
Parallel Writing of Nested Data in Columnar
Formats

Jonas Hahnfeld1,2, Jakob Blomer1, and Thorsten Kollegger2

1 CERN, Geneva, Switzerland
{jonas.hahnfeld,jakob.blomer}@cern.ch

2 Goethe University Frankfurt, Institute of Computer Science, Frankfurt, Germany
kollegger@em.uni-frankfurt.de

Abstract. High Energy Physics (HEP) experiments, for example at the
Large Hadron Collider (LHC) at CERN, store data at exabyte scale in
sets of files. They use a binary columnar data format by the ROOT
framework, that also transparently compresses the data. In this format,
cells are not necessarily atomic but they may contain nested collections
of variable size. The fact that row and block sizes are not known upfront
makes it challenging to implement efficient parallel writing. In particu-
lar, the data cannot be organized in a regular grid where it is possible
to precompute indices and offsets for independent writing. In this pa-
per, we propose a scalable approach to efficient multithreaded writing
of nested data in columnar format into a single file. Our approach re-
moves the bottleneck of a single writer while staying fully compatible
with the compressed, columnar, variably row-sized data representation.
We discuss our design choices and the implementation of scalable paral-
lel writing for ROOT’s RNTuple format. An evaluation of our approach
shows perfect scalability only limited by storage bandwidth for a syn-
thetic benchmark. Finally we evaluate the benefits for a real-world ap-
plication of dataset skimming.

Keywords: Parallel writing · Multithreading · Columnar data format ·
High Energy Physics · ROOT.

1 Introduction

High Energy Physics (HEP) experiments are one of the largest scientific data
producers. One example are the experiments at the Large Hadron Collider (LHC)
at CERN near Geneva: Since the start of operation in 2010, they accumulated
a total data volume of more than 2 exabytes. This data is constantly processed
and analyzed by scientists to gain new insights into the fundamental building
blocks of our universe. These analyses oftentimes only read a sparse fraction of
the data. To optimize for this use case, the data is stored in a binary columnar
format implemented in the ROOT framework [7].

In the coming years, the data rate is expected to increase further, for ex-
ample during operation of the High-Luminosity LHC (HL-LHC). In response,

ar
X

iv
:2

41
0.

14
23

9v
1

 [
cs

.D
C

]
 1

8
O

ct
 2

02
4

2 J. Hahnfeld et al.

struct Event {
int f I d ;
std : : vector<Track> fTracks ;

} ;

struct Track {
f loat fEnergy ;
std : : vector<int> f I d s ;

} ;

Fig. 1. Simplified example of nested data structures. Real-world HEP data models
often have thousands of fields.

the HEP community is developing RNTuple, an evolution of the currently used
TTree columnar format [6]. It is designed to make efficient use of modern hard-
ware, but currently lacks support for highly scalable parallel writing. This is
challenging to implement efficiently because columnar formats for HEP have to
handle nested data: Figure 1 shows a simplified data structure of an event con-
sisting of many particle tracks that themselves reference other indices. Together
with transparent compression, this makes it impossible to determine row sizes
upfront and to organize the data in a regular grid. To avoid these difficulties,
one commonly used solution in HEP is to independently write into separate files
that are later merged. However, this still causes overheads and efficient parallel
writing would be preferable, under the assumption that rows are independent
and can be reordered.

In this contribution, we present a general concept for parallel writing of
nested data in columnar formats. While developed with HEP data in mind, we
believe the approach can also be applied to other columnar formats. We discuss
a concrete implementation using cooperating threads in RNTuple and evaluate
it in two ways: First we show that our implementation scales perfectly up to
the storage bandwidth limit for writing randomly generated data. Finally, we
evaluate the benefits of parallel writing for a real-world application, dataset
skimming, and compare our implementation to other approaches.

The remainder of the paper is structured as follows: In Section 2, we discuss
related work of other columnar data formats and existing parallel writing facili-
ties in general, before giving an overview of RNTuple in Section 3. We present our
main contribution for parallel writing of columnar data formats in Section 4. In
Section 5, we describe the implementation of parallel writing in RNTuple before
evaluating its performance in Section 6. Finally, we summarize our conclusions
in Section 7 and outline future work.

