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Abstract. Starting in 2022, the upgraded LHCb detector is collecting data with
a pure software trigger. In its first stage, reducing the rate from 30MHz to about
1MHz, GPUs are used to reconstruct and trigger on B and D meson topolo-
gies and high-pT objects in the event. In its second stage, a CPU farm is used
to reconstruct the full event and perform candidate selections, which are per-
sisted for offline use with an output rate of about 10GB/s. Fast data processing,
flexible and custom-designed data structures tailored for SIMD architectures
and efficient storage of the intermediate data at various steps of the process-
ing pipeline onto persistent media, e.g. tapes is essential to guarantee the full
physics program of LHCb. We present the event model and data persistency
developments for the trigger of LHCb in Run 3. Particular emphasis is given
to the novel software-design aspects with respect to the Run 1+2 data taking,
the performance improvements which can be achieved and the experience of
restructuring a major part of the reconstruction software in a large HEP experi-
ment.

1 Introduction

The configuration of the LHCb detector for the LHC Run 3 [1] includes the readout of all
subdetectors at the nominal bunch-crossing rate of the LHC of 40MHz. In terms of the non-
empty bunch crossing rate of 30MHz, this amounts to a data flow of 5Tb.s−1 [2]. The full
event data is processed by a two-staged trigger system following the Real Time Analysis
(RTA) paradigm, shown in figure 1. The first stage performs a partial reconstruction and
initial selections based on a GPU platform called Allen [3]; it plays the role of a first high
level trigger (HLT1) and reduces the data rate to less than 200Gb.s−1 [3–5]. The data is
then put to a buffer, where it is used to perform alignment and calibration tasks. The second
stage is a second High Level Trigger (HLT2) running on a CPU farm. It performs a full
reconstruction and the appropriate selections cutting the data rate down to 10Gb.s−1 [6, 7].
Stored data corresponds to a small fraction of calibration events and some full events that will
follow an offline processing, but the largest part corresponds to fully reconstructed events with
off-line reconstruction quality, following the turbo model already used in LHCb in RUN2 [8].
∗e-mail: michel.de.cian@cern.ch
∗∗e-mail: sevda.esen@cern.ch
∗∗∗e-mail: arthur.hennequin@cern.ch
∗∗∗∗e-mail: Xavier.Vilasis.Cardona@cern.ch

 
 

EPJ Web of Conferences 295, 01026 (2024) https://doi.org/10.1051/epjconf/202429501026
CHEP 2023

  © The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of the Creative
Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/). 



EVENTS

FULL 
DETECTOR 
READOUT

 

 

REAL-TIME 
ALIGNMENT & 
CALIBRATION

LHC BUNCH 
CROSSING (40 MHz)

BUFFER

OFFLINE 
PROCESSING

ANALYSIS 
PRODUCTIONS & 
USER ANALYSIS

68% 
TURBO

26% 
FULL

6% 
CALIB

4 TB/s 
30 MHz non-empty pp

70-200 
GB/s

4  
TB/s

0.5-1.5 
MHz

10 
GB/s

EVENTS

EVENTS

(GPU HLT1)

PARTIAL DETECTOR 
RECONSTRUCTION 

& SELECTIONS

(CPU HLT2)

FULL DETECTOR 
RECONSTRUCTION 

& SELECTIONS
5.9 

GB/s

1.6 
GB/s

2.5 
GB/s

All numbers related to the dataflow are 
taken from the LHCb 

Upgrade Trigger and Online TDR  

Upgrade Computing Model TDR

EVENTS

Figure 1. LHCb Data flow [3]

Given the restrictions of the time budget in order to meet the data rate requirements and
the need for persistency of the stored data for future use, the event model has been rewritten
using modern software paradigms such as Single Instruction Multiple Data (SIMD). This
note describes the building blocks and illustrates its performance following reference [9].

2 The LHCb Event Model

The LHCb event model is the set of classes that represent the data flow from the detector
raw banks to the particles used for data analysis. It is implemented in C++ for code efficency
criteria. It serves to pass information between the algorithms in the reconstruction chain and
to write and read information consistently from and to files. In the current trigger framework,
it is applied in HLT2. The LHCb event model for Run 1 and Run 2 was based on containers
where every object in a container was identified by a key. These containers followed an
Array of Structures (AOS) format. This format is however not suited for parallel-processing
environments and slows down the access to data. Additionally, the keyed containers held
pointers to objects they contained, making memory allocation and de-allocation slow.

