Searches for electroweak production of supersymmetric particles with the ATLAS detector

Blois 2024

Dr. Ben Hodkinson

University of Oxford

On behalf of the ATLAS Collaboration

October 23, 2024

The EW SUSY particle zoo

See <u>Francesco's talk</u> for discussion of strong SUSY

Wino

The EW SUSY particle zoo

See <u>Francesco's talk</u> for discussion of strong SUSY

The EW SUSY particle zoo

- Smallest production cross-sections → Limits are weakest
- Lightest neutralino is expected to be the lightest SUSY particle (LSP) and can be a dark matter candidate.
- Dark matter constraints favour scenarios with an LSP mass at or below O(1 TeV).
- Light higgsino favoured by naturalness
- Compressed spectra favoured by DM, g-2 and naturalness considerations
 - Challenging signatures with soft objects

Neutralinos

SUSY signal models

Minimal Supersymmetric Standard Model (MSSM)

- > "SUSY breaking terms" parameterize our ignorance about the SUSY breaking mechanism
- > 100 unknown parameters

Simplified models

- One SUSY production process
- One decay chain with BR = 100%
- Pure bino/wino/higgsino states
- Used for ATLAS search optimization and tinterpretation (2D exclusion contours)

Phenomenological MSSM (pMSSM)

- Includes all sparticle production and decay modes
- Service Assumes no new CP or FCNCs, 1st/2nd gen. sfermion universality, R-parity conservation
- 19 parameters

1) pMSSM interpretation of early Run 2 searches

pMSSM scan workflow

- Scan the 19-dimensional pMSSM to produce sets of models
- Reinterpret early Run 2 searches to determine which models are (not) excluded
- Produce global picture of ATLAS' sensitivity to electroweak SUSY
- Identify scenarios we've missed due to non-simplified phenomenology

JHEP 05 (2024) 106

Some sensitivity to compressed scenarios through heavier electroweakino decays

Even low mass bins don't have 100% exclusion...

Important to improve depth of sensitivity as well as target new regions!

EWKino scan, $\sqrt{s} = 13 \text{ TeV}$, 140 fb⁻¹ ATLAS exclusion fraction after non-DM external constraints 600 .0 000 (¥1) [Gev] 500 500 500 m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ATLAS simpl. wino/bino model excl. 300 -raction 200 0.2 100 0.0 0 200 400 600 800 1000 1200 $m(\tilde{\chi}_1^+)$ [GeV]

ATLAS

JHEP 05 (2024) 106

With dark matter constraints:

- Z/h funnel well constrained
- Mostly compressed scenarios remain

Disappearing track (Eur. Phys. J. C 82 (2022) 606) does a good job constraining wino-LSP scenarios

JHEP 05 (2024) 106

Bino and Higgsino-LSP scenarios remain viable even at 100 GeV and below

2) Recent ATLAS search results

Recent ATLAS search results

Increased sensitivity to compressed scenarios

- Unique topologies: VBF
- Unique signatures: Displaced tracks

Increase sensitivity to higher masses

- Hadronic final states
- Deploy improvements to b-tagging and boosted large-R jet reconstruction

ATLAS

Also interesting long-lived signatures → see <u>lan's talk</u>

VBF topologies

- Large MET + two forward jets
- Targeting ~ 2 GeV mass splittings
- Agnostic to branching ratios of N2/C1 decays
 - Decay products too soft to be reconstructed
- BDT to discriminate large backgrounds

Mildly-displaced tracks

Phys. Rev. Lett. 132 (2024) 221801

p

- Targets gap between soft-2L and disappearing track signatures
- Chargino flight length reaches 0.1 1 mm
- "Mildly" displaced-track identified using transverse impact parameter
 - Unique signature, significantly reduces backgrounds

jet

One lepton + boosted jets

JHEP 12 (2023) 167

- 1 lepton + 1-3 signal jets + large MET
- Jet substructure information used to tag large-R W/Z jets and b-jets
- Combination with existing 0L/1L/2L/3L searches performed in <u>SUSY-2023-26</u>

Multiple b-jets

Phys. Rev. D 109 (2024) 112011

Summary & Outlook

- EW SUSY is challenging
 - Good coverage of pMSSM scenarios with early Run 2 analyses
 - Room to improve depth of sensitivity and target compressed scenarios
- Recent analyses provide unique sensitivity to compressed and hadronic signatures
 - Novel final states and analysis techniques
 - Improved reconstruction and object identification
- Reinterpretation material published on <u>HEPData</u>
 - Preserved likelihoods, SimpleAnalysis and efficiencies
 - Enables interpretation of the ATLAS search programme in non-simplified models
- Run 3 searches are in development

pMSSM assumptions

Based on experimental constraints and general features of SUSY breaking mechanisms.