2 Related Work

TTree is the current columnar data format in ROOT available for more than
two decades [7]. It is used in production by HEP experiments, for example at
the LHC at CERN, and stores more than 2EB of data. TTree data can be
written in parallel with a system called TBufferMerger that merges in memory
the files from concurrent data producer threads [3,4]. Originally TBufferMerger
used a dedicated output thread that acted as synchronization point for all data

Parallel Writing of Nested Data in Columnar Formats 3

buffers [3]. Since then, the design has been refined to merge data directly from
the worker threads [4]. As a preparation to this work, we have entirely removed
the data queue from TBufferMerger. Instead, threads wait until they are allowed
to merge, which avoids problems due to unbounded queue growth.

RNTuple is an evolution of the TTree format and currently under devel-
opment [6]. It is designed as a successor to TTree that will be able to keep
up with modern hardware trends and increased data rates. As one example,
RNTuple can use object store backends, for example Intel DAOS [16]. At the
moment, RNTuple is in the adoption phase by experiment frameworks. Up to
now, RNTuple only supports sequential writing.

Columnar data formats are also used outside of HEP and its advantages for
nested data are described for the Dremel query system [17]. An open-source im-
plementation of a columnar storage format is Apache Parquet, developed in the
Hadoop ecosystem [21]. It supports complex nested data structures and trans-
parent compression with various compression algorithms. Parquet was previously
evaluated for HEP analysis needs and RNTuple was shown to outperform it for
fast storage media [15]. To the best of our knowledge, it is not possible to write
Parquet data in parallel.

NetCDF is a format for scientific data supporting fixed-size arrays and record
variables with a single unlimited dimension [20]. This makes it possible to im-
plement efficient random access by computing offsets into the record variables.
A parallel interface exists in the form of PnetCDF, which builds on top of MPI-
IO [14]. However, all record variables are stored interleaved and assumed to grow
together, which is not suitable for nested data.

HDF5 features a rich data model with extensible datasets, nested datatypes,
as well as variable length arrays [11]. It supports parallel writing via MPI-IO, but
at the time of writing not together with variable length arrays. For extensible
datasets, it has to be noted that the method H5Dset_extent is a collective
operation. This means it is not suitable for independent parallel writes of nested
data in columnar formats.

3 RNTuple Overview

In this section, we give a short overview of the RNTuple format and termi-
nology [6] as needed for this work. For serializing acyclic C++ data structures,
RNTuple decomposes them recursively into fields. Variable-length collections are
handled by transformation into two fields: An offset field points into a second
field holding the element data, which may be recursively decomposed further.
Table 1 shows an example columnar representation for the nested data struc-
tures presented in Figure 1. fTracks and fTracks._0.fIds point into their _0
subfields and past the last element included in the vectors. The leafs of this field
tree are mapped to columns of primitive, fixed-size types. Each column is par-
titioned in pages. Elements of the columns are written consecutively into pages.
Pages are also the units of compression. At the moment, ROOT supports the
compression algorithms DEFLATE [10], LZMA [18], LZ4 [8], and Zstandard [9].

4 J. Hahnfeld et al.

Table 1. Example of columnar representation for the nested data structure shown in
Figure 1. Gaps and lines are inserted for clarity only.

fId fTracks fTracks._0.fEnergy fTracks._0.fIds fTracks._0.fIds._0
6873 2 25.4f 2 42

27
32.8f 3 16

6874 3 14.7f 5 21
8

...
...

...
...

...

A row or an entry (also called event for HEP data) spans all corresponding
field and column elements of the potentially nested data. For example, Table 1
shows two entries separated by lines for clarity. In the current implementation,
all pages of a consecutive range of entries form a cluster 3. The order between
pages of a cluster is established via a page list. It stores the number of elements
in each page and where it is located, for example at a given byte offset. The page
list also contains the element offset for each column in a cluster. Together with
the sum of all elements, this defines the column range of the column elements in
a cluster.

RNTuple data is meant to be embedded into a container format, for example
into ROOT files. Also known as a TFile, a ROOT file is a self-describing binary
format consisting of a linked list of keys. Every key reserves a byte buffer that, for
RNTuple, is referenced as a byte offset. It is possible to implement embeddings
into other container formats and also object stores [16].

