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Abstract

Ensuring the quality of data in large HEP experiments such as CMS at the LHC is crucial for producing
reliable physics outcomes, especially in view of the high luminosity phase of the LHC, where the new
data taking conditions will demand a much more careful monitoring of the experimental apparatus.
The CMS protocols for Data Quality Monitoring (DQM) are based on the analysis of a standardized
set of histograms offering a condensed snapshot of the detector’s condition. In the standard approach
the CMS DQM has a per-run time granularity. Recently, unsupervised machine learning models have
been successfully employed for the anomaly detection in DQM with per-lumisection granularity, with
the goal to improve the certification of the data collected in Run3 and the online monitoring of the
detector. In this note, we discuss the development of an automated workflow for the online DQM of
the Cathode Strip Chambers, based on a ResNet autoencoder trained on CSC occupancy maps. The
data pre-processing will be illustrated, together with a description of the training procedure and a first
validation on 2024 data.
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Definitions and terminology
● Fill: A period during which the same proton beams are circulating in the LHC, typically spanning multiple 

runs. Every time the LHC injects beams in the machine, it marks the beginning of what is known as a Fill. 
● Run: A time unit of data taking in CMS, typically consisting of a few tens to a few hundreds of luminosity 

sections. 
● Luminosity section (LS): An elementary time unit of continuous data taking in CMS, during which the 

instantaneous luminosity is assumed unchanged. A LS lasts 218 LHC orbits, or approximately 23.3 
seconds. 

● Data quality monitoring (DQM): The process of checking the quality of recorded data, with the aim of 
spotting potential detector issues. 

● Data certification (DC): The process of checking the quality of recorded data, aiming to certify the data as 
good for usage in physics analyses

● F1 score: in machine learning, the F1 score is an evaluation metric commonly used in classification tasks, 
combining the precision (p = TP/(TP+FP)) and recall (r = TP/(TP+FN)) as follows: F1 = 2p*r/(p+r), where TP 
= True Positives, FN = False Negatives, FP = False Positives.

● StreamExpress: This datastream is collected with a suite of different triggers, some of them involving 
muons. The set of triggers used is similar to the one used in the online DQM.
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Definitions and terminology
● Cathode Strip Chambers (CSCs) are placed in the endcaps of the CMS 

muon system [1]
● Chambers are arranged in disks called stations, four on each side, 

numbered from ME-4 to ME+4

● The stations ME±1 have three 
rings (ME±1/1, ME±1/2, 
ME±1/3), while the other 
stations  have two rings 
(ME±X/1 and ME±X/2, where 
X=2...4)

● ME±X/1 chambers span 20°, 
ME±X/2 chambers span 10° 
and both types are readout by 5 
frontend boards.
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Context and Motivations
● Machine Learning (ML) tools are widely used for Anomaly Detection tasks at CMS, i.e. identifying 

malfunctions in the detector as well as monitoring the quality of the data

● Other CMS subsystems already developed ML-based tools both for DC [2] and Offline DQM [3], as 
well as for the online DQM [4] and a joint effort is ongoing to coordinate the different developments 
and provide common platforms and tools under the PPD/DQMDC/ML4DQM group. 

● In particular, the tool developed by ECAL [4], presently integrated in the CMS software (CMSSW), 
shows promising and stable performance for monitoring the detector with a per-LS time 
granularity.

● In this context, we explore for the first time the applicability of the method developed by ECAL to 
the Online monitoring of the CMS Muon System. The development presented in this note uses CSC 
occupancy plots to showcase the feasibility of a fine time granularity monitoring of the Muon 
System. 
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https://github.com/cms-sw/cmssw/blob/master/DQM/EcalMonitorClient/src/MLClient.cc


● The dataset used is made of 150k LSs certified as GOOD in the StreamExpress dataset collected in 2024. We use CSC occupancy 
plots, each showing the distribution of reconstructed hits over the detector surface as implemented in the Offline DQM, but with a 
per-LS time granularity.

● The ML architecture, mostly taken from [4], is based on a ResNet Auto-Encoder (AE) trained on the aforementioned CSC occupancy 
plots. 