- 1) No new sources of CP-violation (beyond CKM matrix)
- 2) No flavour-changing neutral currents (FCNCs)
- 3) Universality of 1st and 2nd generation sfermions
- 4) R-parity conserved $P_R = (-1)^{3B+L+2s}$
- 5) Lightest SUSY particle (LSP) is the lightest neutralino

pMSSM parameters

Parameter	Min	Max	Note
$M_{\tilde{I}_{\perp}}$ (= $M_{\tilde{I}_{2}}$)	10 TeV	10 TeV	Left-handed slepton (first two gens.) mass
$M_{\tilde{e}_{1}}^{L_{1}} (=M_{\tilde{e}_{2}})$	10 TeV	10 TeV	Right-handed slepton (first two gens.) mass
$M_{\tilde{L}_2}$	10 TeV	10 TeV	Left-handed stau doublet mass
$M_{\tilde{e}_3}$	10 TeV	10 TeV	Right-handed stau mass
$M_{\tilde{Q}_{1}}(=M_{\tilde{Q}_{2}})$	10 TeV	10 TeV	Left-handed squark (first two gens.) mass
$M_{\tilde{u}_1} (= M_{\tilde{u}_2})$	10 TeV	10 TeV	Right-handed up-type squark (first two gens.) mass
$M_{\tilde{d}_1}$ (= $M_{\tilde{d}_2}$)	10 TeV	10 TeV	Right-handed down-type squark (first two gens.) mass
$M_{\tilde{O}_3}$	2 TeV	5 TeV	Left-handed squark (third gen.) mass
$\widetilde{M_{u_3}}$	2 TeV	5 TeV	Right-handed top squark mass
$M_{\tilde{d}_3}$	2 TeV	5 TeV	Right-handed bottom squark mass
M_1	-2 TeV	2 TeV	Bino mass parameter
M_2	-2 TeV	2 TeV	Wino mass parameter
μ	-2 TeV	2 TeV	Bilinear Higgs boson mass parameter
M_3	1 TeV	5 TeV	Gluino mass parameter
A_t	-8 TeV	8 TeV	Trilinear top coupling
A_b	-2 TeV	2 TeV	Trilinear bottom coupling
A_{τ}	-2 TeV	2 TeV	Trilinear τ -lepton coupling
M_A	0 TeV	5 TeV	Pseudoscalar Higgs boson mass
$\tan \beta$	1	60	Ratio of the Higgs vacuum expectation values

Dark matter relic density of models

We allow LSP to be a sub-dominant DM component

> Require $\Omega h^2 \le 0.12$

Higgsino/Wino-like LSP:

- Mass near to chargino / 2nd neutralino
- Enhanced co-annihilation with chargino / 2nd neutralino
- Underestimates relic density unless m(LSP)[~]TeV

Bino LSP:

- In general overestimates relic density
- Flat scanning strategy doesn't sample many models with satisfactory relic density

Bino-LSP models: DM relic density

Regions with satisfactory DM relic density for bino-LSP models:

- Z/h/A funnel
- \widetilde{N}_{1} $A^{0} (h^{0}, H^{0})$ $\overline{b}, \overline{t}, \tau^{+}, \dots$ $\overline{b}, \overline{t}, \tau^{+}, \dots$
- Enhanced co-annihilation with 2nd neutralino or chargino
 - Wino-like C1/N2 close in mass
 - Significant higgsino component

Targeted scan performed to oversample these regions

Workflow

Initial constraints applied

Only simulate models where we expect some sensitivity

Particle-level evaluation first to check if model is likely to be excluded or not

Detector simulation for models where particle-level evaluation is insufficient → This is what separates this from non-ATLAS pheno studies

JHEP 05 (2024) 106

Run 2 EW pMSSM scan

Run 1 EW pMSSM scan

Overall exclusion

ATLAS exclusion of each sparticle (after all external and dark matter constraints)

(mostly wino/higgsino LSP)