4 Concepts for Parallel Writing of Columnar Data

Columnar formats with support for nested data inevitably have variable row
sizes. Moreover, it is generally not possible to predict the compression ratio up-
front in case of transparent compression. As a result, the data cannot be orga-
nized in a regular grid where chunks can be processed independently. Instead, we
propose a more dynamic approach for parallel writing with cooperating threads.

To explain our approach, we first introduce the concept of a unit of writing :
It is a consecutive block of the data in the serialized and compressed on-disk
representation. For parallel writing, a unit of writing defines the granularity of
synchronization and thereby strongly influences scalability. For RNTuple, possi-
ble units of writing can be a single page or all pages of a cluster.

4.1 Serialization and Compression

Data serialization, and especially data compression, are time-consuming oper-
ations with a throughput of less than 1GB/s [2]. One possible approach to
3 The RNTuple specification allows for sharded clusters of subsets of columns, but this

is currently not used.

Parallel Writing of Nested Data in Columnar Formats 5

parallelization is to distribute the serialization and compression of one unit of
writing to multiple threads. As we will show later, it is however more efficient
and scalable if each thread works on their own unit of writing.

Parallel writing is possible under the assumption that a unit of writing is
relocatable. With this, we mean that the serialized and compressed unit can be
moved without requiring changes in its contents. In that case, serialization and
compression can happen without synchronization. This allows parallel writing to
independently prepare multiple units of writing and store them at any location.

4.2 Writing into Container Format

After serialization and compression, the unit’s final size is known. Based on this
information, parallel writing can reserve an appropriate buffer in the container
format. In general, this step requires synchronization to allocate the necessary
resources. For example, in the case of writing into files, this is needed to ensure
a linear file layout.

Synchronization requirements for the actual writing depend on the destina-
tion. For local files, multiple threads can write their unit in parallel into previ-
ously reserved offsets. The operating system aggregates and schedules the writes
depending on hardware capabilities. For distributed systems, such as parallel
filesystems and object stores, the achievable parallelism depends on the mapping
to backend servers. In either case, it is also possible to serialize and compress in
parallel but to linearize the write operations with a critical section. This sim-
plifies the implementation requirements and can already be sufficient to achieve
good scalability.

4.3 Updating Format Metadata

Once the unit of writing is stored, the parallel writer needs to update format-
specific metadata information. To ensure compatibility with reader implementa-
tions, this should happen as if the data was written sequentially and generally
requires synchronization. For RNTuple, this step includes updating the column
ranges and adding locators to the page list.

5 Implementation of Parallel Writing in RNTuple

Based on the concepts described above, we implement multithreaded writing
for ROOT’s RNTuple format. As unit of writing, we choose clusters that are
prepared in parallel by multiple threads. Clusters are relocatable because the
offset columns are relative to the current cluster. The compressed pages are
buffered in memory until the entire cluster is ready to be committed. At that
point, the thread takes a lock, writes all pages to storage, and updates the
metadata, namely the page list and column ranges.

It is also possible to choose a single page as unit of writing for RNTuple.
In that case, compressed pages are directly written to storage and the thread

6 J. Hahnfeld et al.

only remembers the byte location for later updating of the metadata. While
this reduces memory consumption, it requires locking per page and turns out
to scale badly due to lock contention. We will discuss a detailed assessment in
Section 6.1.

During the implementation, we find two performance optimizations that can
improve scalability: First, for some filesystems it is beneficial to reserve the space
taken by all compressed pages in a cluster before starting to write. On POSIX
systems this can be done with the posix_fallocate 4 function which allows the
filesystem to pre-allocate blocks of sufficient size. We will present performance
numbers for this optimization in Section 6.1. As a follow-up to this optimization,
we note that it is not necessary to write the pages to storage while holding the
lock. Instead, it is sufficient to just reserve the space and fill the page locations
in the metadata. Afterwards the data can be written truly in parallel outside the
critical section. We implemented both optimizations for test purposes. Where we
see a significant improvement due to pre-allocating space, the evaluation points
it out. Otherwise, the evaluation leaves out both potential optimizations.

