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1 Introduction

Sherpa is a multi-purpose Monte Carlo event generator for simulations in high-energy
particle physics, mainly in the context of collider experiments. Event generators such as
Sherpa play a unique role in the analysis of experimental data, the design, construction,
and improvement of ongoing and future measurements, and the refinement and validation
of theoretical ideas and their application to phenomenology [1, 2]. The three large event
generator projects HERWIG [3, 4], PYTHIA [5, 6] and Sherpa are central to the success of
present and future collider experiments and contribute to the continued development of
the field of particle physics, including in particular the analysis of data from recent and
upcoming runs of the Large Hadron Collider (LHC). They are also crucial for the preparation
of future experiments [7, 8].
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Figure 1. Event structure of a typical LHC collision. See the text for details.

The current version of Sherpa builds on a series of previous developments [9–11],
which successively broadened the range of physics effects that could be simulated with the
generator. These effects span the full range of distance scales encountered in high-energy
particle collisions, across multiple parts of a collision event. A general overview of the event
structure typically found in LHC collisions is sketched in figure 1. The simulation of such
events relies on the factorisation of perturbative QCD effects described by the hard collision
(central red blob) from the QCD evolution (blue, tree-like structure), and the transition to the
non-perturbative regime through the hadronisation process (light green blobs). Additional
aspects are non-factorisable QCD corrections (purple blob and lines), the effects of QED and
electroweak radiative corrections (yellow lines), and the decays of hadronic resonances (dark
green blobs). The Sherpa framework is highly modular, in that the details of the physics
models implementing these effects are separated from the interfaces that let different parts of
the code interact with each other. This allows us to systematically improve or replace the
implemented physics models, and to develop and add new models without deprecation of the
old ones. The modular structure has proved particularly useful for the steady improvement
of the formal perturbative accuracy achievable in Sherpa, for example the inclusion of
higher-order electroweak corrections in different approximations, and the construction of
new parton showers with increased logarithmic accuracy. Other recent examples include
the addition of new models for non-perturbative physics, such as a dedicated module for
the description of colour-reconnection effects.

In this manuscript we discuss some of these developments and recent additions in detail,
focusing on the ones that significantly enhance the physics capabilities of Sherpa. They will
be presented in section 2 and include the following major new features:

• the computation of electroweak corrections at full NLO accuracy and in various approx-
imations,
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• higher-order QED corrections in production processes and from photon splittings in
decays,

• spin-polarised cross section calculations,

• treatment of collider setups with resolved photons and other non-trivial beam spectra,

• heavy-flavour matching in multijet merging,

• improvements to the multiple interactions and hadronisation modelling,

• new models for beam remnants and colour reconnections, and

• technical developments leading to higher event generation efficiency.

In addition to its main use case for the simulation of exclusive final states at colliders,
Sherpa also serves as a development platform for spin-off projects. For example, recent
efforts enabled the support of automated or semi-automated resummation tools and event
generation for neutrino physics within the Sherpa framework. In addition, we aim to address
the physics simulation and computational needs of the LHC community and of future collider
experiments not only by better physics modelling, but also by systematically enhancing the
performance of the code through algorithmic improvements. These include AI/ML techniques,
and developments for new hardware platforms, and will be described in section 3.

All updates and new versions of Sherpa, including an extensive and up-to-date manual
describing the technical details and options for running the code, are available online at
https://sherpa-team.gitlab.io. The software download (see appendix A) includes a pdf
version of the relevant manual.

2 The physics model of the SHERPA Monte Carlo event generator

A schematic overview of the Sherpa 3 event generation framework is shown in figure 2.
Sherpa itself is the centerpiece that coordinates the computation of QED, electroweak and
QCD effects leading to the emergence of the many-body final state in a scattering experiment.
We discuss these computations in detail in the following subsections thereby putting particular
emphasis on newly added features in Sherpa 3.

2.1 The initial state

Sherpa is capable of simulating scattering events from a wide range of incident beam particles.
This includes situations where an initial composite or elementary beam particle initiates a
secondary beam particle according to a given momentum spectrum. The secondary beam
particles themselves may be either composite or elementary. A prominent example is resolved
vs. unresolved photons, where the former fluctuate into a hadronic structure with a parton
distribution function (PDF) while the latter remain point-like. Accordingly, the sampling of
the initial state comprises a two-stage procedure: The (optional) beam-spectrum sampling
and the (optional) beam-substructure modelling through PDFs. Figure 3 illustrates the most
general initial-state setup supported by Sherpa.
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Figure 2. Schematic overview of the physics effects simulated by Sherpa, as well as major
characteristics of their implementation in the event generator.

