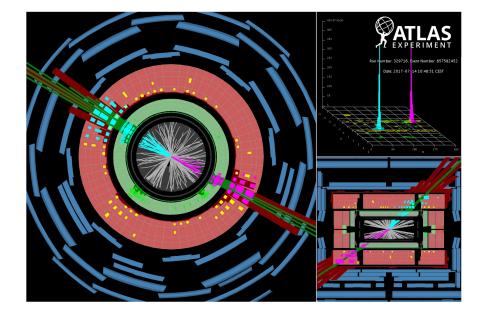
QCD Measurements with ATLAS

Alberto Rescia on behalf of the ATLAS Collaboration Rencontres de Blois - 22.10.2024

DIFI DIPARTIMENTO



Introduction

ATLAS: general purpose LHC experiment capable of measuring a broad range of physics processes

Many open questions in QCD!

- Jet formation
- Hadronisation
- Colour confinement
- Non-perturbative effects
- etc.

Outline

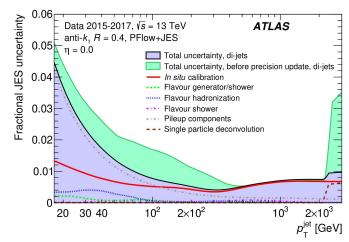
Many recent, interesting measurement released by ATLAS!

- 1. Measurement of jet cross-section ratios in 13 TeV pp collisions
- 2. Measurement of jet track functions
- 3. Lund jet plane in hadronic decays of top quarks and W bosons
- 4. Lund subjet multiplicities
- 5. <u>Underlying-event studies with strange hadrons in pp collisions</u>

Jet cross section ratios

<u>arXiv:2405.20206</u> $\sqrt{s} = 13$ TeV, 140 fb⁻¹

- Measure observables sensitive to \rightarrow energy-scale and angular distribution of **OCD** final-state radiation
- → Aim to gather data to improve modelling of QCD processes

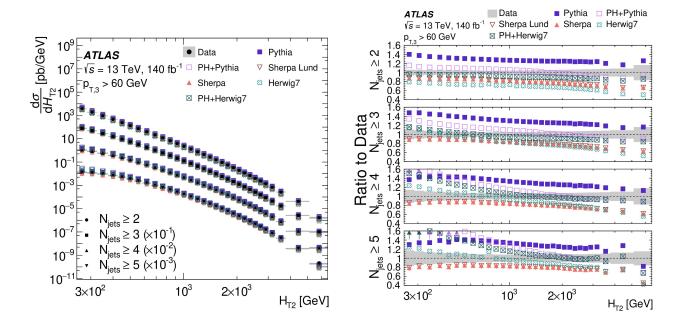

Measure cross sections and ratios vs:

- $H_{T2} = p_{T,1} + p_{T,2}$ p_{T}^{Nincl}

- $\Delta y_{jj} \& \Delta y_{jj,max}$ (not shown) $\Delta m_{jj} \& \Delta m_{jj,max}$ (not shown)

Select multijet events with:

- Anti- k_{τ} jet w/ p_{τ} > 60 GeV
- |y| < 4.5
- $N_{jets} \ge 2$ H₁₂ > 250 GeV

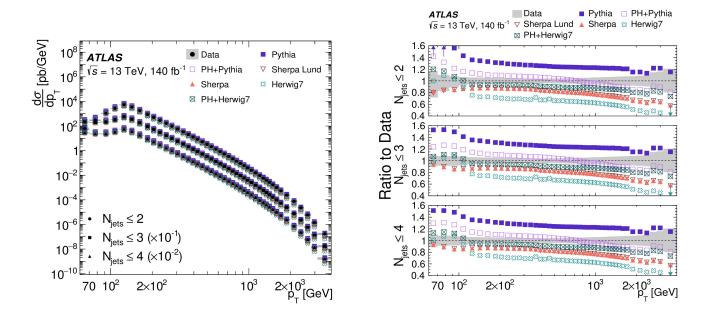

Analysis benefits from improved jet energy scale uncertainty due to flavor-specific treatment

Eur. Phys. J. C (2023) 83:761

Results - H_{T2}

MC Predictions:

- Pythia 8.230 & A14 tune and Lund string hadronisation model
- Sherpa 2.2.5 with either AHADIC cluster hadronisation model or Lund string model
- Herwig 7.1.6 w/ default hadronisation model and either angular-ordered or dipole parton shower
- Powheg v2 and either Pythia8 or angular-ordered Herwig7 shower