6 Evaluation of Parallel RNTuple Writing

In this section, we evaluate our implementation of parallel RNTuple writing.
We first discuss results of a synthetic benchmark on different storage media in
Section 6.1. Afterwards we show an application benchmark of dataset skimming
in Section 6.2. The corresponding source code is openly available on GitHub [12].

All tests are executed on a dedicated benchmarking server with a single AMD
EPYC 7702P processor running at a fixed frequency of 2.0 GHz. It has 64 physical
cores with simultaneous multithreading (SMT) for a total of 128 threads. The
server runs AlmaLinux 9.3 with the stock kernel 5.14.0-362.18.1. Deviating from
the default configuration, we turn on io_uring 5 which RNTuple can use for
better performance when reading data. We compile a development version of
ROOT in a Release configuration using GCC 11.4.1. Unless stated otherwise,
we compress the RNTuple data with the default zstd algorithm.

6.1 Scalability on Different Storage Media

To assess the scalability of parallel RNTuple writing, we first test its weak scaling
behavior with up to 128 threads for a synthetic benchmark. Each thread writes
a fixed number of entries with two fields: an “event ID” and a vector of particles.
The vector is sized following a Poisson distribution with mean µ = 5 and filled
with floats drawn from a uniform distribution [0, 100). Increasing the amount
of data with the number of threads is based on the assumption that HEP exper-
iments have many events to process. Without parallel writing, the events would
4 On Linux systems, the platform-specific fallocate may be more appropriate because

it avoids emulation in case the underlying filesystem does not support the system
call.

5 sysctl kernel.io_uring_disabled=0

Parallel Writing of Nested Data in Columnar Formats 7

be distributed to multiple processes and written into multiple smaller files. To
reduce the variance of the results, we execute each configuration five times and
report the harmonic mean of the bandwidth. We verify that at each point the
margin of error of the 95% confidence interval is smaller than 5 % of the mean.

1 2 4 8 16 32 64 128

25

50

100

200

400

800

1,600

3,200

6,400

12,800

threads

b
a
n
d
w
id
th

[M
B
/s
]

buffered
unbuffered
uncompressed

buffered (separate)

uncompressed (separate)

Fig. 2. Bandwidth measured with the synthetic benchmark writing to /dev/null. Ev-
ery thread writes 20 million entries.

Writing to /dev/null To test the scenario of infinitely fast storage, we first
write the RNTuple data into /dev/null. In that way, the benchmark involves all
parts of the userspace software stack including system calls into the kernel. Fig-
ure 2 shows the computed bandwidth from writing 20 million entries per thread.
For the bottom lines, 20 million entries amount to 337 MB of compressed data
per thread and the bandwidth is limited by compression speed. In the default
“buffered” configuration, the unit of writing is an entire cluster and compressed
pages are buffered in memory as described in Section 5. It can be seen that
parallel writing scales from 25 MB/s for one thread to 1135MB/s (45.4x) with
64 threads and 1324 MB/s (53x) with 128 threads. To investigate the non-linear
scaling at higher thread counts, we test a variant where each thread creates a
separate sequential writer. As shown with the brown squares in the plot, the
bandwidths are identical to parallel writing.

8 J. Hahnfeld et al.

In contrast, the “unbuffered” configuration writes compressed pages directly
to storage, which requires taking a lock per page. It can be seen that this works
for lower thread counts and gives near-identical bandwidths up to 32 threads.
However, at 64 threads and especially with SMT, locking per page results in
lower bandwidths because of lock contention. We confirm this hypothesis by
counting the number of futex system calls using strace: For 64 threads, the
“buffered” configuration makes around 300 system calls while the “unbuffered”
has more than 27,000.

For comparison, the red line shows the bandwidth of writing the same 720 MB
of uncompressed data per thread. It scales from 612MB/s with one thread to
16,553 MB/s (27.1x) with 64 threads and slightly decreases to 14,330 MB/s with
128 threads. As in the buffered case, this behavior is similar to the bandwidths
measured with a separate writer per thread.

