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Abstract

The NA62 experiment at the CERN SPS reports the first detection of a tagged neutrino
candidate based on the data collected in 2022. The candidate consists of a K+ → µ+νµ
decay where the charged particles are reconstructed and the neutrino is detected through a
charged-current interaction in a liquid krypton calorimeter.
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Genova, Italy
24Also at SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025,
USA
25Also at L. N. Gumilyov Eurasian National University, 010000 Nur-Sultan, Kazakhstan
26Present address: Institute of Nuclear Research and Nuclear Energy of Bulgarian Academy of
Science (INRNE-BAS), BG-1784 Sofia, Bulgaria
27Present address: INFN, Sezione di Pisa, I-56100 Pisa, Italy

5



Introduction

The next generation of long-baseline neutrino experiments [1, 2] will collect datasets more than
ten times larger than their predecessors. Controlling systematic uncertainties in neutrino os-
cillation studies in these experiments becomes crucial [3], and will be vital for the precision
measurements required to probe the three-neutrino paradigm [4]. These experiments require
precise knowledge of neutrino fluxes, cross-sections, interaction models, and energy estimators
with well-controlled biases [2, 4–7].

A tagged-neutrino experiment [8–12] would provide improved systematic uncertainties and
neutrino energy estimates. In the setup proposed recently [12], beam neutrinos from π± → µ±↪ ↩νµ

and K± → µ±↪ ↩νµ decays are kinematically reconstructed from the incoming and outgoing
charged particles, which are detected using instrumentation installed in the beamline. Hence,
the neutrino fluxes from π± → µ±↪ ↩νµ and K± → µ±↪ ↩νµ decays, and from all other K± decays,
particularly K± → π0e±↪ ↩ν e, are precisely determined. Moreover, the detected neutrinos can
be individually associated with their decay parents, thus obtaining a precise estimate of their
energy from the decay kinematics. Compared to energy reconstruction algorithms based on the
measured neutrino interaction final state, which typically yield 10–30% precision with signif-
icant biases [2, 13], the kinematic reconstruction provides sub-percent precision and negligible
bias [12]. In short-baseline experiments, neutrino tagging would allow precise measurements
of the total and differential interaction cross-sections. In long-baseline experiments, neutrino
tagging would improve the study of neutrino oscillations due to the excellent energy resolu-
tion, reduced backgrounds from non-oscillated neutrinos, and improved flavour and interaction
identification.

The development of the neutrino tagging technique has been hindered so far by the pro-
hibitive particle rates in a neutrino beamline. These obstacles are being overcome by the devel-
opment of neutrino beamlines operating with slow extraction [14, 15] and beam spectrometers
capable of operating in a high rate environment [16].

The NA62 experiment at the CERN SPS allows the possibility of a feasibility study of the
neutrino tagging technique. To measure the properties of the very rare K+ → π+νν̄ decay [17],
NA62 uses a high-intensity K+ beam which copiously produces neutrinos, most importantly via
K+ → µ+νµ decays. The experiment employs a state-of-the-art beam spectrometer [18] and
a liquid krypton calorimeter which can be used as an instrumented target to detect neutrino
interactions. Associating neutrino interactions with the K+ and the µ+ from their parent decays
would compellingly demonstrate the feasibility of the neutrino tagging technique.

In the following, we report the first tagged neutrino detection based on data collected by
NA62 in 2022. Details about the detector are given in Section 1 and event selection is described
in Section 2. Section 3 reports the background assessments and Section 4 the signal expectation.
The properties of the tagged neutrino candidate are given in Section 5.

1 Beam, detector and data sample

The layout of the NA62 beamline and detector [19] is shown schematically in Figure 1. An
unseparated secondary beam of π+ (70%), protons (23%) and K+ (6%) is created by directing
400 GeV protons extracted from the CERN SPS onto a beryllium target in spills of 4.8 s duration.
The target position defines the origin of the NA62 reference system: the beam travels along the
Z axis in the positive direction (downstream), the Y axis points vertically up, and the X axis is
directed to form a right-handed coordinate system. The central beam momentum is 75 GeV/c,
with a momentum spread of 1% (rms).

