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Abstract. A good data analysis of neutron cross section measurements is necessary for generating high quality
and reliable nuclear databases. Artificial intelligence techniques, and in particular deep learning, have proven
to be very useful for pattern recognition and data analysis, and thus may be used in the field of experimental
nuclear physics. In this publication, we train a neural network in order to improve the capture-to-background
ratio of neutron capture data of measurements performed in the time-of-flight facility n_TOF at CERN with the
so-called Total Absorption Calorimeter. The evaluation of this deep learning-based method on accurate Monte
Carlo simulated measurements with '°7 Au and 2*Pu samples suggests that the capture-to-background ratio can

be increased 5 times above the standard method.

1 Introduction

The reliability and quality of the nuclear databases [1-
4] is supported on the good practices when analyzing the
data from the experiments, which allow these libraries to
be used on numerous nuclear applications. One of the
most critical aspect of the analysis of a neutron capture
cross section measurement is the signal-to-background ra-
tio. This can define, up to great extent, the quality of the
final result. During the analysis, different methods can be
applied depending on the used experimental setup in order
to improve this signal-to-background ratio.

For the particular case of the time-of-flight facility
n_TOF at CERN [5], several capture measurements have
been performed with the Total Absorption Calorimeter
(TAC) [6], an array detector of 40 BaF, crystals. This high
segmentation of the detector has been used to discriminate
capture events from background events (including fission
events) based on the different emitted gamma multiplici-
ties followed by a nuclear reaction.

As this problem can be approach as a classification
problem between capture and background, it could be a
possible application of one of the multiple artificial intelli-
gence and machine learning algorithms, which have been
proved to yield good results in related tasks [7]. In addi-
tion, the presence of machine learning techniques in the
nuclear physics literature [8—11] is continuously growing.

In this context, we propose a deep learning based
method trained to discriminate capture from background
events, tested on two simulated capture measurements us-
ing the geometry and features of the TAC detector at
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n_TOF with 7 Au and **°Pu samples, respectively. Re-
sults indicate that the deep learning method may be useful
to boost the traditional method used in these type of data
analysis and thus obtain a higher signal-to-background ra-
tio. The article is structured as follows. In section 2 the
details of the experimental setup chosen to be modeled
is described, as well as the procedure to generate a valid
dataset to train and test a DL-based model. In section 3,
the results of the proposed method are shown and com-
pared with the standard method. Finally, the conclusions
are stated in section 4.

2 Capture experiments and
signal-to-background ratio

Given the importance of a good signal-to-background ra-
tio in any measurement, and in particular for capture mea-
surements, it is essential to have a good method that allow
us to increase this ratio when the original data has an im-
portant background contribution. This is typically the sce-
nario of some challenging capture measurements, e.g. the
239Pu measurement, where the fission competes with the
neutron capture reactions.

This problem have been usually addressed by means of
the different multiplicity in the gamma cascades between
capture and other nuclear reactions or background sources.
Rejecting those events with specific detected crystal mul-
tiplicity and total deposited energy has been the tradi-
tional method to obtain a higher signal-to-background ra-
tio in capture measurements. For the particular case of the
n_TOF facility at CERN, this method has been applied to
the data measured with the Total Absorption Calorimeter
(TAC).
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2.1 The Total Absorption Calorimeter at n_TOF

Figure 1. Half-opened 3D model of the TAC detector used at
n_TOF for capture measurements.

The Total Absorption Calorimeter (TAC) is a 4x ar-
ray of 40 BaF, crystals with high efficiency, located in
the 185m flight path of the neutron time-of-flight facil-
ity n_TOF at CERN. The modeled geometry can be seen
in Figure 1. The TAC has been used on many neutron
cross-section capture measurements for applications like
nuclear technology and stellar nucleosynthesis. Thanks to
its features, the TAC allows to discriminate events based
on the total deposited energy and the crystal multiplicity,
thus increasing the signal-to-background ratio of the ac-
quired data.