1 2 4 8 16 32 64 128

25

50

100

200

400

800

threads

b
a
n
d
w
id
th

[M
B
/s
]

bandwidth limit
buffered
unbuffered
uncompressed

bandwidth limit (fallocate)

buffered (fallocate)

uncompressed (fallocate)

Fig. 3. Bandwidth measured with the synthetic benchmark writing on a server SSD.
Every thread writes 20 million entries.

Writing to SSD In a second setup, we write the synthetic data on a Samsung
PM1733 NVMe SSD formatted with ext4. Figure 3 presents the results. As
before, every thread writes 20 million entries. First we measure two different
limits with the Flexible I/O Tester (fio) [5] and draw them as horizontal lines:
The lower solid one at 771 MB/s uses a blocksize of 64 KiB and extends the file

Parallel Writing of Nested Data in Columnar Formats 9

size while writing. When instead preallocating the file with fallocate, we reach
the upper bandwidth of 1075 MB/s drawn as a dashed line.

By default, RNTuple targets an uncompressed page size of 64 KiB. This
makes it possible to directly compare the uncompressed configurations with
the bandwidth limit measured by fio. We find that our parallel writing im-
plementation achieves close to 90 % of that limit at 64 threads: Without further
optimization, the bandwidth peaks at 702MB/s (91 % of the limit) in the red
curve. If instead preallocating the size of all pages in a cluster before writing,
the implementation reaches 947MB/s (88 %) as shown with the brown curve.

With zstd compression enabled, the bandwidth first increases linearly com-
parable to Figure 2. At 16 threads, the curves start to flatten out and eventually
reach a plateau of 576MB/s and 729 MB/s, respectively. As before, the “un-
buffered” configuration achieves worse bandwidths at higher thread counts due
to lock contention.

1 2 4 8 16 32 64 128

20

40

80

160

threads

b
a
n
d
w
id
th

[M
B
/s
]

bandwidth limit
buffered
unbuffered
uncompressed

Fig. 4. Bandwidth measured with the synthetic benchmark writing on a server HDD.
Every thread writes 10 million entries.

Writing to HDD Finally, we test parallel writing to a slower spinning disk,
a Toshiba MG07ACA also formatted with ext4. Figure 4 presents the results.
Because of lower expected bandwidths, we decrease the number of entries to
10 million per thread. Again we first measure a bandwidth limit of 217 MB/s

10 J. Hahnfeld et al.

using fio. It can be seen that, without compression, parallel writing reaches
a plateau of around 180MB/s already with two threads. The bandwidth in-
creases to 225MB/s at 128 threads and thereby slightly overshoots the limit.
With compression enabled, the “buffered” configuration reaches 191MB/s at
128 threads. In this case, the “unbuffered” configuration achieves a similar band-
width of 186 MB/s. We do not present numbers with fallocate as they are
identical to the measurements without the optimization.

6.2 Dataset Skimming of the Analysis Grand Challenge

The Analysis Grand Challenge (AGC) [13] aims to test analysis workflows at
scales required for experiments at the future, upgraded LHC accelerator (HL-
LHC) that will take data in the 2030s. The AGC both specifies a typical HEP
physics analysis (a “ttbar” analysis) that uses Open Data as input, and it provides
a reference implementation [1]. The input dataset is derived from 2015 Open
Data of the CMS experiment and openly available in the TTree format. After
conversion to RNTuple with zstd compression, the total data volume amounts
to 969 GB across 787 files.

The dataset is partitioned in events of different physics processes and, for
some processes, variations where one variable is scaled or varied. In total the
AGC analysis dataset has nine partitions. To evaluate parallel writing, our ap-
plication pre-filters the data of the various input files and produces nine output
files, one for each partition. Such a data preparation task is a typical procedure
in the course of a physics analysis.

To reduce the size of the dataset, we apply three strategies: First we drop
unneeded columns and only retain fields that are actually read and used by
the analysis. This is commonly known as horizontal skimming and in our case
decreases the dataset size to 56 GB. Second we apply vertical skimming and filter
out events (entries) based on coarse cuts: Version 1 of the AGC analysis task
requires exactly one electron or muon with transversal momentum pT > 25GeV
to be present in an event. Additionally, only events are taken into consideration
with at least four jets of pT > 25GeV 6. Therefore, we only retain events with
at least one electron and muon and at least four jets with pT > 20GeV. This
reduces the dataset size further to 24 GB while not changing the results of the
analysis. Finally, for events that passed the cut, we also drop entries from the
nested collections of electrons, muons, and jets with pT < 20GeV. With all three
skims combined, we end up with a dataset of nine files with a total size of 19 GB.