Beam kaons are tagged with a time resolution of 70 ps by a differential Cherenkov counter
(KTAG), which uses nitrogen gas at 1.75 bar pressure contained in a 5 m long vessel as radiator.
Beam particle momentum, direction and time are measured with 0.15 GeV/c, 16 µrad and 100 ps
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Figure 1: Schematic side view of the NA62 beamline and detector used in 2022. Information
from VC and ANTI0 counters is not used in this analysis.

resolutions by a silicon pixel spectrometer consisting of four stations (GTK0,1,2,3) and four
dipole magnets. A toroidal muon sweeper, called scraper (SCR), is installed downstream of
GTK2. A 1.2 m thick steel collimator (COL) with a 76×40 mm2 central aperture and 1.7×1.8 m2

outer dimensions is placed upstream of GTK3 to absorb hadrons from upstream K+ decays.
Inelastic interactions of beam particles in GTK3 are detected by an array of scintillator bars
(CHANTI). A dipole magnet (TRIM5) providing a 90 MeV/c horizontal momentum kick is
located in front of GTK3. The beam is delivered into a vacuum tank evacuated to a pressure
of 10−6 mbar, which contains a 75 m long fiducial volume (FV) starting 2.6 m downstream of
GTK3. The beam angular spread at the FV entrance is 0.11 mrad (rms) in both horizontal
and vertical planes. Downstream of the FV, undecayed beam particles continue their path in
vacuum.

Momenta of charged particles produced in K+ decays are measured by a magnetic spectrom-
eter (STRAW) located in the vacuum tank downstream of the FV. The spectrometer consists of
four tracking chambers made of straw tubes, and a large aperture dipole magnet (M), located be-
tween the second and third chambers, that provides a horizontal momentum kick of 270 MeV/c
directed along −X (+X) for positively (negatively) charged particles. The momentum resolution
is σp/p = (0.30 ⊕ 0.005 · p)%, with the momentum p expressed in GeV/c.

A ring-imaging Cherenkov detector (RICH) consisting of a 17.5 m long vessel filled with neon
at atmospheric pressure (with a Cherenkov threshold of 12.5 GeV/c for pions) provides particle
identification, charged particle time measurements with a typical resolution of 70 ps and the
trigger time. Two scintillator hodoscopes (CHOD), which include a matrix of tiles and two
planes of slabs arranged in four quadrants located downstream of the RICH, provide trigger
signals and time measurements. The tile matrix hodoscope has a time resolution of 1 ns, while
the slab hodoscope measures time with 200 ps precision.

A 27 radiation length thick quasi-homogeneous liquid krypton (LKr) electromagnetic calorime-
ter is used as an active neutrino target in this analysis. The calorimeter has a thickness of 127 cm
and an active volume of 7 m3 segmented in the transverse direction into 13248 projective cells
of 2 × 2 cm2 size, and provides an energy resolution σE/E = (4.8/

√
E ⊕ 11/E ⊕ 0.9)%, with E

expressed in GeV. To achieve hermetic acceptance for photons emitted in K+ decays in the FV
at angles up to 50 mrad from the beam axis, the LKr calorimeter is supplemented by annular
lead glass detectors (LAV) installed in 12 positions inside and downstream of the vacuum tank,
and two lead/scintillator sampling calorimeters (IRC, SAC) located close to the beam axis. An
iron/scintillator-strip sampling hadronic calorimeter formed of two modules (MUV1,2) and a
muon detector (MUV3), consisting of 148 scintillator tiles located behind an 80 cm thick iron
wall, are used for particle identification. The eight smaller tiles of MUV3 adjacent to the beam

7



Table 1: L0 trigger conditions relevant to this study.

L0 Condition Requirements

RICH at least two signals in RICH
RICH16 signals in at least 16 groups of eight adjacent PMTs in the RICH

Q1 at least one signal in the tile CHOD
Q2 at least one signal in each of two different quadrants of the tile CHOD

UTMC fewer than five signals in the tile CHOD
E5 at least 5 GeV deposited in the LKr

MOQX at least one signal in each of two diagonally-opposite quadrants of MUV3

pipe are referred to as the inner tiles, while the remaining 140 regular tiles are called the outer
tiles. The four quadrants of MUV3 include only the outer tiles.