Because of the aforementioned requirements in terms of computing efficiency and data
rate, both in terms of event reconstruction and the analysis of particle decays, the event model
had to be redesigned for Run 3. The key elements in the process included having flexible data
structures that can be grown and shrunk at run time using dynamic memory allocation, but
also the possibility of traversing decay trees for the analysis of multi-staged particle decays.
In order to reach a high computational speed, the model needed to allow easy vectorisa-
tion [10–13]. At the same time, the new model had to be compatible with the old event
model also during the development phase to not break the workflow of the full reconstruction
sequence and for quality assurance.

All these features would be met by a Struct-of-Arrays (SOA) model [14], which was taken
as the reference. Figure 2 shows the differences in the memory layout between the previous
AOS model and the current SOA one.

The SOA structures are then organized as SOA collections. These are dynamically re-
sizeable collections of arrays in an SOA layout. Each array or field is represented by a tag
which carries all the information about the field: its type, its packed representation for offline
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Figure 2. A comparison of AOS and SOA memory layouts. Taken from Ref. [14]

storage, and so on. To illustrate the collections, we shall use the representation of the trajec-
tories of charged particles, known as tracks. For example, a simple track collection can be
created with:

// Define tags:
struct Momentum : float_field {};
struct Index : int_field {};
struct LHCbID : lhcbid_field {};
struct Hits : vector_field<struct_field<Index, LHCbID>> {};
// Define collection:
struct Tracks :

SOACollection <Tracks, Momentum, Hits>{};

being Momentum the absolute momentum of the track, LHCbID a unique identifier for a
charged cluster on a track, Index the index of the LHCbID on the track and Hits a class
representing the collection of charged clusters on the track. SOA collections provide a user
friendly structure, replacing AOS structure such as std::vector<Track>, and allow for ef-
ficient vectorization. Access to the individual tags is provided via proxies, where the specific
SIMD or scalar backends can be chosen at compilation time, with an automated detection
of the largest vector width available on the specific architecture. A proxy therefore repre-
sents a chunk of N objects in the collection where one object, e.g. a track, is a slice through
the collection. Elements in the collection can be easily added to the end, similarly to a
std::vector, with the possibility of masking some elements, i.e. not actually adding them.
This allows for selecting some objects while discarding others in parallel, such as applying
track quality or momentum requirements. For operations in the track case, this would look
like,

// Push N elements to the end of tracks, masking some
// Set the momentum of the track
auto proxy = tracks.emplace_back <simd>(mask);
proxy.field<Momentum>().set(momentum);
// Iterate over tracks N elements at a time
for (const auto& proxy : tracks.simd())

auto momentum = proxy.get<Momentum>();

while the same operations in scalar:

// Push 1 element to the end of tracks, possibly masking it
// Set the momentum of the track
auto proxy = tracks.emplace_back <scalar>(mask);
proxy.field<Momentum>().set(momentum);
// Iterate over tracks one at a time
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for (const auto& proxy : tracks.scalar())
auto momentum = proxy.get<Momentum>();

3 Connecting SOA collections

In LHCb, the Transient Event Store (TES) [15] is used to pass objects from one algorithm
to the next. Data objects need to be constant to allow safe memory allocation for multi-
threading. However during the event reconstruction, more information can become available
for some objects which are already in the TES. For example, after tracks are reconstructed,
particle identification (PID) algorithms are executed, providing additional information for
these tracks. Instead of making a copy of the objects in the TES, two methods can be used to
connect the new information to the original object.

3.1 Zipping

The first approach is using a method similar to python zip() that is denoted by zipping. A
zip is a set of SOA collections of the same size that can be iterated as one and carries the
information on how to iterate and access the collection, that is, the actual SIMD backend
and the proxy behaviour. Figure 3 illustrates an example of zip between tracks and PID
information can be seen in Fig. 2. Zips only keep pointers to existing containers and do not
own any memory.