● The reconstruction quality is quantified by the loss, i.e. the difference between an occupancy plot and its autoencoder 
reconstruction, computed using the L1Loss. Anomalous images will differ from their reconstruction, thus leading to high values of 
the loss.

● While this method applies for the monitoring of any subdetectors, the preprocessing of the data and the figure of merit (FOM) for 
performance evaluation benefit from a prior knowledge of the most common expected anomalies, which are detector specific. For 
the CSC use-case, anomalies are expected to look like lack or excess of entries in a chamber (20° or 10°) or in a readout sector (2° 
sector along the ϕ coordinate).

● The occupancy values depend on the instantaneous luminosity and on the 𝜂 coordinate. Therefore, we aggregate the input images 
based on the luminosity (integrated luminosity > 7pb-1) and we rebin the low-𝜂 regions to compensate for the low occupancies, 
while the loss map is corrected to be uniform as a function of 𝜂. Moreover, two models for the inner and outer CSC wheels are 
trained and optimized independently.

● In order to be sensitive to both types of anomalies, we use the loss value with its sign. For each image we use the maximum and 
minimum value of the loss as FOM. We therefore optimize two thresholds to maximize the flagging of known anomalies while 
minimizing the false alarm rate. 5

Method

https://pytorch.org/docs/stable/generated/torch.nn.L1Loss.html#torch.nn.L1Loss


Data pre-processing: merging consecutive LS before training
Left: 2D map of the reconstructed hit position (x vs y) in CSC ME-2 for one single lumisection (LS 267 Run 380346, collected 
on May 03, 2024), showing low occupancy in the low 𝜂 region. 
Center: 2D map of the reconstructed hit position (x vs y) in CSC ME-2 obtained summing LS from 267 to 282 Run 380346, 
corresponding to an integrated luminosity of 7.2 pb-1. 
Right: Distribution of the number of LS that have been combined to form the images used for training over the entire input 
dataset, corresponding to an integrated luminosity of 61.5 fb-1.

6



Data pre-processing: rebinning 
After merging consecutive LS, the images are still characterized by empty regions at low 𝜂. The statistical fluctuations can affect 
the generalization capability of the autoencoder. Therefore, following the geometry of the detector readout, the external part of 
each image is rebinned in slices along the ϕ coordinate. For each slice, the color corresponds to the average number of entries 
computed in the original image. 
Center: mask showing the geometry used for rebinning. Right: 2D map of the reconstructed hit position (x vs y) in CSC ME-2 
after the rebinning corresponding to 15 consecutive LS (from 267 to 182) in Run 380346, collected on May 03, 2024.

=
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Autoencoder training
The autoencoder is trained on a set of unlabeled images from certified data collected in 2024, assuming that the large majority of 
the examples used for the training represents a properly functioning detector. The training is unsupervised. After training, the 
algorithm is able to reconstruct “good” occupancy plots. Here we show the results of the training for the ME-2/1 and ME-2/2 
stations. While two algorithms are trained separately on ME-2/1 and ME-2/2, here we show the combined images. Left: image 
used in the training, extracted from good certified data after preprocessing, where lower occupancies in two frontend boards in the 
ME-2/1 station can be seen in all plots and were therefore learned by the algorithm. Center: the image as reconstructed by the 
algorithm. Right: 2D map of loss computed as the signed difference between input and reconstructed image.
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Definition of anomalies (ME-2/1)
While data certified as good is expected to mostly contain “normal” images, transient 
issues which don’t prevent the data to be certified as “good” can be present. For the 
ME-2/1 station, a set of good and problematic images is isolated from data by visual 
inspection. Examples are shown in the next pages. For the two datasets (“bad” and 
“good”), we look at the distribution of the minimum (left plot) and maximum (right 
plot) values of the loss, where one entry of each histogram corresponds to one image. 
We then set two decision thresholds, maximizing the F1 score for each distribution.
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Definition of anomalies (ME-2/2)
Contrary to what done for ME-2/1, in this case anomalous images are difficult to isolate by 
eye because of the low occupancy characterizing the outer region and the statistical 
fluctuations. Therefore, we generate a set of anomalous images by artificially introducing over 
fluctuations and under fluctuations of the entries in some slices of the detector, based on the 
geometry of the readout sectors and based on few anomalous instances found in real data. 
Examples are shown in the next pages. For the two datasets (“bad” and “good”), we look at 
the distribution of the minimum (left plot) and maximum (right plot) values of the loss, where 
one entry of each histogram corresponds to one image. We then set two decision thresholds, 
maximizing the F1 score for each distribution.
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For the ME-2/1 station, a set of problematic images is isolated from data by manual inspection in order to evaluate the 
confusion matrix. Left: Input image for LS range 193 to 207 in Run 380306 collected on May 02, 2024, showing high 
occupancy in one chamber. Center: The loss map is computed as the signed difference between the input and the 
reconstructed images, which is then normalised to be uniform along the 𝜂 coordinate. Right: a map is provided clearly 
showing the anomalous region, defined based on the two decision thresholds on the maximum and minimum values of 
the loss across the 2D map.
 