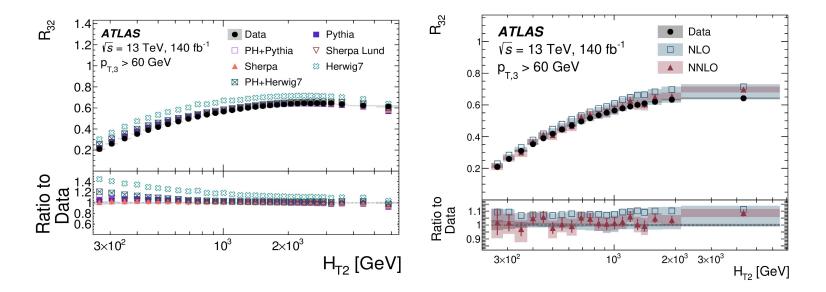

No MC prediction is able to fully describe the data

MC Predictions:

Nincl

Results - p_T

- Pythia 8.230 & A14 tune and Lund string hadronisation model
- Sherpa 2.2.5 with either AHADIC cluster hadronisation model or Lund string model
- Herwig 7.1.6 w/ default hadronisation model and either angular-ordered or dipole parton shower
- Powheg v2 and either Pythia8 or angular-ordered Herwig7 shower


No MC prediction is able to fully describe the data

Results - R₃₂

Fixed Order Predictions:

- NLO NLOJet++
- NNLO AVHLIB, OpenLoops2, FivePointAmplitudes, PentagonFunctions++

 $R_{32} = \sigma_{3jets} / \sigma_{2jets}$

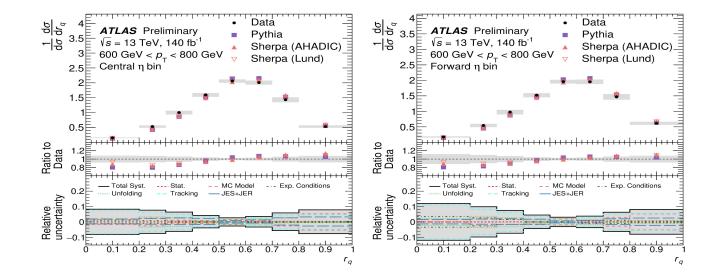
Sherpa predictions agree with data, Herwig underestimates 2 jet cross section NNLO prediction agrees with data, NLO prediction overestimates data

7

Jet track functions

<u>ATLAS-CONF-2024-012</u> $\sqrt{s} = 13$ TeV, 140 fb⁻¹

- → Many jet substructure measurements rely on tracks due to finer resolution
- → Measure r_q, p_T fraction carried by charged hadrons in jet to improve theoretical predictions of these track functions

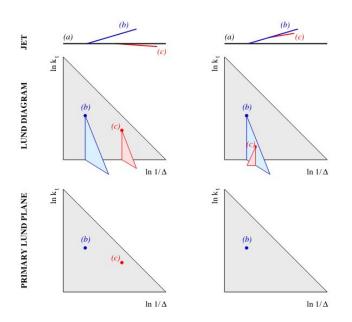

Selections:

- Analyse two highest p_T anti-k_t jets with radius R = 0.4 in multijet events
- Jets must satisfy $|\eta| < 2.1$ and $p_T^{\text{leading}} > 240 \text{ GeV}$
- Jets must be balanced $p_{\tau}^{\text{leading}} < 1.5 \text{ x } p_{\tau}^{\text{subleading}}$
- Select tracks associated to jets with p_T > 500 MeV
- Measure r_q in forward and central regions

Jet track functions – Results

Uncertainties:

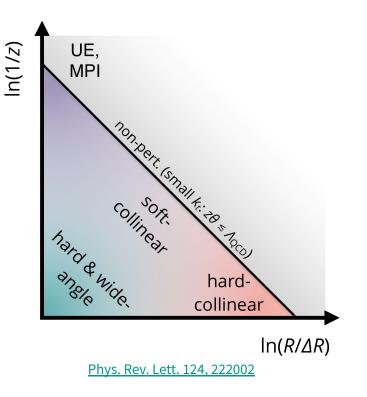
- Theory uncertainty dominated by jet fragmentation modelling (2-5%)
- Experimental JES uncertainty benefits from improved treatment of jet flavour response


Predictions tend to underestimate cross section at low values of r_q and overestimate it at high values of r_q

The Lund Jet Plane

- Re-cluster constituents of an anti-k_t jet with Cambridge-Aachen algorithm
- "De-cluster" the C/A jet following the hardest branch in each splitting
- Plot the coordinates ln(1/Δ) and ln(1/z) of the split branches on the coordinate plane

 $\Delta^{2} = (y_{a} - y_{b})^{2} + (\phi_{a} - \phi_{b})^{2}$ $z = p_{T}^{j} / (p_{T}^{i} + p_{T}^{j})$


• Follow subsequent splittings to obtain secondary planes, tertiary planes, etc.

arXiv:1807.04758v2

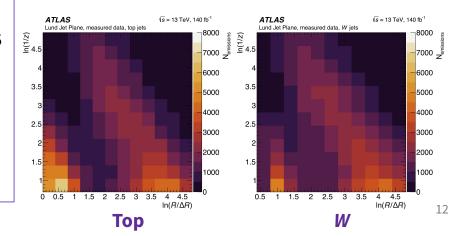
Lund jet plane (cont.)