EW pMSSM scan – small mass splittings

EW pMSSM scan – analyses included

Analysis	Relevant simplified models targeted
FullHad	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ, Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh, Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{-}$ via WW
1Lbb	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh
2L0J	Wino $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ via WW, slepton pairs
2L2J	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ
3L	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ, Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh, higgsino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \tilde{\chi}_1^0$
4L	Higgsino GGM
Compressed	Wino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ, higgsino $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \tilde{\chi}_1^0$
Disappearing-track	Wino $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ and $\tilde{\chi}_1^\pm \tilde{\chi}_1^0$

VBF compressed

Uncertainties

 $\tilde{\chi}_1^0$

- Largest exp u/c is muon reco efficiency
- Bkg modelling, experimental, and statistical u/c all contribute roughly equally

Feature	CR-Z	VR-Z	CR-W	VR-W	VR-0L	Multi-bin SR	Single-bin SR
N _{leptons}		2		1		0	
$m_{\ell\ell}$	$ m_{\ell\ell} - m_Z $	< 30 GeV					
$E_{\rm T}^{\rm miss}/\sqrt{\Sigma E_{\rm T}}$		-	$E_{\rm T}^{\rm miss}/\sqrt{\Sigma E}$	$\overline{C_T} > 5 \sqrt{\text{GeV}}$		1 — 13	
BDT score	[0.50, 0.84)	[0.84, 1.0]	[0.50, 0.84)	[0.84, 1.0]	[0.4, 0.6)	[0.6, 1.0]	[0.88, 1.0]
BDT score bins	1	2	1	2	5	8	1

Important to account for interference in EW and QCD diagrams

Mildly-displaced track

Phys. Rev. Lett. 132 (2024) 221801

Variable	SR (CR-0 ℓ)	$CR-1\mu$	VR(CR)	-0ℓ -low $E_{\rm T}^{\rm miss}$	VR(CR)-1 <i>e</i>	$VR(CR)-2\ell$	$VR(CR)-1\gamma$
Trigger	$E_{ m T}^{ m miss}$	$E_{ m T}^{ m miss}$		$E_{\mathrm{T}}^{\mathrm{miss}}$	Single-e	$E_{\rm T}^{\rm miss}$ or Single- <i>e</i>	Single Photon
N(e)	= 0	= 0		= 0	= 1	_	= 0
$N(\mu)$	= 0	= 1		= 0	= 0	—	= 0
$N(e \text{ or } \mu)$	= 0	= 1		= 0	= 1	= 2	= 0
N_{γ}	= 0	= 0		= 0	= 0	= 0	= 1
$p_{\mathrm{T}}(\ell_1)$ [GeV]	_	> 10		_	> 30	$p_{\rm T}(\mu) > 10 \ (p_{\rm T}(e) > 30)$	-
$p_{\mathrm{T}}(\ell_2)$ [GeV]	_	-				> 10	-
m_{ll} [GeV]	_	_			_	[66.2, 116.2]	_
$m_{\rm T}$ [GeV]	—	[56, 106]		—	[56, 106]	—	—
$p_{\rm T}^{\rm recoil}$ [GeV]	> 600	> 300	[3	00, 400]	> 300	> 300	> 600
Track $S(d_0)$	> 8 (< 8)	-			>	8 (< 8)	
3							_
Variable	S	R C	R- $ au_h$	$\text{CR-}\tau_\ell$	VR(CR2)	$-\tau_h$ VR(CR2)- τ_ℓ	'n
N_ℓ	=	0	= 0	= 1	= 0	= 1	— p
$m_{\rm T}$ [GeV	7] .	-	_	< 50	_	< 50	
$p_{\rm T}^{\rm recoil}$ [C	GeV] >	600	> 6	600		[300,400]	
Track p_{T}	[2	,5]	[8,2	20]	[5	([8,20])	$p^{\prime\prime} \chi$
Track S($(d_0) >$	8	>	3		> 3	

