Overview of HH searches at ATLAS

Arantxa Ruiz Martínez (IFIC, CSIC-UV) obo the ATLAS Collaboration

The 21st Workshop of the LHC Higgs Working Group, 4-6 Dec 2024

Expected limit improved from 2.9 to 2.4 from previous ATLAS HH combination [Phys. Lett. B 843 (2023) 137745]

Channel	Production mode	Lumi	Journal reference	4
$HH \rightarrow bb \ell + E_{T,miss}$	ggF + VBF	140 fb ⁻¹	<u>JHEP 02 (2024) 037</u>	σ
$HH \rightarrow Multilepton$	ggF + VBF	140 fb ⁻¹	<u>JHEP 08 (2024) 164</u>	bāll i Emiss
HH ightarrow bbbb	ggF + VBF VBF	126 fb ⁻¹ 140 fb ⁻¹	PRD 108 (2023) 052003 PLB 858 (2024) 139007	Multilepton bbbb
$HH ightarrow bb_{\gamma\gamma}$	ggF + VBF	140 fb ⁻¹	<u>JHEP 01 (2024) 066</u>	<i>ь</i> Бүү—
HH ightarrow bb au au	ggF + VBF	140 fb ⁻¹	PRD 110 (2024) 032012	<i>b</i> Ēτ⁺τ⁻ —
Combination	ggF + VBF	126-140 fb ⁻¹	PRL 133 (2024) 101801	Combined -

- Higgs boson self-coupling modifier κ_{λ} and quartic *HHVV* coupling modifier κ_{2V} 95% CL intervals constrained
- Best constraint on κ_{λ} provided by $HH \rightarrow bb\gamma\gamma$ and on κ_{2V} by $HH \rightarrow bbbb$

- Most sensitive channels updated, re-analyse Run 2 data to enhance the sensitivity:
 - **HH** \rightarrow **bbbb** with BR of 34%
 - $HH \rightarrow bb\tau\tau$ with BR of 7.3%
 - $HH \rightarrow bb\gamma\gamma$ with BR of 0.26%
- New channels included:

	bb	ww	ττ	ZZ	ΥY
bb	34 %				
WW	25 %	4.6 %			
ττ	7.3 %	2.7 %	0.39 %		
ZZ	3.1 %	1.1 %	0.33 %	0.069 %	
ΥY	0.26 %	0.10 %	0.028 %	0.012 %	0.0005 %

- $HH \rightarrow bb + WW^* / ZZ^* / \tau^+ \tau^- \rightarrow bb + \ell^+ \ell^- + neutrinos$ where $\ell = e, \mu$ with BR of 2.9%
- Final discriminating variable can be the *HH* invariant mass, the diphoton invariant mass, or the multivariate classifiers used to separate signal from background
- These results bring a 17% improvement with respect to the previous publication:
 - 13% from the improvements in the *bbbb*, $bb\tau\tau$ and $bb\gamma\gamma$ final states
 - 4% from the inclusion of the multilepton and $bb \# + E_{T_{miss}}$ final states

Updates in $HH \rightarrow bb\tau\tau$

Old: <u>JHEP 07 (2023) 040</u>	< 4.7 (obs) < 3.9 (exp		
New: PRD 110 (2024) 032012	< 5.9 (obs)	< 3.3 (exp)	

- Three SRs: $\tau_{had} \tau_{had}$, $\tau_{lep} \tau_{had}$ SLT and $\tau_{lep} \tau_{had}$ LTT
- Three categories: ggF low m_{HH} , ggF high m_{HH} and VBF
 - BDTs to separate ggF from VBF production 0
 - $m_{\mu\mu}$ cut in 350 GeV to increase sensitivity in κ_2 in ggF Ο
- Main backgrounds (*tt* and Z + hf jets) estimated from MC
- Fake τ_{had} contribution from *tt* and multijet backgrounds extracted using data driven techniques
- **15% reduction** in signal strength μ_{HH} wrt previous results