Figure 3. Incident-beam setup for Sherpa simulations. Each beam particle may (but does not have
to) produce a secondary beam of particles parametrised by a beam spectrum. The secondary beam
particles may (but do not have to) be resolved through a structure function or PDF. The emerging
“partons” with momenta p′′1 and p′′2 then undergo a hard collision which is described by a matrix
element (ME) and produces n final-state particles.
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2.1.1 Beam spectra

Depending on the experimental situation, the particles which define the beam may produce
other particles, and these secondary particles may produce the collision event instead. In
these cases, the secondary beam particles follow a momentum distribution (a beam spectrum)
which is either perturbatively calculable or can be parametrised. Such spectra are of prime
importance to describe, for example, the interactions of photons from charged particle beams.
Sherpa supports two methods to obtain photon beams: either via laser backscattering,
where incident leptons convert to photons through Compton scattering, or via the Equivalent
Photon Approximation (EPA). In the EPA the beam particles serve as quasi-classical sources
of photons [12–14]. In Sherpa, the above spectra are implemented for electron/positron,
(anti-)proton and ion beams. In the case of electrons, there are two versions, the original
formula quoted in [14], and the improved version derived in [15]. Other available spectra
are the pomeron and reggeon fluxes as used in parametrisations of Diffractive PDFs [16–18]
to calculate diffractive jet production, see section 2.4.2.

2.1.2 Parton densities and structure functions

To resolve the substructure of (composite) incoming particles, theoretical calculations make
use of dedicated PDFs based on collinear factorisation. Sherpa provides access to all
commonly used sets either through an interface to LHAPDF [19], or through a dedicated
interface which is specific to the required PDF.

For proton beams Sherpa defaults to the use of LHAPDF and the PDF4LHC21_40_pdfas
PDF set [20]. See appendix A for instructions on enabling LHAPDF support. If LHAPDF
support is not enabled, dedicated interfaces to the NNPDF 3.1 PDF set [21] and the CT14
sets [22] are also provided. When using the LHAPDF interface, the value and the perturbative
order for the running of αs in Sherpa are automatically set to the values used in the PDF
fit. At the expense of possible inconsistencies, the user can choose to override this behaviour
by explicitly defining the value of αs(m2

Z) and the loop-order of its evolution. For the
simulation of Multi-Parton Interactions (MPI, see section 2.7), the PDFs can be selected
independently. This treatment is motivated by the fact that the MPI tunes are highly sensitive
to the PDFs and describe an effect beyond the collinear factorisation theorems underpinning
the perturbative QCD calculations. While a different PDF potentially introduces small
inconsistencies in the description of the parton content of a given proton, these mismatches lie
entirely within the inherent uncertainties of the MPI model. It is recommended to use LHAPDF
version 6.4.0 or later with Sherpa, as this version includes very significant performance
improvements that are relevant for typical event generation use cases, benchmarked using
standard Sherpa setups [23].

In case of incoming photons, either as a monochromatic beam or produced through one
of the beam spectra described above, a range of PDF sets is supported, namely GRV [24, 25],
GRS [26], SAL [27], CJK [28, 29], and SaS [30, 31], with the SaS1M set of the SaS family the
default. For incident pomerons, which are only available as the product of a beam spectrum,
the H1 Diffractive PDF fit has been interfaced [32]. Similary, for incident reggeons we default
to the GRVPI0 PDF fit in LHAPDF.

– 5 –
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Finally, Sherpa provides an analytical QED structure function [33] for incoming lepton
beams (electrons, positrons and (anti-)muons). It encodes the leading logarithmic (LL)
corrections arising from collinear photon emissions, resummed using the DGLAP evolution
equations. The resulting universal factors are matched to higher-order corrections, leading to
some additional terms described in [34–37]. For details on the implementation see [38].

2.2 The hard scattering

The actual simulation of individual events starts from a partonic hard-scattering configuration,
where the momenta of all initial and final state particles are distributed according to the
corresponding transition matrix element. These matrix elements are stochastically sampled
to determine the total inclusive production cross section as well as arbitrary differential
distributions of final state particles. To address the large number of interesting scattering
processes at the LHC and other past and future colliders, Sherpa’s matrix element generators
are built with a high degree of automation.