We compare the parallel RNTuple writing against four different alternative
ways of writing the data. In all cases, the skimmed files are written to the
same Samsung PM1733 NVMe SSD as used before, and without the fallocate
optimization. We execute each application configuration five times and take the
arithmetic mean of the runtimes. At each point, we verify that the margin of

6 A second version of the analysis task is currently worked on that increases the cut
values to pT > 30GeV and adds additional constraints. The exact details are not of
utmost relevance for this work, so we decide to stick to the initial, frozen version.

Parallel Writing of Nested Data in Columnar Formats 11

1 2 4 8 16 32 64 128

1

2

4

8

16

32

threads

sp
ee
d
u
p

application scaling limit

seq. writing (with IMT)
separate files
files merged with hadd
TBufferMerger

parallel writing

Fig. 5. Speedup of the AGC dataset skimming benchmark compared to a full sequential
run of 2432 seconds.

error of the 90 % confidence interval is smaller than 5 % of the mean. Figure 5
shows the resulting speedup plot compared to a full sequential run.

All versions have in common that they parallelize over output partitions as
the partitions are independent of each other. We use Intel Threading Building
Blocks [19] to express the parallelism, accessed via auxiliary classes provided
by ROOT. This allows to control the total number of threads available to the
benchmark task.

As a first option, we do not parallelize over the input files, but instead turn
on ROOT’s implicit multithreading (IMT). The sequential RNTuple writing uses
this facility to parallelize page compression. It can be seen from the plot that
this method scales up to four threads, but then reaches a plateau at around
430 seconds. This corresponds to a speedup of factor 5.7x shown with the black
dotted curve compared to the full sequential run of 2432 seconds.

A different approach is to skim each input file into a separate output file with
fully independent writers. As expected, this approach scales up to high thread
counts and finishes in 57 seconds when using 128 threads. However, it produces
787 files instead of one for each of the nine partitions. It is possible to merge
files using ROOT’s hadd utility as a postprocessing step. This requires reading
back the written files and takes around 58 seconds when parallelizing over the
output partitions. When adding this time to the skimming itself, the speedup
is worse as shown by the red curve compared to the blue curve in the plot. An

12 J. Hahnfeld et al.

additional disadvantage is that it requires double the storage space while the
merge is ongoing.

As discussed in Section 2, TBufferMerger allows for merging files in memory.
For this work, we extended this functionality to also merge RNTuple data. This
allows to parallelize over the input files, but still only produce one output file
per partition. We find that this version scales up to 32 threads with an absolute
runtime of 121 seconds in the brown curve. For higher thread counts, its runtime
starts to increase again.

Finally, the black solid curve shows the implementation using the new parallel
RNTuple writing. We find that it scales as well as independent writing to separate
files. At 128 threads, it skims the dataset in 57 seconds which is a factor 42.7x
faster than the full sequential run. For writing the nine output files with a total
of 19 GB, this corresponds to a bandwidth of 330MB/s, which is below the
limit determined with the synthetic benchmark. As an additional test, we run
the variant with separate output files per thread but write into /dev/null. This
allows to determine the scalability limit of the application indicated by the green
curve in the plot, with the best runtime of 55 seconds using 128 threads. We
therefore conclude that the application is not bound by the scalability of the
parallel RNTuple writing.

7 Conclusions and Future Work

In this paper, we presented a concept for parallel writing of nested data in colum-
nar formats. We discussed implementation choices and performance optimiza-
tions for the RNTuple format. Finally, we evaluated our implementation with a
synthetic benchmark of writing randomly generated data and an application of
dataset skimming.