±1σ

(20)

(7.2)

(3.3)

 10^{2}

Old: PRD 106 (2022) 052001	< 4.2 (obs)	< 5.7 (exp)
New: <u>JHEP 01 (2024) 066</u>	< 4.0 (obs)	< 5.0 (exp)

- HH VBF process considered for the first time in the analysis
- Seven categories defined based on BDT score and the four-body inv mass:

 $m^*_{b\bar{b}\gamma\gamma} = m_{b\bar{b}\gamma\gamma} - (m_{b\bar{b}} - 125 \text{ GeV}) - (m_{\gamma\gamma} - 125 \text{ GeV})$

Category	Selection criteria
High Mass 1	$m_{h\bar{h}\gamma\gamma}^* \ge 350 \text{ GeV}, \text{BDT score} \in [0.545, 0.830]$
High Mass 2	$m^*_{h\bar{h}\gamma\gamma} \ge 350 \text{ GeV}, \text{BDT score} \in [0.830, 0.905]$
High Mass 3	$m_{b\bar{b}\gamma\gamma}^* \ge 350 \text{ GeV}, \text{BDT score} \in [0.905, 1.000]$
Low Mass 1	$m_{b\bar{b}\gamma\gamma}^* < 350 \text{ GeV}, \text{BDT score} \in [0.430, 0.785]$
Low Mass 2	$m_{b\bar{b}\gamma\gamma}^* < 350 \text{ GeV}, \text{BDT score} \in [0.785, 0.890]$
Low Mass 3	$m_{b\bar{b}\gamma\gamma}^* < 350 \text{ GeV}, \text{BDT score} \in [0.890, 0.950]$
Low Mass 4	$m^*_{b\bar{b}\gamma\gamma}$ < 350 GeV, BDT score \in [0.950, 1.000]

Updates in $HH \rightarrow bb\gamma\gamma$

- Main backgrounds: $\gamma\gamma$ + jets and $H \rightarrow \gamma\gamma$
- SR: 120 < $m_{\gamma\gamma}$ < 130 GeV, SBs: 105 < $m_{\gamma\gamma}$ < 120 GeV, 130 < $m_{\gamma\gamma}$ < 160 GeV
- Parametrization of $m_{\gamma\gamma}$ discriminant:
 - Double-sided Crystal Ball function for *HH* signal and single *H* background
 - Exponential for background (normalized to SBs)
- **12% reduction** in signal strength μ_{HH} with respect to previous results

Updates in $HH \rightarrow bbbb$

ggF (36.1 fb ⁻¹): <u>JHEP 01 (2019) 030</u>	< 12.9 (obs) < 20.7 (ex	
VBF (126 fb ⁻¹): <u>JHEP 07 (2020) 108</u>	< 840 (obs) < 550 (ex	
New: <u>PRD 108 (2023) 052003</u>	< 5.4 (obs)	< 8.1 (exp)

• Two orthogonal selections targeting ggF and VBF

- Analysis categorizations to improve sensitivity
- Main backgrounds: multijet (~90%) and *tt* (~10%)
- Suppress multijet and tt using $|\Delta \eta_{\rm HH}| < 1.5$ and $\chi_{\it Wt} > 1.5$

$$X_{Wt} = \min\left[\sqrt{\left(\frac{m_W - 80.4 \,\text{GeV}}{0.1 \, m_W}\right)^2 + \left(\frac{m_t - 172.5 \,\text{GeV}}{0.1 \, m_t}\right)^2}\right]$$

• Signal region X_{HH} < 1.6:

	$(m_{H1} - 124 \text{GeV})$	$(m_{H1} - 124 \text{GeV})^2 (m_{H2} - 117)$			
$X_{HH} = 1$	$(-0.1 m_{H1})$	+	$0.1 m_{H2}$		

• Fully data-driven background estimation using a neural network to estimate multijet background