- Theoretical interest: Lund plane can be calculated **analytically!**
- Different kinematic regions easily identifiable
- Features of interest (jet mass, angle, momentum) readily available
- Allows characterisation of radiation pattern within jet
 - Substructure!

Lund Jet Plane in top and W jets

<u>arXiv:2407.10879</u> $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$

→ Study substructure of jets from hadronic decays of heavy flavour particles

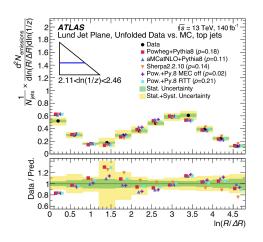

Selections:

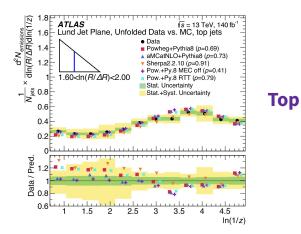
- Exactly 1 electron or muon (*l*)
- ≥ 1 anti- k_t b-tagged jets with radius R = 0.4 and $\Delta R(\ell, j_{b,1}) < 1.5$
- $E_T^{miss} > 20 \text{ GeV } \& E_T^{miss} + m_T^{W} > 60 \text{ GeV}$
- ≥ 1 anti- k_t jet with radius R = 1.0 (J) with $p_{T,J} > 350$ GeV
- Distance between large-R jet and lepton $\Delta R(\ell, J) > 2.3$
- Leading large-R jet used to reconstruct Lund Plane
- Lund plane reconstructed with charged particles in jet with $p_{\tau} > 500 \text{ MeV}$

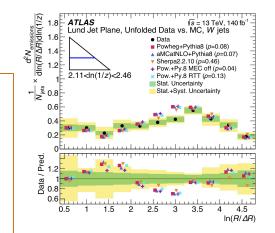
Top jets:

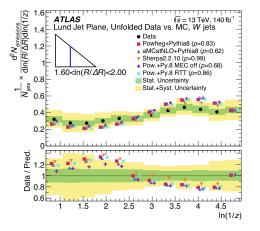
- leading large-R jet mass m₁ > 140 GeV
- presence of second b-tagged jet $j_{b,2}$ with $\Delta R(J, j_{b,1}) < 1.0$

W jets:


Results


Good agreement with MC predictions in most regions of Lund Plane

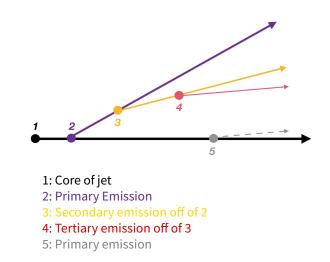

Some tension in central regions, particularly for *W* jets

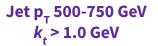

MC predictions:

- Powheg + Pythia8
- MadGraph + Pythia8
- Sherpa 2.2.10
- Powheg + Pythia8 w/ ME corrections off
- Powheg + Pythia8 RTT w/ improved treatment of recoil from gluon emission

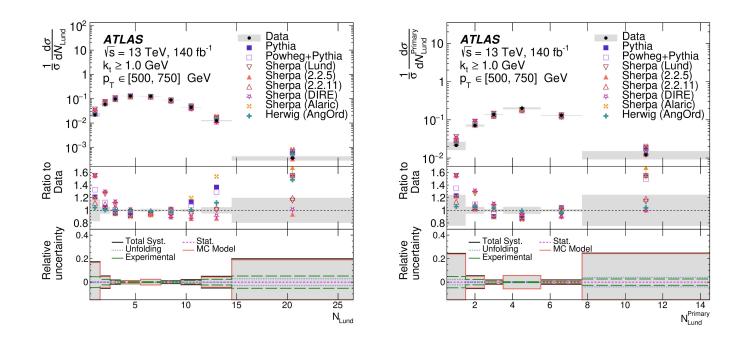
Subjet multiplicities in dijet events

<u>arXiv:2402.13052</u> $\sqrt{s} = 13$ TeV, 140 fb⁻¹

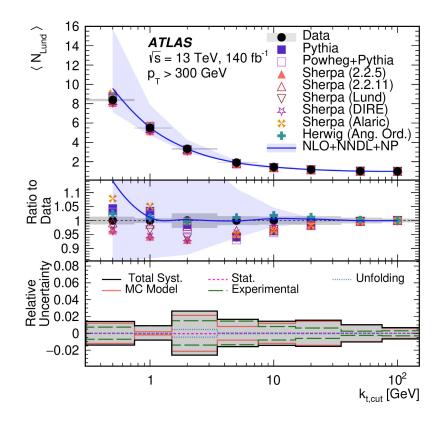

- Study subject multiplicity using Lund Plane formalism in dijet events
- Measure N_{Lund} (total no. of emissions) and N_{Lund, primary} (total no. of emissions in core of jet) as a function of k_{+}