Results: example of a anomalous image in ME-2/1 from 
data and its corresponding loss map  
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For the ME-2/1 station, a set of problematic images is isolated from data by manual inspection in order to evaluate the 
confusion matrix. Left: input image for LS range 350 to 366 in Run 380624 collected on May 11, 2024, showing low 
occupancy in one readout sector. Center: The loss map is computed as the signed difference between the input and the 
reconstructed images, which is then normalised to be uniform along the 𝜂 coordinate. Right: a map is provided clearly 
showing the anomalous region, defined based on the two decision thresholds on the maximum and minimum values of 
the loss across the 2D map.
 

Results: example of a anomalous image in ME-2/1 from 
data and its corresponding loss map  
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For the ME-2/2 station, a set of problematic images is generated starting from real data and introducing some over fluctuations and 
under fluctuations of the entries in some slices of the detector. These generated images are used to evaluate the confusion matrix.
Left: simulated input image showing low occupancy in one readout sectors of ME-2/2 and high occupancy in one readout sector of 
ME-2/1. The image is created starting from an averaged image from data. Given the low occupancy values at low 𝜂, the z axis is 
displayed in log-scale. Center: The loss map is computed as the signed difference between the input and the reconstructed images, 
which is then normalised to be uniform along the 𝜂 coordinate. Right: a map is provided clearly showing the anomalous regions, defined 
based on the two decision thresholds on the maximum and minimum values of the loss across the 2D map.
 

Results: example of a simulated anomalous image in 
ME-2 and its corresponding loss map  
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Results: example of a anomalous image in ME-2 from 
data and its corresponding loss map
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In real data, anomalous images which were neither labeled by manual inspection nor generated can be identified based on the maximum 
(minimum) value of the loss being above (below) threshold.
Left: input image for LS range 289 to 303 in Run 382299 collected on June 21, 2024, showing high occupancy in one ME-2/1 chamber 
and in one ME-2/2 readout sector. Center: The loss map is computed as the signed difference between the input and the reconstructed 
images, which is then normalised to be uniform along the 𝜂 coordinate. Right: a map is provided clearly showing the anomalous regions, 
defined based on the two decision thresholds on the maximum and minimum values of the loss across the 2D map.
 



Summary

● An anomaly detection tool has been developed for the online monitoring of the CSC detector with time granularity 
of the order of few lumisections, to showcase the applicability of ML-based monitoring to the CMS Muon System.

● Anomalies are identified in the 2D occupancy maps of reconstructed hits in the CSC ME2-4 stations. In this note, 
results for the ME-2 station are reported.

● The spatial granularity of the tool is determined by the available 2D map already implemented in the DQM. In 
order to control the statistical fluctuations in the outer disks, a rebinning is applied which follows the geometry of 
the readout sectors.

● The algorithm is trained on a set of images from certified data, each corresponding to about 15 LS, separately for 
ME-2/1 and ME-2/2 stations. After training, a strategy is defined for identifying anomalous images. The fraction 
of anomalous images correctly labeled by the algorithm is above 85% for both the ME-2/1 and ME-2/2.
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