Connecting the Dots. May 31 - June 2, 2022

4 Connecting SOA Collections

4.1 Zipping

In the transient event store (TES)[16], which is used to pass objects from one algorithm to the next, data
objects need to be constant to allow safe memory allocation for multi-threading. However during the event
reconstruction, more information can become available for some objects which are already in the TES. For
example, after tracks are reconstructed, particle identification (PID) algorithms are executed, providing
additional information for these tracks. Instead of making a copy of the objects in the TES, two methods
can be used to connect the new information to the original object. The first is using ‘zipping’, which is
similar to python zip(). A zip is a set of SOA collections of the same size that can be iterated as one and
carries the information on how to iterate and access the collection, i.e. the actual SIMD backend and the
proxy behaviour. An example of a possible zip between tracks and PID information can be seen in Fig. 2.
Zips only keep pointers to existing containers and do not own any memory. An (example) zip with tracks
and PIDs can be created with and iterated over with:

auto zipped = make_zip<simd>(tracks, PIDs);

for (const auto& zipproxy : zipped).simd() {

auto momentum = zipproxy.get<Momentum>(); // from tracks

auto pid = zipproxy.get<pid>(); // from PIDs

}

The fact that the code for looping over an SOACollection or a zip of SOACollections is identical leads to
increased code flexibility.

Figure 2: An example zip combining track, particle ID and RICH PID to a charged particle. Taken from
Ref. [17].

4.2 Relation tables

Zipping only works if both SOA collections have the same size and there exists a one-to-one correspondence
between the individual entries in the SOA collections. However, there are situations where this is not the
case, i.e. two tracks could both point to the same calorimeter cluster.

The second method to add information to an existing object are therefore ‘relations’. Relations connect
elements in a collection to something else, which can be another collection. An additional weight information
can be added to each relation. SOA Relations are SOA Collections representing relations between two SOA
Collections. For example a relation can be used between particles and their primary vertices with:

3

Figure 3. An example zip combining track, particle ID and RICH PID to a charged particle. Taken
from Ref. [16]

The code to create the zip from Figure 3 can be created with and iterated over with:

auto zipped = make_zip<simd>(tracks, PIDs);
for (const auto& zipproxy : zipped).simd() {

auto momentum = zipproxy.get<Momentum>(); // from tracks
auto pid = zipproxy.get<pid>(); // from PIDs }

This approach permits an increased code flexibility since the code for looping over an SOA-
Collection or a zip of SOACollections is identical. Zipping only works if both SOA collec-
tions have the same size and there exists a one-to-one correspondence between the individual
entries in the SOA collections.
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3.2 Relation tables

To tackle situations in which there is no one-to-one correspondence between the individual
entries in the SOA collections, like, for instance, two tracks could both point to the same
calorimeter cluster, another approach is required. This second method to add information
to an existing object are the relations. Relations connect elements in a collection to another
object, which can be another collection. An additional weight information can be added to
each relation. SOA Relations are SOA Collections representing relations between two SOA
Collections. An example of a relation is the one between particles and their primary vertices.

struct TracksPVsRelWithWeight:
RelationTable2D<Tracks, PVs, Weight>{};
TracksPVsRelWithWeight table {tracks, pvs};
auto proxy = table.emplace_back<simd>();
proxy.set(tracks.indices(), pvs.indices(), weight);

4 SIMD wrappers

One of the reasons for the LHCb event model redesign is the possibility to use SIMD instruc-
tions in the processors. Their efficiency relies on using intrinsics for vector operations, which
depend on the architecture and instruction set used (x86, ARM; SSE, AVX). Wrapper classes
for commonly used intrinsics, called SIMDWrapper were introduced at LHCb [17]. These
allow for a consistent use of vector operations, an easy switching between the backends and
a more familiar look-and-feel similar to the scalar instructions formerly used in the LHCb
code. The instruction set is fixed at compilation time, by selecting an architecture using com-
piler flags and target, to allow the compiler to do more optimizations. Given that changing
the architecture during runtime is unlikely, this limitation does not have a negative impact for
the LHCb software. The wrapper is fully integrated into the LHCb software and templated
when possible to have only one implementation for all backends. Also common mathemati-
cal functions and matrix operations are defined for all architectures to allow easy switching
from one to another. The code below shows, for example, the function to find the minimum.