An example of the effect of applying these restrictions
can be seen in Figure 2, which shows the deposited energy
spectrum from a '’ Au (n,y) measurement with the TAC.
As it can be seen, rejecting events with crystal multiplicity
mg,; = | or higher produces a significant noise reduction at
lower energies. However, due to the limited efficiency and
other physical effects, we also lose some capture events by
making this event selection, so a balance has to be found.
For the case of the '°” Au capture measurement, the opti-
mal event conditions are m., > 2 and 2.5 < Egy, < 7 MeV.

From the point of view of machine learning, this spe-
cific task would be equivalent to a binary classification
problem between capture and non-capture. This lead us
to the possibility of using one of these algorithms to help
improving the performance of this event selection for the
TAC.

2.2 Building and training a Neural Network for
classification

Depending on the application and nature of the problem to
solve, different machine learning classifiers can be used,
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Figure 2. Deposited energy spectrum for a '°7 Au neutron capture
measurement with the TAC, applying different cuts in the crystal
multiplicity of the events.

such as clustering algorithms (kNN, kmeans), support-
vector machines (SVM) or deep neural networks. The lat-
ter, also known as Deep Learning (DL), has become very
popular in the last years thanks to the development of com-
puter processing power and their many capabilities, e.g.
pattern recognition, and applications of multiple nature.
In addition, neural networks are the best option when the
data has high dimensionality and the size of the dataset is
relatively big. These are typically the characteristics found
in the data recorded with the TAC detector in a capture ex-
periment.

In order to use a neural network for our classifica-
tion problem, we generated a labeled dataset using Monte
Carlo simulations based on the n_TOF flight path proper-
ties and the TAC geometry. An incident neutron energy
range of 1072 to 10° eV has been used in the simulation,
as well as the real dimensions and canning type of the
samples measured at n_TOF. Each sample of the gener-
ated dataset is composed of 40 values corresponding to
the energy deposited in each of the BaF, crystals.

For the architecture of the neural network, the best
configuration found is a model with 5 dense —or Fully
Connected— layers with a decreasing number of neurons
from 200 to 1, with a Batch Normalization [12] layer
and Leaky ReLu [13] activation between two consecutive
dense layers (see Figure 3). Finally, a sigmoid activation
is applied to the output in order to obtain a value between
zero and one.

The dataset, generated by Monte Carlo simulation, can
be extended as needed. For example, for the study of neu-
tron capture in '"7Au, 9.1 x 107 samples were generated
for background events, and 3.3 X 107 were generated for
capture events. Different trainings were carried out by fil-
tering the original dataset under different conditions in m,
and Egyn,, with the same model architecture and training
parameters. These variations of the original dataset aim to
achieve a signal-to-background ratio that favors the clas-
sification made by the deep learning model. This combi-
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Figure 3. Scheme of the neural network architecture use in this
work.

nation of cuts in the dataset and subsequent classification
with the neural network has been found to be the best strat-
egy to obtain higher signal-to-background ratios.

Each filtered dataset was divided into two separate
subsets: one for training and another for testing the per-
formance of the trained model. The neural network was
trained with the ADAM optimizer and a binary cross-
entropy loss function using the Keras API on Tensorflow.
To minimize bias in the trained model due to the imbal-
ance between the two classes in the training dataset, class
weights were applied to the loss function for each training
sample.

The metric used to evaluate the training and testing of
the model was the so-called balanced accuracy, as typi-
cally defined for binary classification problems. After a
few epochs of training, the models converged to balanced
accuracies around 70%, with similar values for the tests.

3 Results

The proposed DL-based model has been tested with two
Monte Carlo simulated datasets with two different target
samples: '°7Au and >*Pu.

3.1 Capture classification in a virtual '’ Au(n,y)
measurement

Figure 4 shows the capture-to-background ratios for the
original dataset as obtained directly from simulations (blue
bars) and the ratios for two methods with the deep learning
method. Some bars in the figure have been scaled up/down
for illustration purposes, but the real values can be seen on
top of each bar. For one of the DL-based methods, the
original dataset has been modified by only taking events
with Eg,,, > 1 MeV (green bars). As seen in the figure, us-
ing DL trained and tested on the modified dataset increase
the capture-to-background ratios in every energy interval.
This indicates that using only DL without any prior cut on
the dataset is not the best option, at least with a simple
model as the one used here.