	Observed Limit	-2σ	-1σ	Expected Limit	+1 σ	+2 σ
$\mu_{ m ggF}$	5.5	4.4	5.9	8.2	12.4	19.6
$\mu_{ m VBF}$	130	70	100	130	190	280
$\mu_{\rm ggF+VBF}$	5.4	4.3	5.8	8.1	12.2	19.1

7

$HH \rightarrow bbbb$ VBF boosted regime

- Search for non-resonant and resonant VBF $HH \rightarrow bbbb$ production using the full Run 2 data (140 fb⁻¹)
- Boosted regime reconstruction:
 - *HH* system reconstructed with 2 large-*R* (R = 1.0) jets
 - VBF signature from 2 resolved small-R (R = 0.4) jets

- SR/VR/CR defined using the mass-plane
- VR and CR used for the data-driven background estimation
- BDT selection for further discrimination power between signal and background in the SR
- To maximise the sensitivity to the κ_{2V} parameter, the non-resonant VBF *HH* \rightarrow *bbbb* searches are combined:
 - Resolved analysis [PRD 108 (2023) 052003]
 - Boosted analysis [PLB 858 (2024) 139007]

$HH \rightarrow Multilepton$

- Final states from different *HH* decay channels [JHEP 08 (2024) 164]: $HH \rightarrow bbZZ^* / VV^*VV^* / VV^*\tau^+\tau^- / \tau^+\tau^- / \gamma\gamma VV^* / \gamma\gamma \tau^+\tau^- (6.5\% \text{ BR})$
- Two main categories:
 - $\gamma\gamma$ + ML channel (Diphoton plus multilepton): 3 sub-channels
 - **ML channel** (light leptons and hadronic taus): 6 sub-channels

- Dominant backgrounds:
 - For the $\gamma\gamma$ + ML channel is non-resonant $\gamma\gamma$ production
 - For the ML channel is diboson production
- BDT output score distribution used as final discriminant in each ML SR
- $m_{\gamma\gamma}$ distribution used as final discriminant in each $\gamma\gamma$ + ML SR

$HH \rightarrow bb \# + E_{T,miss}$

- Final states from different *HH* decay channels [JHEP 02 (2024) 037]: $HH \rightarrow bb + WW^* / ZZ^* / \tau^+ \tau^- \rightarrow bb + \ell^+ \ell^- + neutrinos (2.9\% BR)$
- Dominant background: *tt*, single top (*Wt*), Z/γ^* + hf jets
- MVA to separate signal from background:
 - DNN to classify events in ggF
 - BDT to classify events in VBF (due to low stat)

EFT interpretations: HEFT and SMEFT

- Interpretation of the results in two effective field theory (EFT) extensions to the SM, the Higgs effective field theory (HEFT) and the SM effective field theory (SMEFT)
- Benchmark definition in the latest ATLAS *HH* combination (<u>arXiv:2304.01968</u> [hep-ph])
- The VBF HH process is neglected for these results
- Constrain 7 m_{HH} shape benchmarks within the HEFT framework, upper limits on the σ_{ggF HH} for 7 HEFT shape benchmarks

 $HH \rightarrow bb_{\gamma\gamma}$ [JHEP 01 (2024) 066] $HH \rightarrow bb\tau\tau$ [PRD 110 (2024) 032012] $HH \rightarrow bbbb$ [PRD 108 (2023) 052003] Combination [PRL 133 (2024) 101801]

Run 2 BSM HH searches

- The current experimental precision does not exclude that *H* may have a small mixing with additional scalar bosons, and may be part of an extended Higgs sector
- Many BSM theories predict such an extended Higgs sector (e.g. 2HDM)
- Search for two additional scalar bosons X and S under the condition $m_X > m_S + m_H$, the decay $X \to SH$ is kinematically allowed
- Brand new ATLAS searches using the full Run 2 data:
 - $\circ \quad X \to S(\to VV) \ H(\to \tau\tau) \ [\text{JHEP 10} \ (2023) \ 009]$
 - $\circ \quad X \to S(\to VV) H(\to \gamma\gamma) [\underline{JHEP \ 10 \ (2024) \ 104}]$
 - $\circ \qquad X \to S(\to bb) H(\to \gamma\gamma) [JHEP \ 11 \ (2024) \ 047]$