2.2.1 Hard scatterings at LO accuracy

Sherpa includes two in-house automated tree-level matrix element generators, AMEGIC [39]
and COMIX [40]. They are capable of generating scattering matrix elements for any process
within the Standard Model and a number of frequently used extensions like the Higgs Effective
Field Theory (HEFT) [41–44], and are only limited by the available computing resources.
Additionally, COMIX supports most models formulated using the UFO standard [45, 46],
see section 2.2.8.

When using either generator, it simultaneously generates suitable phase-space parametri-
sations using a combination of: inverse transform methods on propagator virtualities and polar
angles [47], the multi-channel method described, e.g., in [48, 49], and VEGAS optimisation
routines [50, 51]. Where appropriate, this also includes sampling of the colour and helicity
spaces. This procedure allows for an efficient integration of multi-particle final states both
in the bulk of the phase space and in intricate corners.

Finally, Sherpa also allows users to compute scattering cross sections for loop-induced
processes, whose lowest-order contribution is mediated by one-loop diagrams. These calcula-
tions are facilitated by an interface to external one-loop providers, for details see section 2.2.2.
The phase-space parametrisations are obtained in a semi-automated fashion by using a
tree-level proxy process which contains similar propagator and spin structures [52–55].

2.2.2 Hard scatterings at NLO accuracy

Hard-scattering cross sections at NLO accuracy, comprising the inclusion of QCD, electroweak
(EW), as well as mixed QCD-EW corrections, are computed by combining the Born-level
expressions that constitute the LO expression and its real and virtual NLO corrections.
When using a Monte Carlo integration framework, the calculation must be performed in
four space-time dimensions, necessitating a subtraction formalism to render all integrands
finite [56, 57]. In Sherpa, the Catani-Seymour subtraction formalism [57, 58] is used to
construct the corresponding infrared subtraction terms. To assemble the tree-level expressions
for Born and real-emission corrections, Sherpa relies on its matrix element generators

– 6 –
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Figure 4. The full NLO corrections to the scalar sum of leading and sub-leading jet transverse
momenta, H

(2)
T in inclusive dijet production at the LHC. The left panel shows the LO, NLO QCD,

NLO QCD+EW, NLO QCD×EW, and full NLO results, including their scale uncertainties. The right
panel shows the decomposition of the full NLO computation. The results were computed in the setup
and the conventions of [64]. Dashed lines denote the absolute of an otherwise negative contribution.

AMEGIC and COMIX, which also provide the corresponding phase-space parametrisations
as described above. The infrared subtraction automatically identifies both QCD [59] and
QED [60] divergences and constructs the relevant counterterms. Processes with simultaneous
QCD and QED divergences can be handled by this procedure in Sherpa as well. External
photons can be treated both as resolved and unresolved partons [60–64].

To compute the UV-renormalised one-loop corrections, Sherpa includes a small library
of purpose-built renormalised one-loop matrix elements and provides a number of interfaces to
one-loop providers (OLPs), namely OPENLOOPS [65, 66], RECOLA [67–69], or MADLOOP [70].
A recent addition is the interface to MCFM [71]. MCFM’s fast analytic one-loop matrix elements
can provide significant overall event generation speed-ups, particularly when combined with
Sherpa’s pilot run strategy [23]. Details on how to enable Sherpa’s OLP interfaces are
given in appendix A.

Figure 4 shows an example application of the above machinery to calculate the complete
NLO predictions to inclusive dijet production at the LHC in the setup of [64]. This process,
despite its limited number of external legs, is comprised of a multitude of subprocesses
contributing at various different coupling orders in perturbation theory. As a consequence,
the NLO corrections contain both QCD and QED divergences which must be addressed
by a suitable subtraction procedure.