The data sample is obtained from 3.2 × 105 SPS spills collected in 2022, with a typical
beam intensity of 3.0 × 1012 protons per spill. This value corresponds on average to a 600 MHz
instantaneous beam particle rate at the FV entrance, and a 4.5 MHz K+ decay rate in the FV.

A two-level trigger system is used, comprising a hardware low level trigger (L0) and a software
high level trigger (L1) [20]. The main trigger line is dedicated to the K+ → π+νν̄ study. Other
trigger lines, based on combinations of individual detector conditions, operate concurrently. The
L0 trigger conditions relevant to this study are described in Table 1.

The signal sample is collected using the Neutrino trigger line. The L0 conditions are
RICH · RICH16 · UTMC · Q2 · E5 · MOQX. The L1 conditions require K+ identification in KTAG, a
positively charged track originating in the FV with momentum below 65 GeV/c and no activity
in LAV. This trigger line selects K+ → µ+νµ decays followed by a charged-current neutrino
interaction in the LKr calorimeter which produces a hadronic shower and a µ−.

A normalisation sample of K+ → µ+νµ events is used to determine the number of kaon decays
and estimate the corresponding number of expected signal events. This sample is collected using
the Minimum bias trigger line (RICH · Q1) downscaled by a factor of 600; no conditions are applied
at L1.

Monte Carlo (MC) simulations of particle interactions with the detector and its response are
performed using a software package based on the Geant4 [21] and Genie [22–25] toolkits.

2 Event selection

The event selection consists of two sets of criteria. The common selection is applied to both
signal and normalisation samples, and is designed to select K+ → µ+νµ decays with a single
positively charged track originating in the FV and identified as a muon. The interaction selection
is designed to select the signal sample comprising K+ → µ+νµ decays followed by a neutrino
interaction in the LKr calorimeter. The signal region defined in the following is kept masked
until the completion of the background evaluation.

Common selection

Trigger condition Events are required to satisfy all RICH and CHOD L0 conditions used in
the Neutrino and Minimum bias trigger lines (RICH · RICH16 · Q1 · Q2 · UTMC).

Positively charged muon A positively charged track must be reconstructed in the STRAW
spectrometer with momentum below 65 GeV/c. Its extrapolated positions at the CHOD, RICH,
LKr, MUV1, MUV2 and MUV3 front planes should be within the respective geometrical ac-
ceptances. Spatial association of in-time signals in these detectors is required. The RICH time
defines the track time. Muon identification is performed as follows:
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– both track-seeded ring and single ring algorithms exploiting RICH signals and track prop-
erties [26] must favour the muon hypothesis;

– a MUV3 signal must be associated with the extrapolated track position.

Parent kaon A K+ candidate is defined as a beam track reconstructed in GTK in time with
a KTAG signal. The K+ candidate with the KTAG time closest to the µ+ track time defines
the parent kaon. Inelastic kaon interactions in GTK3 are excluded by applying the following
criteria: no CHANTI signal in time with the µ+ track; no other K+ candidate forming a vertex
with the µ+ track at a Z coordinate consistent with the GTK3 position (100 − 105 m).

Decay vertex The mid-point of the smallest segment between the µ+ and K+ tracks defines
the decay vertex. The closest distance of approach of these tracks must be smaller than 4 mm.
The Z coordinate of the vertex must be in the FV range 105 − 170 m.

Neutrino candidate The neutrino candidate is defined as the neutral particle originating
from the decay vertex with 4-momentum equal to PK+ − Pµ+ , where PK+ and Pµ+ are the K+

and µ+ 4-momenta under the assumption of K+ and µ+ masses, respectively. The squared
missing mass, m2

miss =
(
PK+ − Pµ+

)2
must be consistent with zero, |m2

miss| < 0.006 GeV2/c4, as
shown in Figure 2-left. The extrapolated position of the neutrino candidate at the LKr front
plane must be within the LKr geometrical acceptance and at least 250 mm from the beam axis.
The extrapolated position at the MUV3 front plane must be at least 300 mm from the beam
axis. The distance between the extrapolated positions of the neutrino and the µ+ candidates
should be larger than 200 mm at the LKr front plane.