Selections:

- Require R = 0.4 anti- k_t jets with $p_T > 120$ GeV and |y| < 2.1Jets must be balanced $p_T^{\text{leading}} < 1.5 \text{ x } p_T^{\text{subleading}}$
- Construct Lund plane from tracks with $p_{\tau} > 500 \text{ MeV}$
- Account for neutral component by scaling k_{t}


K,

$$= (p_T^{all}/p_T^{charged})k_t^{charged}$$


Subjet multiplicities - Results

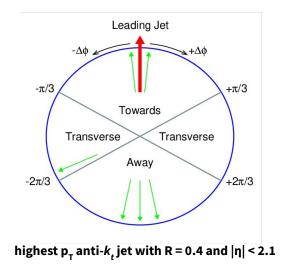
Most MC predictions fail to describe the data, especially at low and high values of multiplicities

Subjet multiplicities – Results

- Herwig angular shower gives best description of data
- Resummed analytic prediction agrees with data in perturbative (k, > 2 GeV) regime
- Sherpa agreement improves when accounting for non-perturbative emissions

Strange hadron production

<u>arXiv:2405.05048</u> $\sqrt{s} = 13$ TeV, June 2015


- → Phenomena such as hadronisation and multi-parton interactions (MPI) not well-modelled nor understood
- → Data is needed to tune MC predictions

Measure K_S^0 and $(\Lambda + \overline{\Lambda})$ production and ratios in **towards, transverse** and **away** regions

Consider decays:

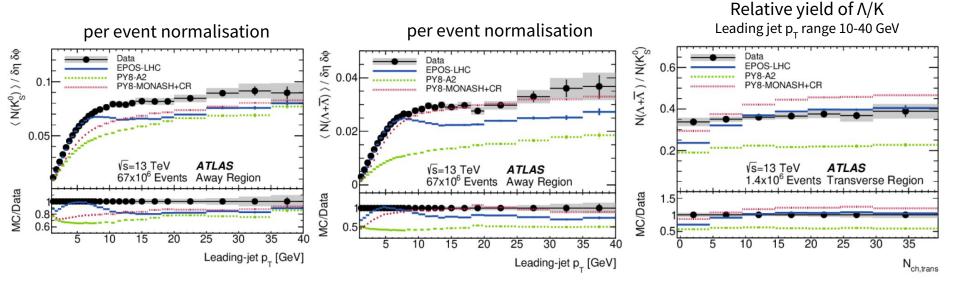
 $egin{array}{ll} \Lambda o \pi^{\mp} p^{\pm} \ \mathrm{K}^0_S o \pi^{+} \pi^{-} \end{array}$

Measurement carried out in **minimum bias** conditions with **ultra-low pileup** pp data

Towards: region sensitive to hard scattering

Transverse: region sensitive to MPI and hadronisation effects

Away: region containing most hadronic recoil


Strange hadron production

- → Plot multiplicity of hadrons as function of leading jet p_T and no. of charged particles in the transverse region N_{ch.trans}
- → Results show two distinct regimes
 - Soft regime Jet p_T < 10 GeV
 - Characterised by monotonic rise of distribution
 - Hard regime Jet $p_T > 10 \text{ GeV}$
 - Characterised by constant slope or smaller slope
- → Transition is evident only when multiplicities are plotted as function of jet p_T

MC predictions:

- EPOS-LHC designed for minimum bias heavy-ion collisions and cosmic ray showers
 - Features hydrondynamic collective-flow approach to hadronisation
- Pythia8 A2 Standard Pythia with ATLAS tune
- Pythia8 Monash + CR (colour reconnection)

Strange hadron production

- No model can successfully describe the data over full kinematic range
- EPOS modelling better in soft regime
- Pythia8 modelling better in hard regime, but yields underestimated by up to 50%

Conclusions

- Many interesting QCD results from ATLAS
- Measurements can improve MC modelling of fundamental processes such as underlying events and hadronisation
- Improved treatment of jet energy scale leads to reduced uncertainties
- Much more data on the way!