2.2.3 Hard scatterings at N2LO accuracy

A few selected calculations of high phenomenological importance have been implemented
in Sherpa at N2LO precision. In particular, Drell-Yan lepton-pair production [72], Higgs-
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boson production [73] and Deep-Inelastic Scattering [74] simulations can be carried out fully
differentially at the parton level, making use of qT slicing [75, 76] or Projection-to-Born [77]
techniques. The qT slicing method separates the N2LO corrections into a contribution with
qT < qT,cut, the so-called zero-qT bin, and the remaining spectrum with qT > qT,cut. The
first contribution is integrated out analytically using approximate expressions that become
exact in the limit qT,cut → 0. The second comprises an NLO calculation of the Born-plus-
one-jet process and is computed using the tools introduced in the previous section. The
Projection-to-Born method, on the other hand, introduces an arbitrary but infrared-safe and
unambiguous mapping from the real and double-real phase spaces onto the Born phase space
and evaluates all components of the N2LO calculation using this mapping. Consequently, all
singularities cancel locally in the Born phase space, leaving a finite result. The mismatch
introduced by projecting the real and double-real phase-space contributions is corrected
through dedicated lower-order calculations at NLO and LO, respectively, using the methods
discussed in the previous sections.

2.2.4 Decays of unstable particles

Within Sherpa, there are various options to simulate the decays of massive unstable particles
produced in the hard scattering process. A full off-shell treatment in the matrix element
yields the most complete calculation, but might not always be feasible, either because of the
inefficient generation of unweighted events due the high final-state complexity or because
the user is interested in an inclusive simulation of multiple decay final states. For such cases,
Sherpa provides a module to simulate decays in an automatic way [78].

In its automated treatment of massive unstable particle decays, Sherpa employs an
improved narrow-width approximation, where the hard scattering of sections 2.2.1–2.2.3
constitutes the production process, while its decays are calculated at LO accuracy. Spin
correlations are taken into account using the algorithm described in [79–82], and off-shell
effects are modelled by a posteriori adjusting the resonance kinematics according to its
Breit-Wigner distribution. QCD and QED radiative corrections can be effected through
interfaces to Sherpa’s parton shower and soft-photon resummation, see sections 2.3 and 2.6,
respectively. Unless specified by the user, event-by-event decay channels are selected according
to their branching ratios, determined from the automatically generated decay matrix elements
and decay widths using tree-level expressions. Their generation is model-specific and, in
addition to the Standard Model, is applicable to beyond the Standard Model theories using
the UFO format (see section 2.2.8 for details). This enables a decay simulation that is fully
consistent with the production process.

The decay framework is used, for example, for Standard Model processes involving top
quarks, massive vector bosons, or the Higgs boson. Decays can be added on top of a wide
variety of simulations of the hard scattering, calculated both at LO and NLO, and both in
fixed-order or in parton-shower matched/merged simulations.

2.2.5 Cross sections for polarised lepton beams

The ability to polarise the incoming beams is a defining feature of various proposed future
lepton-collider experiments [83, 84]. Such setups can be used to considerably enhance signal
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(Pe− , Pe+) HZ Hνeν̄e He+e−

σLO/σLO
(0, 0) σYFS/σYFS

(0, 0) σLO/σLO
(0, 0) σYFS/σYFS

(0, 0) σLO/σLO
(0, 0) σYFS/σYFS

(0, 0)
(−0.8, 0) 1.17 1.17 1.70 1.68 1.18 1.19

(−0.8, 0.3) 1.47 1.47 2.20 2.18 1.49 1.50
(−0.8, −0.3) 0.87 0.87 1.20 1.19 0.87 0.88

(0.8, 0.0) 0.83 0.83 0.30 0.32 0.82 0.83
(0.8, 0.3) 0.65 0.65 0.32 0.34 0.65 0.65

(0.8, −0.3) 1.01 1.00 0.28 0.31 0.99 1.00

Table 1. Normalised cross sections for various e+e− → H + X production processes evaluated
with different initial-state polarisation combinations at

√
s = 380GeV, both at LO and including

YFS corrections.

rates while also suppressing unwanted background processes, because the cross sections of
scattering processes within and beyond the Standard Model often depend on the helicities
of incoming particles. By varying the polarisations of the incoming beams the properties
of the produced final-state particles such as their chiral couplings and quantum numbers
can be probed [85].

