Performance of full System Tests for the ATLAS Inner Tracker Strip Detector.

Overview and results from the System Test at DESY

Jan-Hendrik Arling, Maximilian Caspar, Dominique Trischuk

On behalf of the ITk Strip End Cap System Tests Community

HELMHOLTZ

Introduction

The ATLAS Inner Tracker

A new silicon strip detector for the HL-LHC phase

- Current ATLAS Inner Detector (ID) will be replaced by a new Inner Tracker (ITk)
 - All-silicon detector solution
 - Better performance in harsher conditions
 - More readout channels
 - Better spatial resolution
 - Higher radiation tolerance
 - Lower material budget

17,888 sensors

165m² of silicon

60 million strips

Dose up to 50 MRad

<u>ATL-TDR-025</u>

ATL-PHYS-PUB-2021-024

ITk Strip End Cap

NENNENNENNENNENNENNENNENNEN

ITk Strip Barrel

Overview of the Detector Concept

Silicon strip detector modules

- Silicon strip detector module consists of
 - n+-in-p silicon strip sensor
 - Glued on PCB with readout chips ("hybrid")
 - Glued on PCB with power control ("powerboard")
 - Connections via wire bonds
 - Different types/shapes depending on location in the detector
 - Modules are directly glued on local support structures ("cores")

Overview of the detector concept

Petals as building blocks of the end caps

626,8 301

330.9

EoS

Modules

-Thickness = 5.87

Page 5

- Main building blocks of the strips end-cap detector are the **petals**
 - Core loaded on both sides with 6 modules (9 silicon ٠ crystals) - R0 to R5
 - End-of-substructure (EoS) board as off-detector
- **Global support** structure providing mechanical support and connections to the services
 - Arranged in six disks, each disk populated with 32 petals •

ITk Strips EC System Test

ITk Strips End Cap System Test

An overview

ATLAS ITk Strips System Test

- 1/8 section of carbon fibre end cap structure
- Testing up to 12 petals in realistic conditions
- Petals are supplied with real ITk services (CO₂ cooling, PSUs, DAQ, ...)
- Detector volume enclosed by aluminum-foam composite plates and flushed with dry air
- LUCASZ cooling plant attached to reach up to -35
 °C

Interlock & Monitoring System

System Test Instrumentation

Interlock & Monitoring System (IMS)

- Cold petals are at risk if humidity enters the coldbox volume
- · People could be endangered by the sensor HV
- Developed an interlock system for the System Test using industrial off-the-shelf components
- System decides when to open coldbox and turn on HV and cooling
- Web interface to see sensor/interlock monitoring data
- Also to be used during end cap integration

Interlock Connection Box (DESY)

Petal Coldbox

Testing single petals

Petal Coldbox for End Cap Integration

- Testing a single petal with CO_2 cooling (MARTA)
- Used for testing loaded petals before insertion into the end cap
- For petal pre-production: Commissioning the coldbox, performing extensive studies of the readout and noise behaviour

Petal Noise Studies

Threshold Scan

The fundamental measurement with the petal

Readout Principle

- Charge signal from sensor gets digitised using a discriminator and a "threshold" voltage BVT
- Changing BVT affects sensitivity and noise

Threshold Scan

- With a known input signal/charge, scan different values of BVT
- The resulting "S-Curve" lets us know the channel threshold VT_{50} and the output noise σ_o

Response Curve (and 3-Point Gain)

Measuring detector noise

Response Curve Scan

- Perform threshold scans for multiple injected charges
- $VT_{50}(q)$ is fitted with a model function
- The detector gain G is defined as the slope of this curve
- ENC (Equivalent Noise Charge) is calculated as ENC(q) = $\sigma_o(q) / G(q)$ (convention q = 1 fC)
- The ENC is also called the "input noise", since the digitisation effect has been divided out

Repeatability

How good are these measurements?

Input Noise Values

- Take a full test of the petal five times in a row
- Compare the per-channel differences in input noise for all combinations of runs
- The histograms of differences are gaussian
- The per strip measurement uncertainty evaluates to just 15 e⁻
- The mean absolute deviation of the distribution means is below 1 e⁻

Per Channel Noise Difference [Electrons]

Repeatability

How good are these measurements?

Noise Occupancy Curves

- A noise occupancy curve is just the threshold scan without any injected charge
- Results from five different runs were compared
- Important: NO < 1% ("Operating window")
- No significant differences in the operating window where found between runs

Noise Crosstalk

Do petal sides talk to each other?

Crosstalk

- Module noise could be influenced by electromagnetic interference
- A possible source: modules on the opposite petal side

Measurement

- · Take noise data with one side powered off
- · Compare to data with both sides powered on

Results

Noise crosstalk between petal sides is about 11 e⁻

Noise crosstalk at primary and secondary side @ 1 fC

Cosmic Muons at the System Test

Experimental Setup

Detecting cosmic particles

Cosmic Muons

- High energy particles from cosmic sources are hitting the atmosphere
- The resulting cascade produces pions, which decay
 into muons
- These "cosmic" muons are present everywhere on earth (~ 1 / cm² / minute)

Trigger System

- Large external trigger szintillator placed above and below the System Test coldbox
- AIDA 2020 TLU used to generate trigger signals for ITSDAQ

[cds.cern.ch/images/CMS-PHO-GEN-2017-008-1]

Trigger Latency

How "slow" is our trigger signal?

Trigger Latency

- Signal formation and processing in the trigger setup takes time
- When the trigger signal arrives, the muons are "long gone"
- 512 events (25 ns each) are stored in the buffer for 12.8 µs

Measurement

- Vary the latency between signal and trigger
- · Take data at two different thresholds

Results

٠

Optimal threshold setting of $BVT = 35 \cdot 25$ ns

Measuring Cosmic Muons

A real particle signal with the ITk Strips Petal

Setup

 TRIUMF1 petal in the system test with 0 °C CO₂ cooling

Measurement

- Take threshold scan with uncorrelated TLU "autotriggers" at 500 Hz
- Perform the same measurement with the external trigger signal (~ 0.6 Hz)

Results

- Hit occupancy matches well between runs at low thresholds
- Higher threshold exhibit a clear plateau caused by the muons

Conclusion

Conclusion and Outlook

Where we are, where we want to go

Setup

- Completed System Test setup with realistic electrical and cooling services
- Sucessfully inserted and tested first petal in the ST cold box

Measurements

- · Characterised the reliability of the ITSDAQ results
- Measured the P/S noise crosstalk on a single petal
- Got first cosmic muon signal during a latency scan
- Made a detailed measurement of the cosmic muon signal in a threshold scan

Whats next?

- Insert more petals into the System Test structure
 - Test readout with multiple objects
 - Measure noise crosstalk between layers / discs
- Take cosmic muon data with multiple petals
 - Check for correlations between discs
 - Perform tracking with cosmic muon data and compare to MC simulations
- Integrate ATLAS command and control software with the System Test
 - Testbench for real detector
 - Training device for new detector operators

Thank you

Contact

Deutsches Elektronen-Synchrotron DESY

Maximilian Caspar ATLAS Group Maximilian.caspar@desy.de Jan-Hendrik Arling ATLAS Group jan-hendrik.arling@desy.de

www.desy.de