// scalar
scalar::float_v min( scalar::float_v lhs, scalar::float_v rhs ) {

return std::min( lhs.data, rhs.data );
}
// neon
neon::float_v min( neon::float_v lhs, neon::float_v rhs ) {

return vminq_f32( lhs, rhs );
}
// avx
avx::float_v min( avx::float_v lhs, avx::float_v rhs ) {

return _mm256_min_ps( lhs, rhs );
}

Here, scalar::float_v is a float with vector width one, neon::float_v a float on the
ARM architecture, vminq_f32 the function to find the minimum between two ARM float
numbers, avx::float_v a float in the AVX instruction set and mm256_min_ps the function
to find the minimum between two AVX float numbers.
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Table 1. A benchmark comparing the timing of the reconstruction of a D+ → K+π+π− particle decay,
using different algorithms to perform the particle combination. CombineParticles and NBodyDecays
use the legacy framework from Run 1+2; ThOrParticleCombiner uses functors, but still the old data
structures; ThOrCombiner uses SOA structures with different vector widths. Taken from Ref [16].

Implementation D+ → K+π+π− execution time
CombineParticles 256µs
NBodyDecays 77.1µs
ThOrParticleCombiner 38.8µs
ThOrCombiner Scalar 10.2µs
ThOrCombiner SSE 7.5µs
ThOrCombiner AVX2 6.9µs

5 Throughput Oriented selections

Based on Run 2 figures and on estimations, HLT2 timing budget is split roughly 70% in event
reconstruction and 30% in selections. Currently, almost 2000 exclusive HLT2 lines are be-
ing tested, each performing selections on basic particles. In order to benefit from the speed
improvement provided by SIMD instructions and the usage of SOA collections also in selec-
tions, a new framework has been developed for the old and the new SOA-based event models
using functors (function objects). The so-called Throughput Oriented (ThOr) functors, are
designed to be agnostic about the input and output type to be flexible on what they operate
on. A significant gain in speed is achieved when using SIMD instructions on SOA containers
compared to the old implementation as seen in Table 1.

Additional speed may be gained by using a functor cache instead of Just-In-Time com-
pilation: functors, which are defined in python, are compiled into a cache during the build
process to be then used directly in the application without further interpretation. To simplify
user experience, functors are templated and are using SIMDwrappers, so the code is the same
for every architecture and no specialization is needed at the functor level.

6 Persistency

The persistency for future use of the data after the event reconstruction and the selection of
candidates is one of the key elements in the design of the event model. Persistency is ensured
in the AOS framwork in two steps. First, filtering what needs to be persisted and second,
creating persistent representations, in other words, conveying the data to more basic data
structures. The SOA collections are already mostly in a format that is ready to be persisted
making the second step simpler. Tags can be customized for how and if it is persisted and
versioning can be introduced at the creation of the collection. In the example below, one field
is defined to be packed as float, one field is not to be persisted, and one field is to be persisted
only for the newest versions of the collection.

// Define tags :
struct Momentum : float_field {
using packer_t = SOAPackFloatAs <short,

std::ratio<1, 100 > >;
};
struct Unwanted : int_field {
using packer_t = SOADontPack ;

};
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struct OopsIForgotThisField : int_field {
using packer_t =

SOAPackIfVersionNewerOrEqual<1, SOAPackNumeric <int>>;
};
// Define collection :
struct Tracks : SOACollection<Tracks,Momentum,

Unwanted, OopsIForgotThisField> {};

7 Conclusions

For the Run 3 of the LHC, the LHCb collaboration has implemented a new event model for
the second stage of the software trigger, HLT2. Its key features are the use of a SOA layout,
the native usage of SIMD instructions and SIMD wrapper classes to encapsulate common in-
trinsics. The result is an increased throughput that allows to run about 2000 trigger lines with
a full offline-quality reconstruction, without the need for any post-processing. On one hand,
this permits a large flexibility in the physics program, and, on the other, lowers the comput-
ing resources needed of the experiment by eliminating a good part of the post-processing. An
illustration of the improvement of the model can be found in Ref. [9, 18] where the efficiency
of using SIMD acceleration on different algorithms is shown. This event model therefore is
well suited for the coming decade of data taking of the LHCb experiment.
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