In Sherpa, it is possible to simulate events with longitudinally-polarised beams by
reweighting the helicity amplitudes with the corresponding fractional polarisation, Pe± , using
the AMEGIC matrix element generator, which is a common approach in event generators [86, 87].
This can then be combined with a soft-photon resummation in the YFS formalism, as described
in section 2.6.4, to further improve the accuracy of the simulation. Since YFS resummation
is based on the soft-photon limit, the matching of higher-order corrections with beam
polarisation can be achieved in a straightforward fashion. This will allow Sherpa to provide
NLO EW predictions for polarised collider experiments in the future. In table 1 we illustrate
the effect of beam polarisation on various relevant Higgs-boson production processes. It
can be observed that due to the chiral nature of the weak-current interaction significant
enhancements or suppressions depending on the chosen initial-state polarisations can be
realised. The YFS corrections included here are purely at the resummation level and are
not matched to any higher-order corrections.

2.2.6 Cross sections for polarised intermediate gauge bosons

The ability to predict cross sections for polarised vector boson production is of great interest,
as they probe the structure of the electroweak interaction. With Sherpa 3 it is now possible
to compute cross sections for polarised intermediate vector bosons in the s-channel [88].
The efficiency of the implementation is guaranteed by the simultaneous computation of all
polarisation combinations. Each combination is added as an additional event weight to the
unpolarised sample, using the techniques described in [89]. The spin-correlated narrow-width
approximation [78] is used to compute the various contributions (see section 2.2.4 for details).
The different polarisation components are based on the complete helicity-dependent amplitude,
such that interferences between different polarisations are also accessible on an event-by-event
basis. Within a single generator run, multiple reference frames can be studied.
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Figure 5. Left: Double-polarised distributions of the positron rapidity ye+ in inclusive W+Z produc-
tion at nLO QCD+PS (polarised distribution)/ NLO QCD+PS (unpol, full) accuracy; polarisation
states are defined in the laboratory (Lab). K-factors (bottom panel) are the ratio of n(N)LO QCD+PS
over LO+PS cross sections. Right: Integrated polarisation fractions for inclusive W+Z boson produc-
tion at the LHC (13 TeV) for LO+1j simulations matched to parton shower using different merging
scales. For comparison, also polarisation fractions at nLO QCD+PS and LO+PS, as well as at fixed
NLO QCD taken from [90] are shown. The polarisation is defined in the W+Z boson centre-of-mass
frame. (Figures adapted from [88]).

The calculation of polarised cross sections is not limited to LO and can also be performed
at approximate NLO QCD accuracy, referred to as nLO QCD. They can be matched to
Sherpa’s parton shower via the MC@NLO method and be included in multijet merging,
see section 2.4. Within the nLO QCD calculation, polarisation fractions are calculated
depending on the event type in the MC@NLO formalism. For H- and resolved S-events,
the corresponding amplitude information is constructed using the complete real emission
corrections. Hence, the exact polarisation fractions, up to NLO QCD, are used for both soft
and hard emissions. For unresolved S-events, however, the amplitude information is based on
the Born expression, i.e. all corrections stemming from virtual and ultra-soft and/or collinear
emission are neglected. As the number of events in this category is generally exceedingly
small in typical LHC setups, and in any case this construction is only used to determine
the polarisation fractions in the otherwise fully NLO QCD-accurate unpolarised sample, the
error introduced in this way is expected to be small.

Figure 5 (left) shows the nLO QCD+PS contribution to polarised inclusive W+Z pro-
duction for the lepton rapidity in the laboratory frame, as an example. It illustrates the
importance of including higher order QCD effects in polarisation templates, since they can be
very large and non-trivial. Comparisons with complete NLO QCD fixed-order calculations [90]
confirm that our nLO QCD approximation can reproduce all main contributions of the full
calculation, as these are strongly dominated by real corrections. Hence, also multijet-merged
calculations are able to describe the bulk of the NLO QCD effects, if small merging scales
are used, as demonstrated on the right hand side of figure 5.
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2.2.7 Physics within the Standard Model — instantons

In addition to standard perturbative scattering amplitudes, discussed in sections 2.2.1–2.2.3,
the Standard Model contains other manifestly non-perturbative solutions like the QCD
instanton [91], which emerge as a consequence of the non-trivial structure of the Yang-Mills
vacuum [92, 93]. While the QCD instanton violates B + L symmetries, it conserves B − L as
well as chirality. Despite otherwise large inclusive production rates, the cross section falls
rapidly with increasing instanton mass, and, as a consequence, the existence of instantons
has not been confirmed experimentally yet.

