Large Hadron Collider the world's largest and most powerful particle accelerator

Large Hadron Collider

the world's largest and most powerful particle accelerator

Image from here

Last update: September 24

The ATLAS ITk Pixel Detector: A great adventure from design to construction

2024, Oct 31 2024 IEEE NSS MIC RTSD in Tampa, Florida

https://www.eventclass.org/contxt_ieee2024/scientific/online-program/session?s=N-27#e163

Why we want the HL-LHC upgrade?

GOAL of the HL-LHC: to increase the integrated luminosity by a factor of 10 beyond the LHC's design value

Photo by Maximilien Brice, CERN

Why we want the HL-LHC upgrade?

- In all aspects, the upgraded tracker (ITk) at least matches—and in most cases surpasses—the performance achieved in LHC Run 2 (see Ewa Stanecka's talk)
- This cutting-edge tracker will push the boundaries of precision and sensitivity, paving the way for exciting physics opportunities with future colliders

 $\sim 4\sigma$ (stat. + syst.)

Tracker in the ATLAS detector

ATLAS Open Data

ITk Upgrade Overview Inner Tracker (ITk): new ATLAS tracker for HL-LHC

ATLAS ITk pixel layers

- The geometric structure of ITk creates non-uniform challenges
- The ITk Pixel Inner System (= layer 0 + layer 1) is located nearest to the collision point, resulting in the most demanding requirements

ITk Pixel Sensors

Schematic view of electrode and charge collection

Columnar 3D sensors (layer 0)

smaller drift path

Required radiation tolerance: 7.2 MGy for integrated luminosity of 2000 fb⁻¹

- Smaller drift path independently of the sensor thickness
 - → smaller depletion voltage
 - \rightarrow less charge trapping
 - \rightarrow improved position resolution
- Technical complexity
 - \rightarrow higher cost & limited yield

 lower power dissipation after irradiation

Planar sensors (other layers)

- n-in-p wafer single side processed
 - \rightarrow Simpler (i.e. cheaper) fabrication
- Radiation tolerance can be improved by reducing the thickness
 - layer 1 (100um)

Required radiation tolerance: 3.2 MGy for integrated luminosity of 2000 fb⁻¹

• **other layers** (150um) - higher yield

Required radiation tolerance: 3.5 MGy for integrated luminosity of 4000 fb⁻¹

arXiv:1903.12531

ITk Pixel Sensors

Measured hit efficiency before/after irradiation

Both sensor types meet the required hit efficiency (>97%) after irradiation

Argonne National Laboratory

Front-end Chip

Unlike sensor, the same chip will be used everywhere in the detector

→ The design must respect the most severe requirement (inner system, central region)

Technical requirements

	New tracker FE chip	Current tracker FE chip
Chip Size	2 x 2 cm ²	2 x 2 cm ²
Pixel Size	50 x 50 um²	50 x 250 um ²
Pixel Hit Rate	3 GHz / cm ²	400 MHz / cm ²
Trigger Rate	1 MHz	200 kHz
Trigger Latency	12.8 us	6.4 us
Current Consumption	< 8 uA / pixel	20 uA / pixel
Radiation Tolerance	0.5 - 1 Grad	300 Mrad
Min. stable Threshold	600 e	1500 e

- Developed by <u>RD53</u> collaboration (ATLAS & CMS joint effort)
- 65 nm CMOS* technology
 - \rightarrow low power (< 5 uW/pixel)
 - \rightarrow high logic density

Front-end Chip

Serial Power chain

The Shunt LDO* power regulator (SLDO) **provides constant current operation with multiple chips** (and also modules) connected in parallel

- → material reduction (cables)
- → constant power consumption (important for mechanical stability)

ITk Pixel Module

Module hybridization and assembly

= sensor + 4 front-end chips bump bonded

Key challenges: unprecedented bump density for ITk exceeds industry norms

- Reduced sensor thickness: 100-150 μ m (vs. 250 μ m in current ATLAS Pixel)
- Thinner FE chip: 150 μ m (vs. 190 μ m in current ATLAS Pixel)
- **5x increase in bump density** due to smaller pixel pitch (50 μ m x 50 μ m vs. 50 μ m x 250 μ m)
- 440 columns x 384 rows = 153,600 bump bonds / chip

ITk Pixel Module

Module hybridization and assembly

Flex PCB *

Flex PCB glued to the backside of the sensor tile then wirebonded to the front-end chips

→ Traces that carries commands/data/power interfaced with connectors to service

* Bare module and $\ensuremath{\mathsf{Flex}}\ensuremath{\,\mathsf{PCB}}\xspace$ are provided by industry

ATLAS-PHOTO-2021-049

Flex PCB with a pattern of glue dots before attaching it to the chip-sensor assembly

Wire bondings for one front-end chip

ITk Pixel Module

Module hybridization and assembly

Barrel triplet module (3 x 3D sensor)

Ring triplet module (3 x 3D sensor)

Local supports

The local supports provide

- mechanical support
- alignment
- routing of services
- thermal management

1111 11111111

of the pixel modules

Support structures are specialized by region

Local supports: Outer Barrel

Argonne 🕰

YATLAS

Local supports: Outer End-cap

ATL-ITK-PROC-2023-003

OEC half-ring

ATL-ITK-PROC-2024-024

Identical structure & composition three different R

Local supports: Inner system

Material Reduction

Novel designs

- Low-mass carbon structures for mechanical stability and mounting
- CO₂ cooling with thin titanium pipes (high evaporation pressure, ~50 bar)
- Serial power chain and data link sharing reduced cabling
- Thin sensor and FE chips minimise materials in module

ATLAS ITk Pixel

Production challenges for expended pixel system

Another significant challenge is the production rate the volume required for the substantially enlarged pixel system

- Appropriate technology selections
- Well defined and documented procedures
- Centralized tools as much as possible:
 - ITk Production Database (for entire ITk)
 - o Local Database
 - o ITk WebApp
 - Module QC tools
 - Site qualification
 - Data quality monitoring

HL-LHC demands us to overcome extremely challenging requirements

The only way to discover the limits of the possible is to go beyond them into the impossible

- Our recipes
 - All-silicon detector
 - Extended coverage with 5 pixel layers ($|\eta|$ up to 4)
 - New sensors and FE chip advancement
 - Pioneering features for optimized material budget

 The excellent tracking performance and the forward tracking extension are essential for reaching our milestones in the HL-LHC physics program
vBF, VBS, Higgs Self-Coupling, Long-lived particle, and many more!