The best combination of cuts in the dataset and classi-
fication with the trained model is shown in Figure 5. Here
can be seen that using DL with cuts in the dataset over-
come the result of using the standard method, which con-
sists on selecting events with m, > 2 and 2.5 < Egy, < 7
MeV.

The weaker event restrictions 0.6 < Eg,m < 6.75 and
m,, > 1 were found by analyzing the properties of the
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Figure 4. Capture-to-signal ratios for the simulation with 17 Au
and different neutron energy intervals. Note that the bars in some
intervals have been scaled up or down to fit the drawing area. For
clearance, the real values are shown above each bar.

generated dataset with the goal of fine-tuning the standard
cuts. Using DL on these optimized cuts provides similar
results in the signal-to-background ratios as using DL on
the standard cuts of '’ Au. Additionally, as the optimized
cuts are less restrictive than the standard ones, the number
of true capture events that remain at the end of the classi-
fication process is higher. This is preferable, as a higher
number of events leads to smaller statistical uncertainties
in the subsequent analysis.

The superiority of using DL-based method can also
be evaluated qualitatively by the deposited energy spectra
shown in Figure 6. In the left panel, the resulting spectrum
that would be obtained after applying the standard cuts for
the selected events is drawn in black. The red curve repre-
sent the ground truth, i.e. the true capture events obtained
in the simulation, and the blue one, the rest of gamma con-
tributions detected by the TAC. In the right panel of the
same figure, the spectra obtained after applying the DL
model is shown. It can be clearly seen that the obtained
spectrum is closer to the capture one than in the previous
case without DL.

3.2 Capture classification with fission
background: the case of 2*°Pu

For the case of the fissile sample 2*°Pu, the effect of apply-
ing DL with different cuts in the dataset can be observed
in Figure 7. Independently of the cuts, using DL improves
the total signal-to-background ratio of the data with val-
ues around 5 times higher. Even with the more relax con-
straints in the data, when using DL the capture-to-signal
ratio is improved compared with the most restrictive cuts
without DL.
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Figure 5. Capture-to-signal ratios for the simulation with 7 Au
and different neutron energy intervals, comparing the most com-
petitive methods. Note that the bars in some intervals have been
scaled up or down to fit the drawing area. For clearance, the real
values are shown above each bar.

This improvement can also be seen in the deposited
energy spectrum in a more illustrative manner, as shown
in Figure 8. Similarly to the gold case, the background
reduction in the DL-based method is more effective than
the standard method, producing higher quality data for the
posterior analysis.

4 Conclusion

Some neutron capture measurements present a challenging
data analysis when there are different and important back-
ground contributions. Therefore, specific techniques have
to be applied during the analysis to improve the quality of
the data, e.g. through the capture-to-background ratio. In
the particular case of the capture measurements with the
Total Absorption Calorimeter in the n_TOF time-of-flight

facility at CERN, the standard method consisted in apply-
ing specific cuts on the properties of the detected events to
reduce the undesired background.

In this article we proposed using a DL-based method
that combines the traditional method with a Neural Net-
work classifier for capture events. Using a rather simple
neural network architecture to this purpose, we proved that
is possible to improve the capture-to-background ratio of
a Monte Carlo simulated dataset up to a factor of 3 for the
case of a 1% Au sample and a factor of 5 for a **Pu sample.

This intends to prove the validity of using modern ma-
chine learning techniques and open the door for its appli-
cability to the field of experimental nuclear data analysis,

as it has already been done in many other scientific fields.
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Figure 6. Deposited energy spectra of a simulated '’ Au neutron capture experiment with the TAC using standard cuts without DL

(left) and with DL (right).
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Figure 7. Effect of using DL on the capture-to-signal ratios for
the 2**Pu sample using different constraints in the dataset.
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Figure 8. Deposited energy spectra of a simulated ***Pu neu-
tron capture experiment using standard cuts without DL (top) and
with DL (bottom).