10− 5− 0 5 10

3−10×

]4/c2 [GeVmiss
2m

0

100

200

300

400
NA62

MC

0 100 200 300
 [mm]LKrd

0

100

200

300
NA62

MC

Figure 2: Left: distribution of the squared missing mass m2
miss for simulated K+ → µ+νµ decays.

Right: distribution of the distance dLKr between the extrapolated position of the neutrino
candidate at LKr front plane and the associated interaction position. The shaded areas represent
the signal region.

Extra activity In-time activity related to other beam tracks or K+ decays is excluded by
requiring:

– no more than three beam kaons based on KTAG signals detected within 8 ns of the RICH
time;

– fewer than five beam tracks in GTK within 0.6 ns of the RICH time;

– no partially reconstructed STRAW tracks pointing to the decay vertex;

– no activity in LAV downstream of the vertex Z position within 3 ns of the RICH time;
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– no more than one signal associated to the µ+ in each CHOD hodoscope;

– no signals in LKr, MUV1, and MUV2 within 250 mm, 200 mm and 300 mm of the beam
axis, respectively;

– no signals in SAC, IRC.

Interaction selection

Neutrino interaction Neutrino interaction signals should be reconstructed in LKr, MUV1,
MUV2 and MUV3, matching in time signals from the µ+ track from the K+ decay. The distance,
dLKr, between the extrapolated position of the neutrino candidate at the LKr front plane and
the associated LKr signal position, should be less than 60 mm, as shown in Figure 2-right. For
kinematic reasons, neutrino interactions are not expected in the LKr inner region centered on
the Z axis with a diameter 500 mm, extended on the X > 0 side to a half-ellipse of 500 mm
(900 mm) minor (major) axes along Y (X). Except for the signals associated with the neutrino
candidate and the µ+, no in-time LKr signal should be reconstructed. The MUV1 and MUV2
signals should be spatially consistent with the neutrino candidate interaction in LKr. The
MUV3 signals associated with the neutrino candidate and the µ+ should be separated by at
least 440 mm and located in diagonally opposite quadrants.

Interaction energy The LKr energy deposit associated with the neutrino candidate should
be larger than 5 GeV, to match the E5 condition at L0, and between 5% and 50% of Eν , the
neutrino energy reconstructed kinematically from the K+ → µ+νµ decay. The total in-time
energy in MUV1 and MUV2 should be larger than 8 GeV. The sum of the energy deposits
associated with the interaction in LKr, MUV1 and MUV2 should be smaller than Eν . As the
hadronic shower is expected to be contained in LKr and MUV1, the energy deposit associated
with the interaction in MUV2 is required to be lower than 10% of the sum of the associated
energy deposits in LKr, MUV1 and MUV2.

The production angle of the µ− increases as a function of the neutrino energy fraction
transferred to the hadronic shower. The distance, dMUV3, between the extrapolated position
of the neutrino candidate at MUV3 front plane and the MUV3 signal position is expected to
decrease linearly with the inelasticity y = (Eν − ELKr − EMUV1)/Eν , where ELKr and EMUV1

are the energy deposits associated with the neutrino candidate in LKr and MUV1. As a result,
dMUV3 is required to satisfy the condition 880 mm < dMUV3 + 880 mm × y < 1300 mm.

Interaction topology The neutrino and its interaction products, the hadronic shower and
the µ−, should be coplanar. Using a cylindrical coordinate system with the neutrino candi-
date direction defining the longitudinal axis, the azimuthal angle, φ, between the LKr signal
associated with the neutrino candidate and the MUV3 signal associated with the µ− must be
compatible with π radians, and is required to satisfy |φ− π| < 1.44 rad.