With the synthetic benchmark, we showed that parallel writing of RNTuple
data scales up to the storage bandwidth limit. In order to increase that limit, we
plan to investigate the usage of Direct I/O, which results in better performance
using fio. Unfortunately first tests with RNTuple showed that Direct I/O cannot
be simply turned on because of its strict alignment requirements. More work will
be needed to write the buffered pages of a cluster in appropriate chunks and tune
the implementation.

Furthermore, we want to investigate if parallel RNTuple writing can be ex-
tended to process-level parallelism on the same node. This would allow more
flexibility in mixing process-level and thread-level parallelism, which some HEP
experiments exploit. For this, we plan to use the second optimization described
in Section 5 to decouple writing from the critical section. In that way, it will
be possible to reduce synchronization overhead by only transferring metadata,
but keeping the column data local to each process. If successful, a further step
would be distributed parallelism with MPI and writing to cluster filesystems.
Finally, we want to test our implementation with more applications and address
potential integration issues when combining parallel writing with other parallel
components of HEP experiment software.

Parallel Writing of Nested Data in Columnar Formats 13

Acknowledgments. This work has been sponsored by the Wolfgang Gentner Pro-
gramme of the German Federal Ministry of Education and Research (grant 13E18CHA).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Analysis Grand Challenge Documentation, https://agc.readthedocs.io/, accessed
2024-02-22

2. Zstandard - Real-time data compression algorithm, https://facebook.github.io/
zstd/, accessed 2024-02-27

3. Amadio, G., Bockelman, B.P., Canal, P., Piparo, D., Tejedor, E., Zhang, Z.: In-
creasing Parallelism in the ROOT I/O Subsystem. Journal of Physics: Confer-
ence Series 1085(3), 032014 (Sep 2018). https://doi.org/10.1088/1742-6596/1085/
3/032014

4. Amadio, G., Canal, P., Guiraud, E., Piparo, D.: Writing ROOT Data in Parallel
with TBufferMerger. EPJ Web Conf. 214, 05037 (2019). https://doi.org/10.1051/
epjconf/201921405037

5. Axboe, J.: Flexible I/O Tester (2022), https://github.com/axboe/fio
6. Blomer, J., Canal, P., Naumann, A., Piparo, D.: Evolution of the ROOT Tree I/O.

EPJ Web Conf. 245, 02030 (2020). https://doi.org/10.1051/epjconf/202024502030
7. Brun, R., Rademakers, F.: ROOT — An object oriented data analysis framework.

Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 389(1), 81–86 (1997). https:
//doi.org/https://doi.org/10.1016/S0168-9002(97)00048-X

8. Collet, Y.: LZ4 Frame Format Description, https://github.com/lz4/lz4/blob/
release/doc/lz4_Frame_format.md, accessed 2024-02-27

9. Collet, Y., Kucherawy, M.: Zstandard Compression and the ’application/zstd’ Me-
dia Type. RFC 8878 (Feb 2021). https://doi.org/10.17487/RFC8878

10. Deutsch, L.P.: DEFLATE Compressed Data Format Specification version 1.3. RFC
1951 (May 1996). https://doi.org/10.17487/RFC1951

11. Folk, M., Heber, G., Koziol, Q., Pourmal, E., Robinson, D.: An Overview of the
HDF5 Technology Suite and its Applications. In: Proceedings of the EDBT/ICDT
2011 Workshop on Array Databases. p. 36–47. AD ’11, Association for Computing
Machinery, New York, NY, USA (2011). https://doi.org/10.1145/1966895.1966900

12. Hahnfeld, J.: Applications using RNTuple (Mar 2024), https://github.com/
hahnjo/rntuple-apps

13. Held, A., Shadura, O.: The IRIS-HEP Analysis Grand Challenge. In: International
Conference on High Energy Physics (2022)

14. Li, J., Liao, W.k., Choudhary, A., Ross, R., Thakur, R., Gropp, W., Latham,
R., Siegel, A., Gallagher, B., Zingale, M.: Parallel netCDF: A High-Performance
Scientific I/O Interface. In: Proceedings of the 2003 ACM/IEEE Conference on
Supercomputing. p. 39. SC ’03, Association for Computing Machinery, New York,
NY, USA (2003). https://doi.org/10.1145/1048935.1050189