HL-LHC Prospects

- ATLAS and CMS combination in the Yellow report [<u>CERN-2019-007</u>] and Snowmass White paper [<u>ATL-PHYS-PUB-2022-018</u>]
- Latest ATLAS combination results using the three most sensitive channels $HH \rightarrow bb\gamma\gamma$, $HH \rightarrow bb\tau\tau$ and $HH \rightarrow bbbb$ [ATL-PHYS-PUB-2022-053]
- Updated ATLAS projection of the $HH \rightarrow bb\tau\tau$ channel [ATL-PHYS-PUB-2024-016]

- Wealth of legacy Run 2 results from ATLAS
- Updated ATLAS *HH* combination with full Run 2 data published this year:
 - Double-Higgs production cross-section normalised to its SM prediction μ_{HH} constrained with observed (expected) 95% CL upper limit of μ_{HH} < 2.9 (2.4)
 - Higgs boson self-coupling modifier κ_{λ} constrained with observed (expected) 95% CL intervals of $-1.2 < \kappa_{\lambda} < 7.2$ (-1.6 < $\kappa_{\lambda} < 7.2$)
 - Quartic *HHVV* coupling modifier κ_{2V} constrained with observed (expected) 95% CL intervals of 0.6 < κ_{2V} < 1.5 (0.4 < κ_{2V} < 1.6)
- Interpretation of the results in the HEFT and the SMEFT
- Many $X \rightarrow SH$ searches performed in ATLAS with the Run 2 dataset
- New ATLAS projections for the HL-LHC at 3000 fb⁻¹ obtained
- ATLAS public results: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults</u>

Previous Run 2 HH combination

Phys. Lett. B 843 (2023) 137745

Phys. Rev. Lett. 133 (2024) 101801

17

18

- Higgs boson self-coupling modifier κ_{λ} and quartic *HHVV* coupling modifier κ_{2V} 95% CL intervals constrained
- Best constraint on κ_{λ} provided by $HH \rightarrow bb\gamma\gamma$ and on κ_{2V} by $HH \rightarrow bbbb$

EFT interpretations: HEFT and SMEFT

- Interpretation of the results in two effective field theory (EFT) extensions to the SM, the **Higgs effective field theory** (HEFT) and the SM effective field theory (SMEFT)
- The VBF *HH* process is neglected for these results

 $HH \rightarrow bb\gamma\gamma$

Constrain 7 $m_{\mu\mu}$ shape benchmarks within the HEFT framework, upper limits on the $\sigma_{aaF HH}$ for 7 HEFT shape benchmarks

[JHEP 01 (2024) 066] PRD 110 (2024) 032012 PRD 108 (2023) 052003 2³⁶[4H) [fb] σ_{ggF} [fb] 104 ATLAS Observed ATLAS ATLAS Observed limit (95% CL) Observed limit (95% CL) Expected $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ Expected limit (95% CL) Expected limit (95% CL) $\sqrt{s} = 13 \text{ TeV}$. 140 fb⁻¹ $\sqrt{s} = 13 \text{ TeV}, 126 \text{ fb}^{-1}$ $HH \rightarrow b\bar{b}\tau^{+}\tau^{-}$ Theory Prediction Expected limit ±1 σ HH → bbvv Expected limit ±1 or Expected limit ±20 Expected limit ±20 Theory prediction SM 10³ BM1 290 0 360 BM2 0 : BM3 10² BM4 10² BM5 BM6 400 BM7 0 10¹ SM SM 2 3 10^{2} 10^{3} HEFT shape benchmark Benchmark point

 $HH \rightarrow bb\tau\tau$

 $HH \rightarrow bbbb$