3 Background estimate

The background events originate from (A) K+ → µ+νµ decays with unrelated in-time activity
mimicking a neutrino interaction, and (B) mis-reconstructed non-K+ → µ+νµ decays.

A data-driven method is used to estimate the contribution of background events by mod-
elling their observed distribution in the regions |m2

miss| ≥ 0.006 GeV2/c4 or dLKr ≥ 60 mm and
integrating the model in the signal region.

Background A is studied using a sample satisfying the signal selection but inverting the
dLKr condition and removing the requirements on φ and on dMUV3 to increase the sample
size. Assuming that the accidental activity is uniform over the LKr front plane, the number of
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Figure 3: Left: dLKr distribution of the selected events in the background A sample, fitted with
a linear function. Right: m2

miss distribution of the selected events in the background B sample,
fitted with an exponential function. The shaded areas represent the masked signal region.

background events per unit of dLKr is proportional to dLKr. The dLKr distribution of the selected
sample is fitted with a linear function from 60 mm to 300 mm as shown in Figure 3-left. The
expected number of events in the signal region is obtained as the integral of the fit function in this
region, scaled by the efficiency of the removed selection criteria, which is measured in the side-
bands. The contribution is found to be 0.030 +0.041

−0.023

∣∣
stat

± 0.004syst. The statistical uncertainties
account for those of the fit parameter and the scale factor. The systematic uncertainty accounts
for the choice of the fit range, and is computed as the difference between the scaled integrals
using the fit ranges [60, 300] mm and [60, 180] mm.

Background B is similarly studied by inverting the m2
miss requirement and removing the

interaction energy and topology conditions to increase the sample size. The m2
miss distribution of

the selected sample is fitted from −0.015 to 0.03 GeV2/c4 with an exponential function, excluding
the signal region |m2

miss| <0.006 GeV2/c4, as shown in Figure 3-right. The integration of the fit
function in the signal region, after scaling by the measured efficiency of the removed criteria,
gives an estimated contribution of 0.0039 +0.0060

−0.0034

∣∣
stat

± 0.0007syst. The statistical uncertainties
account for those of the fit parameters and scale factor. The systematic uncertainty accounts
for the choice of the fit function and is computed as the difference between the scaled integrals
using exponential and quadratic functions.

The total number of expected background events in the signal region, dominated by back-
ground A, is 0.034 +0.041

−0.023

∣∣
stat

± 0.004syst.

4 Expected signal

The expected number of signal events, Nsig, is obtained from the number of observed normali-
sation events, Nnorm = 2.22 × 108:

Nsig = Nnorm ·D · P int · εsig
εnorm

,

where D = 600 is the downscaling factor of the L0 Minimum bias trigger line used to collect
the normalisation events, P int is the average neutrino interaction probability for the selected
signal sample, and εsig (εnorm) is the selection and trigger efficiency of the signal (normalisation)
sample.

Given the charged-current interaction cross section (0.68×10−38 cm−2GeV−1 [27]), the mean
neutrino energy (40 GeV) and the thickness of the LKr calorimeter (127 cm), the interaction
probability, P int, is expected to be a few 10−11. A more precise value is obtained using simula-
tions by GENIE including elaborated models of cross sections. The neutrino from each simulated
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K+ → µ+νµ decay is transferred to GENIE which calculates the neutrino interaction probabil-
ity in the LKr calorimeter, generates the interaction position and the final state particles, and
returns this information to the NA62 simulation software. The average interaction probability
for the selected signal events is found to be P int = (5.6± 0.1syst)× 10−11, where the uncertainty
is due to the precision of the neutrino cross-section measurements.

Removing the trigger components common to the signal and normalisation selections, the
efficiency ratio becomes

εsig
εnorm

= εint · εMOQX · εE5 · εL1,

where εint, εMOQX, εE5, and εL1 are the efficiencies of the interaction selection and trigger conditions
applied only in the signal selection.

The interaction selection efficiency is εint = 0.0367 ± 0.0022stat ± 0.0013syst, as evaluated
using simulations and correcting for the random loss induced by non-simulated extra activity in
the detectors. This loss is estimated from data as the fraction of events rejected when requiring
in-time activity in LKr and MUV3 in the normalisation sample.