29

jet

 $\tilde{\chi}_1^0$

 $ilde{\chi}_1^0$

 π^{\pm}

One lepton + boosted jets

JHEP 12 (2023) 167

Variable	C1C1-WW model			C1N2-WZ model		
	SRLM	SRMM	SRHM	SRLM	SRMM	SRHM
$N_{\text{lep}} (p_{\text{T}} > 25 \text{ GeV})$			1	1		
$N_{\rm jet} (p_{\rm T} > 30 {\rm GeV})$			1-	-3		
$N_{\text{large}-\text{Rjet}} (p_{\text{T}} > 250 \text{ GeV})$			≥	1		
$E_{\rm T}^{\rm miss}$ [GeV]			> 2	200		
$\Delta \dot{\phi}(\ell, \mathrm{E}_{\mathrm{T}}^{\mathrm{miss}})$			< 2	2.6		
Large-R jet type		W tagged			Z tagged	
$m_{\rm T}$ [GeV]	120-200	200-300	> 300	120-200	200-300	> 300
			Exclus	ion SR		
$m_{\rm eff}$ [GeV] (excl.)	[60	0-850, > 85	50]	[60	0-850, > 85	50]
$m_{\rm jj}[{\rm GeV}]$ (excl.)		[70–90, –]		[80–100, –]	
$\sigma_{E_{\mathrm{T}}^{\mathrm{miss}}}$ (excl.)	[> 12, > 15]		[> 12, > 12]	
•			Discov	ery SR		
$m_{\rm eff}$ [GeV] (disc.)	> 600	> 600	> 850	> 600	> 850	> 850
m_{jj} [GeV] (disc.)	-	-	-	80-100	-	-
$\sigma_{E_{ ext{T}}^{ ext{miss}}}$ (disc.)	> 15	> 15	> 15	> 12	> 12	> 12

C1N2-Wh model

Variable	Regions						
$E_{\rm T}^{\rm miss}$ [GeV]	> 50						
$N_{\rm lep} (p_{\rm T} > 27 {\rm GeV})$	1						
$N_{\rm jet} (p_{\rm T} > 30 {\rm ~GeV})$		2–3					
$N_{\rm b-jet} (p_{\rm T} > 30 {\rm GeV})$		2					
$m_{\rm bb}$ [GeV]		∈ [50, 200]					
$\sigma_{E_{\mathrm{T}}^{\mathrm{miss}}}$		> 5					
	CRtī (CRttXGB)	CR single-top (CRstXGB)	CR W+jets (CRWXGB)				
w _{sig}	€ [0.2, 0.3]	∈ [0, 0.2]	∈ [0.0, 0.2]				
W _{tf}	> 0.73	-	-				
w _{st}	< 0.2	> 0.45	< 0.2				
W _{W+jets}	< 0.4 - > 0.65						
	VR tī (VRttXGB)	VR single-top (VRstXGB)	VR W+jets (VRWXGB)				
Wsig	€ [0.4, 0.9]	∈ [0.2, 0.9]	∈ [0.2, 0.9]				
w _{tī}	> 0.4	-	_				
w _{st}	< 0.2	> 0.2	< 0.2				
WW+jets	< 0.4	_	> 0.4				

Multiple b-jets

High mass

channel

Region name		Fixed Requirements			Boundary Conditions		
Region	name	Preselection	$m_{\mathrm{T,min}}^{b\text{-jets}}$	N _{b-jets}	Ζ	<i>n</i> _{bkg}	S/B
SR_:	i_M	Standard	—	_	max.	≥ 0.5	—
VR_t	t_M	Standard	< 200 GeV	_	_	≥ 25	< 0.2
VR_hm	Tb_M	Standard	> 200 GeV	_	-	≥ 25	< 0.2
VR_2	Z_M	Z+jets	_	-		≥ 25	< 0.2
CR_tt	3b_M	Standard	< 200 GeV	= 3	—	≥ 100	< 0.1
CR_tt	4b_M	Standard	< 200 GeV	≥ 4	—	≥ 100	< 0.1
CR_hm	Tb_M	Standard	> 200 GeV	_	_	≥ 100	< 0.1
CR_2	Z_M	Z+jets	_	_	-	≥ 100	< 0.1

	Region	$E_{ m T}^{ m miss}$	$m_{ m eff}$
Low mass	SR_LM_150	> 20 GeV	> 560 GeV
	SR_LM_300	> 150 GeV	> 340 GeV

Displaced leptons

CONF-SUSY-2024-15

- Targeting slepton lifetimes from $o(1) ps \rightarrow o(100) ps$
- Inclusive selection criteria for broad sensitivity to LLPs
- Improvements on previous analysis
 - Partial Run 3 data
 - Large radius tracking triggers
 - Precision pointing and timing resolution from LAr calorimeter
 - BDT discriminant

