequent iterations on the data. The reconstruction is divided in two main stages each consti-
tuted by multiple consecutive steps that produce a variety of intermediate objects as depicted
in Fig. 2.

1. Primary vertex seeding: it performs a combinatorial matching of the clusters in the
first three innermost layers, then a combinatorial validation followed by linear extrap-
olations of the found tracklets towards the beam line. Finally, it uses an unsupervised
clustering to find the collision point(s) that are sent to the next stage.

2. Track finding and track fitting: it uses a combinatorial Cellular Automaton algorithm
that exploits the vertex position to reduce the volume of combinatorics in matching the
clusters of pixels. It subsequently connects segments of tracks, the cells, into a tree of
candidates: the roads. Ultimately, it applies a Kalman filter to fit tracks from candidate
roads and performs selection based on the quality of the fit.

Each of the intermediate sub-steps is characterised by the combinatorial nature of the
problems to solve, where each object requires to be matched with others independently from
its neighbours. The whole algorithm is decomposable into multiple parallel steps where

Figure 2. Visualisation of the ITS tracking in-
termediate objects.

Figure 3. Inherent parallelism inside the pro-
cessing of ITS artefacts. It applies to to the
intra-frame combinatorics process and to each
frame independently.

intra-frame combinatorics can be processed simultaneously and each ROF can be processed
independently from the others following grid in Fig. 3. This structure makes it suitable for a
scalable parallel GPU implementation.

3 Parallel implementation using GPUs

In this work, the state of the art about the porting of vertexing and tracking on GPU is pre-
sented. The current version operates as a plug-in component to the central GPU reconstruc-
tion framework. The latter provides a convenient centralised service for loading external GPU
brand-dependent libraries responsible for steering the execution as shown in Fig. 3. The ITS
code supports both CUDA [5] and HIP [6] via the ROCm [7] stack with a single code base
thanks to the automatic on-the-fly translation as described in [4].

EPJ Web of Conferences 295, 02002 (2024) https://doi.org/10.1051/epjconf/202429502002
CHEP 2023

3

Figure 4. Integration of the ITS GPU as a plug-in component.

3.1 Cornerstones of the GPU implementation

In order to support the natural variations of input size of the time frame in different collision
systems or different experimental settings, focus has been put on having a configurable way
of sub-sampling it into resizeable groups of ROFs to be processed in parallel.

Figure 5. Dynamic subsampling in "views" of the data on multiple GPU streams.

The amount of usable memory is a parameter that is passed to the algorithm and the sizes
of data "chunks" are set as a fraction of the total available memory. Multiple POSIX threads
manage the computations on different streams, where the tracking instances are independent
from each other. This approach not only allows for limiting the usable GPU memory in cases
where the device is shared across different detectors, but also the scheduling of the computa-
tions alongside the memory transfers increases the efficiency in using the device. Ultimately,
such a flexibility opens up to a generic solution via a configurable N-layer implementation of
the tracking algorithm as the related scaling can be absorbed by narrower views of ROFs to
be processed.

EPJ Web of Conferences 295, 02002 (2024) https://doi.org/10.1051/epjconf/202429502002
CHEP 2023

4

Elapsed Time [ms] AMD EPYC™ 7452 AMD Ryzen™ 9 7950X AMD Instinct™MI50 Nvidia™ TITAN Xp
Vertexer 2913±376 1416±183 291±38 478±64
Tracker (Neigh. Finder) 550±71 287±37 211±27 779±105
Tracker (Full) 13756±1780 6917±893 W.I.P. W.I.P.

Table 1. Preliminary results of the GPU implementation of the current state of the ITS tracking.

3.2 State of the development and testing

Primary vertexing is fully operational on its GPU implementation. The porting of the tracking
is currently being finalised: the Cellular Automation is implemented and tested up to the
"road finding" step. Track fitting is currently being updated to match the latest state of the art
of the CPU code. All the code base supports and has been tested both on CUDA and HIP.