Sherpa comprises an implementation of QCD-instanton-mediated multiparton produc-
tion processes [94], including important quantum corrections due to initial- and final-state
gluon interactions. The ŝ-dependent production cross sections, where ŝ is the partonic c.m.
energy squared, is taken from an interpolation table included in the runcard. This table
also provides results for different scale choices and allows, to some extent, to vary these
scales to obtain some idea about related uncertainties. The outgoing quarks, anti-quarks,
and a Poisson-distributed number of gluons populate the phase space isotropically in the
instanton rest frame.

2.2.8 Physics models beyond the Standard Model — UFO

Sherpa provides a versatile framework for the simulation of new physics signals [78, 95],
through built-in models (Higgs Effective Field Theory [41–44], the Minimal Supersymmetric
Standard Model [96] with inputs in the SLHA format [97], and various anomalous Triple and
Quartic Gauge Couplings Models [98–102]) or, more generally through a UFO [45] interface to
COMIX. The latter has been used in a variety of analyses within the context of the Standard
Model Effective Field Theory (SMEFT), see e.g. [103–105]. For details of how to enable
Sherpa’s UFO support during installation, see appendix A.

Recently, the UFO format was updated to address and standardise several extensions that
have been implemented since the first version was proposed [46], thus ensuring portability
and compatibility between generators. The updated UFO opens new possibilities and options,
such as customised propagators [106], the inclusion of particle decay information [107], and
the renormalisation group running of model parameters [108], all of which are expected in
future versions of Sherpa. In addition, it allows the inclusion of form factors associated with
specific Lorentz structures in the vertices. These are enabled in Sherpa but currently need
to be manually implemented; we expect this process to be semi-automatic in future releases.

2.3 Parton showers

The role of parton showers [109–112] and dipole showers [113–115] is to link the particles
involved in the hard-scattering process, as well as in possible secondary scatterings, to an
ensemble of comparably low-energetic QCD quanta that undergo hadronisation. Sherpa
provides two built-in parton-shower algorithms, CSSHOWER and ALARIC. While the former
is the current default, the latter is the development platform towards higher formal accuracy,
including NLL and ultimately NLO QCD precision. In addition, the legacy algorithm DIRE
is also still part of the code base.
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2.3.1 LL accuracy — CSSHOWER and DIRE

Sherpa’s default parton shower, called CSSHOWER [116], is based on Catani-Seymour dipole
factorisation of NLO matrix elements for massless and massive partons [57, 58], as first
suggested in [117]. CSSHOWER simulates emissions by splitting pseudo-dipoles involving an
emitter and a spectator, each being either an initial or final-state particle, giving four types
of dipole configuration. The shower evolution variable governing the sequence of emissions
corresponds to the relative transverse momentum between emitter and emitted particle. For
initial-state splittings, this is the transverse momentum with respect to the beam. Details on
the available options for the momentum mapping and evolution variable are described in [118].
The CSSHOWER fully respects mass effects in the kinematics, allowing one to consistently
perform four- and five-flavour scheme calculations [119, 120], see also section 2.4.4. The
CSSHOWER implementation provides all necessary functionalities and extensions for combining
the shower with LO, NLO, and NNLO matrix elements, see section 2.4. It also contains an
implementation of QED splitting functions [121], which, when active, co-evolve with their
QCD counterparts. A fully-fledged QED parton shower, which includes all dipoles, the full
charge correlators and the correct collinear limit for photon splittings [60], will be included in
a future release. The recommended option for including QED radiation in Sherpa, however,
is the YFS soft-photon resummation, described in section 2.6.

The DIRE parton shower [122] is an alternative QCD evolution model within Sherpa, and
served as a test bed for various systematic improvements. DIRE hosts the first implementation
of fully exclusive triple-collinear and double-soft splitting functions, which are needed for any
NLL accurate parton shower [123–125]. It has been shown [126] that the kinematic mappings
in DIRE are not NLL safe, therefore the model has been deprecated and is no longer actively
supported. We note, however, that a solution to the known NLL violation in DIRE at the
level of the second emission was proposed in the context of the fully differential two-loop
soft corrections [124]. This has inspired the development of the novel ALARIC parton-shower
model, described in the following section.