15. Lopez-Gomez, J., Blomer, J.: RNTuple performance: Status and Outlook. Jour-
nal of Physics: Conference Series 2438(1), 012118 (Feb 2023). https://doi.org/10.
1088/1742-6596/2438/1/012118

https://agc.readthedocs.io/
https://facebook.github.io/zstd/
https://facebook.github.io/zstd/
https://doi.org/10.1088/1742-6596/1085/3/032014
https://doi.org/10.1088/1742-6596/1085/3/032014
https://doi.org/10.1088/1742-6596/1085/3/032014
https://doi.org/10.1088/1742-6596/1085/3/032014
https://doi.org/10.1051/epjconf/201921405037
https://doi.org/10.1051/epjconf/201921405037
https://doi.org/10.1051/epjconf/201921405037
https://doi.org/10.1051/epjconf/201921405037
https://github.com/axboe/fio
https://doi.org/10.1051/epjconf/202024502030
https://doi.org/10.1051/epjconf/202024502030
https://doi.org/https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/https://doi.org/10.1016/S0168-9002(97)00048-X
https://github.com/lz4/lz4/blob/release/doc/lz4_Frame_format.md
https://github.com/lz4/lz4/blob/release/doc/lz4_Frame_format.md
https://doi.org/10.17487/RFC8878
https://doi.org/10.17487/RFC8878
https://doi.org/10.17487/RFC1951
https://doi.org/10.17487/RFC1951
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1145/1966895.1966900
https://github.com/hahnjo/rntuple-apps
https://github.com/hahnjo/rntuple-apps
https://doi.org/10.1145/1048935.1050189
https://doi.org/10.1145/1048935.1050189
https://doi.org/10.1088/1742-6596/2438/1/012118
https://doi.org/10.1088/1742-6596/2438/1/012118
https://doi.org/10.1088/1742-6596/2438/1/012118
https://doi.org/10.1088/1742-6596/2438/1/012118

14 J. Hahnfeld et al.

16. López-Gómez, J., Blomer, J.: Exploring Object Stores for High-Energy Physics
Data Storage. EPJ Web Conf. 251, 02066 (2021). https://doi.org/10.1051/epjconf/
202125102066

17. Melnik, S., Gubarev, A., Long, J.J., Romer, G., Shivakumar, S., Tolton, M.,
Vassilakis, T.: Dremel: Interactive Analysis of Web-Scale Datasets. Communica-
tions of the ACM 54, 114–123 (2011), http://cacm.acm.org/magazines/2011/6/
108648-dremel-interactive-analysis-of-web-scale-datasets/fulltext

18. Pavlov, I.: LZMA specification (Jun 2015), https://www.7-zip.org/sdk.html, ac-
cessed 2024-02-27

19. Reinders, J.: Intel Threading Building Blocks. O’Reilly Media, Inc. (Jul 2007)
20. Rew, R., Davis, G.: NetCDF: An Interface for Scientific Data Access. IEEE Com-

puter Graphics and Applications 10(4), 76–82 (1990). https://doi.org/10.1109/38.
56302

21. Vohra, D.: Apache Parquet, pp. 325–335. Apress, Berkeley, CA (2016). https://
doi.org/10.1007/978-1-4842-2199-0_8

https://doi.org/10.1051/epjconf/202125102066
https://doi.org/10.1051/epjconf/202125102066
https://doi.org/10.1051/epjconf/202125102066
https://doi.org/10.1051/epjconf/202125102066
http://cacm.acm.org/magazines/2011/6/108648-dremel-interactive-analysis-of-web-scale-datasets/fulltext
http://cacm.acm.org/magazines/2011/6/108648-dremel-interactive-analysis-of-web-scale-datasets/fulltext
https://www.7-zip.org/sdk.html
https://doi.org/10.1109/38.56302
https://doi.org/10.1109/38.56302
https://doi.org/10.1109/38.56302
https://doi.org/10.1109/38.56302
https://doi.org/10.1007/978-1-4842-2199-0_8
https://doi.org/10.1007/978-1-4842-2199-0_8
https://doi.org/10.1007/978-1-4842-2199-0_8
https://doi.org/10.1007/978-1-4842-2199-0_8

	Parallel Writing of Nested Data in Columnar Formats