4 Preliminary results

In this section the preliminary results achieved so far by the algorithm are reported. Elapsed
time is measured repeating 10 times the reconstruction of 5 timeframes from 500 kHz pp
data with asynchronous reconstruction settings, corresponding to the most resource demand-
ing configuration and a realistic scenario. Mean and the RMS of the timing distributions are
measured and reported for both vertexer and tracker. For the GPU benchmark the measure-
ment is done up to the latest step of the tracking algorithm that is currently available called
"neighbour finder", responsible for identifying cells that can be merged to build road seg-
ments. The CPU reference is run in single thread configuration. For a better comparison the
multi-threaded CPU version should be fully benchmarked. Results are reported in Tab. 4. The
timing achieved by the GPU implementation is faster than the CPU one for the considered
architectures. In the perspective of trading GPUs for CPUs this is already acceptable, as using
GPUs allows for offloading this part of the reconstruction for similar or better performance.

Hereafter the performance as a function of the available memory for both vertexer and
tracker is reported. The same reconstruction as used for the tests described above has been
run by changing the available memory from 1GB up to the maximum available memory of
each of the two cards (respectively 16GB for Nvidia and 32GB for AMD). The hardware is
the same as in Tab. 4.

Figure 6. Scaling of the vertexer performance
vs available memory.

Figure 7. Scaling of the tracker performance
vs available memory.

EPJ Web of Conferences 295, 02002 (2024) https://doi.org/10.1051/epjconf/202429502002
CHEP 2023

5

In both cases timing improves with increasing available memory, then it reaches a plateau.
This is due to the fact that the overall footprint of the algorithm is limited with respect to the
available memory. This important detail opens up to the possibility of running multiple steps
of the barrel reconstruction on the same GPU, creating a pipeline that processes all the data
on the device minimising the data transfers.

5 Conclusions

ALICE plans to extend the coverage of GPU usage in the asynchronous reconstruction. The
primary goal is to increase the efficiency in using the resources when TPC does not use all
the GPU resources. To achieve that the plan is to build a GPU reconstruction chain that
includes all the detectors in the ALICE barrel that operate with continuous readout. Such a
reconstruction framework will centrally manage the GPU resources and kernel scheduling so
to make it easier to integrate additional steps (e.g.: detector matching). The ITS is finalising
porting of the seeding vertexer and tracking on GPU architectures, targeting the asynchronous
reconstruction. Road finding and track fitting, the last missing components, are under active
development. The performance measured with pp collision data is not yet the final optimal
one but shows some promising margin and a good scaling with the available device memory.
GPU adoption in the ITS software chain can be further extended both in the simulation and
in the data reconstruction: digitisation of the simulated signal and cluster identification from
pixel data are the good candidates that are being tackled.

References

[1] ALICE Collaboration, "The ALICE experiment at the CERN LHC", J. Inst. 3 S08002
(2008)

[2] P. Buncic, M. Krzewicki, P. Vande Vyvre, Technical Design Report for the Upgrade of
the Online-Offline Computing System (2015)

[3] ALICE Collaboration, "Technical Design Report for the Upgrade of the ALICE Inner
Tracking System", CERN-LHCC-2013-024 (2013)

[4] M Concas, "A vendor-agnostic, single code-based GPU tracking for the Inner Tracking
System of the ALICE experiment", Journal of Physics: Conference Series (2023)

[5] John Nickolls, Ian Buck, Michael Garland, Kevin Skadron, "Scalable Parallel Program-
ming with CUDA" (2008)

[6] HIP, https://rocm-developer-tools.github.io/HIP/
[7] AMD, ROCm, https://rocmdocs.amd.com/en/latest/Current_Release_Notes/Current-

Release-Notes.html

EPJ Web of Conferences 295, 02002 (2024) https://doi.org/10.1051/epjconf/202429502002
CHEP 2023

6

