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(changes w.r.t. fastDIPS highlighted)

QD'PS is a quantised version of “fastDIPS” (fast Deep Impact Parameter Sets) [1], an ATLAS low-level

Deep Sets based jet flavour tagging algorithm [2] used in the Run 3 High Level Trigger. We aim to run
QDIPS on FPGA as demonstrator for a high throughput heterogeneous compute TDAQ system.

QDIPS Project Goals

4+ Adapt architecture to FPGA: Does performance match up to

full-precision CPU performance?

Deep Sets neural networks are useful applications for variable sized, unordered
inputs (e.g. tracks associated to jets): Made permutation invariant to input order.
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4 Fit it on FPGA: Does it fit and use fraction of FPGA resources? ) e
_ _ _ _ Masking of empty tracks: We avoid bias in
We use QKeras (quantised machine learning) & HLS4ML (high &’ so empty tracks don't contribute to sum.
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Figure 1: b-jet tagger performance roc curve for different QDIPS
model sizes. The performance of the original for-CPU fastDIPS
(dashed black line) as well as the HLS4ML-translated QDIPS tagger
(red dot-dashed line) are shown for comparison.

from 16-bit to 8-bit has small impact on performance (Fig.2) e.g.:
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Figure 2: The light jet rejection at 80% b-jet tagging efficiency is
shown for different uniformly applied bit precisions for “small”
QDIPS (red squares) and “medium” QDIPS (yellow triangles).
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Figure 3: The LUT usage (red squares) & latency
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Figure 4: Floor plan showing an AMD Alveo U250
implementation with 4 model instantiations.

(blue squares) versus reuse factor shows the
trade-off between resource reduction and latency.

Table 1: Resource estimates on AMD Alveo U250 synthesis at 200 MHz, and
flavour tag performance at 80% b-jet tagging € (statistical uncertainty given).

Summary FPGAs are power efficient, low latency alternatives to CPUs/GPUs for accelerated computing at the

ATLAS Event Filter at the HL-LHC. We demonstrated that we can fit a Deep Sets network on a AMD Alveo U250 accelerator with
down to 5% LUT usage and 25% decrease in performance compared to CPU, enabling multiple cores for increased throughput.
The low latencies achieved may also make it applicable to hardware triggering in future following further optimisations.
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