The MOQX trigger efficiency is measured using a sample of K+ → π+π+π− decays where two
pions of opposite charge decay in flight as π± → µ±↪ ↩νµ. The sample is collected with a trigger
line based only on RICH and CHOD signals and therefore independent of MUV3. Events are
required to have two reconstructed tracks associated with MUV3 signals located in diagonally
opposite outer quadrants. The MOQX efficiency is computed as a function of the MUV3 tile pair.
The efficiency εMOQX = 0.976 ± 0.007stat is obtained by weighting the tile-pair efficiencies by the
tile-pair distribution obtained from signal simulation.

The E5 trigger efficiency is evaluated using a sample of K+ → π+π0 decays where the π+

produces a hadronic shower in LKr and the photons from the π0 decay are detected in the LAV.
The sample comprises events collected by trigger lines that do not rely on LKr signals. Events
are required to have no activity in the LKr inner region, IRC and SAC and exactly one LKr
signal in time with the π+ track, ensuring a purely hadronic energy deposit in LKr. The E5

efficiency is measured as a function of the in-time energy deposit in the LKr. The efficiency
εE5 = 0.847 ± 0.008stat ± 0.003syst is obtained by weighting the measurements in individual
energy bins by the energy distribution of selected signal events obtained from simulations. The
systematic uncertainty is obtained by varying by 10% the neutrino energy used in the GENIE
simulation of the interaction.

The L1 efficiency is found to be εL1 = 0.918± 0.002stat, using a downscaled dataset recorded
without L1 conditions applied [20].

The resulting number of expected signal events is

Nsig = 0.208 ± 0.013stat ± 0.009syst,

leading to a signal over background ratio of 6/1.

5 Results and prospects

After unmasking the signal region, one event is observed, the main properties of which are re-
ported in Table 2. A display of the activity in the downstream detectors is shown in Figure 4.
Given the total number of expected events (0.242+0.043

−0.027

∣∣
stat

± 0.010syst), the probability of ob-
serving one event in the signal region is 19% while the probability of observing one background
event candidate is 3%.

The observed event is the first tagged neutrino candidate and demonstrates the feasibility
of the neutrino tagging technique. The obtained result is an important step toward dedicated
tagged neutrino experiments, allowing the collection of large samples of tagged neutrinos, which
would open new perspectives for accelerator-based neutrino physics. The data already collected
by NA62 in 2023–2024 can be used to consolidate the result of the study presented here.
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Table 2: Properties of the tagged neutrino candidate event. Its energy evaluated from kinemat-
ics has a relative uncertainty of 0.34% which is significantly better than the 10-30% typically
achievable in neutrino detectors.

Property Value

K+ momentum 77.34 GeV/c

µ+ momentum 25.26 GeV/c

Decay vertex position zvtx 161.2 m

Neutrino energy Eν = EK+ − Eµ+ 52.09 GeV

Distance of the LKr signal to the Z axis 334.9 mm

LKr energy associated with the neutrino ELKr 12.54 GeV

MUV1 energy associated with the neutrino EMUV1 13.75 GeV

MUV2 energy associated with the neutrino EMUV2 10.74 GeV

Inelasticity y 0.69

Azimuthal angle between the LKr and MUV3 signals φ 3.28 rad

dLKr 31.4 mm

dMUV3 567.9 mm

m2
miss −0.00086 GeV2/c4

Figure 4: Display of the activity recorded in CHOD, LKr, MUV1, MUV2 and MUV3 for the
signal candidate. No extra in-time activity is recorded in these detectors. The red histograms
represent the activity in each detector projected at the front plane. For LKr, MUV1 and MUV2
the heights correspond to the fraction of the total energy deposited in each cell. The solid line
represents the µ+ trajectory extrapolated from the STRAW track; the dashed line represents
the neutrino trajectory reconstructed using the K+ and µ+ momenta. The shaded areas in the
projection represent the detector volumes.
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