2.3.2 NLL accuracy — ALARIC

In addition to Sherpa’s default dipole-like parton shower described above, a new method
for QCD evolution is implemented in the ALARIC module [127].1 It has been constructed
to address the shortcomings of the CSSHOWER and DIRE w.r.t. their formal resummation
accuracy pointed out in [126, 128] and has been shown to be NLL accurate [127]. The
basic algorithm has since been extended to account for massive-quark effects [129], as well
as multijet merging. Further studies have assessed the impact of certain uncertainties at
sub-leading power that arise from different kinematics parametrisations [130]. A unique aspect
of the ALARIC method is the non-trivial dependence of splitting functions on the azimuthal
emission angle, even when spin correlations are not included. This allows simulation of the
complete one-loop soft radiation pattern without the need for angular ordering. Since it is
well known that kinematic edge effects play an important role in the effective description
of data by parton showers [131], ALARIC allows the variation of key components such as
the recoil system, evolution variable and splitting parameters in order to probe remaining

1Note that ALARIC is included as of release Sherpa-3.1.
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Figure 6. Jet mass and jet width measured by the ATLAS collaboration [132] at
√

s = 7 TeV,
compared to predictions from ALARIC using the setup of [130].

ambiguities beyond NLL accuracy. ALARIC is the prospective default parton shower of future
Sherpa releases, once crucial features including NLO matching and MEPS@NLO merging
have been provided in full generality. The corresponding integrated splitting functions were
presented for the massless and massive case in [127] and [129], respectively. In addition,
ALARIC will be equipped with higher-order corrections to the splitting functions in a fully
differential form, using the methods of [123–125].

We illustrate the quality of the predictions achieved by the ALARIC method in figure 6,
where we compare to jet shape data measured by ATLAS at

√
s = 7 TeV [132]. We show

the jet mass and jet width, measured on high transverse momentum jets pT > 300 GeV,
clustered with the anti-kt algorithm [133] with R = 1, in the central rapidity region |η| < 2.
We observe an excellent agreement, within the uncertainty of the experimental data. A more
comprehensive overview of LHC phenomenology with ALARIC has been presented in [130].

2.4 Matching and multijet merging

Going beyond simulations at the lowest order in perturbation theory in an event generator,
whether through the inclusion of either higher-order loop corrections or multiple-emission
exact matrix elements, inevitably introduces overlap in the perturbative description of a
scattering process between the hard matrix element and the parton-shower evolution. In
this section we review the different options to address this problem.

2.4.1 NLO matching methods

To combine the higher-order calculations of section 2.2.2 with the parton showers of section 2.3,
a number of techniques are available in the literature. While the most commonly used are
known as MC@NLO [134] and POWHEG [135, 136], KrkNLO [137], UNLOPS [138], and the
multiplicative-accumulative matching of [139] provide alternative formalisms. In Sherpa, the
S-MC@NLO matching technique [140–142], an extension of the MC@NLO method, is used. The
algorithm is implemented in complete generality, both for massless and for massive processes.
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It is the only publicly available implementation of a matching procedure that includes the
complete colour and spin information of the matrix elements at the single-emission level for
arbitrary hard processes. The matching has been compared against other, publicly available
implementations of MC@NLO and POWHEG in a number of community studies, which found
the expected level of agreement in the physics modelling between the various simulation
tools [143, 144]. Sherpa’s implementation of the matching procedure has also been tested in
simulations of up to W +3 jets [145] and H +3 jets [146, 147] at NLO precision. Approximate
NLO EW corrections can be included for almost every process, see section 2.5.

In some carefully validated cases it can be beneficial to disable the full colour- and full
spin-correlation treatments of the S-MC@NLO technique and fall back to the leading-colour
spin-averaged approximations of the standard MC@NLO matching method. Combined with
additional modifications that do not reduce the formal accuracy, this has been shown to
reduce not only the negative weight fraction of inclusive event samples by a factor two [148],
but also the average CPU resources required per unweighted event by a similar factor [23]. In
a typical Z+jets or tt̄+jets NLO multijet merged calculation, this translates into a significant
reduction of the computing time required to further process the resulting event samples,
e.g. for detector simulations.

For selected processes, Sherpa provides a matching of N2LO matrix elements to its
default shower using the UN2LOPS method [138]. Such a matching is particularly useful to
cross-check the quality of Sherpa’s multijet merged simulations. Due to a large number
of negative weights, however, we do not recommend the UN2LOPS technique to be used
directly in experimental simulation campaigns.

2.4.2 Photoproduction and hard diffraction at NLO

The NLO matching methods of the previous section have recently been applied to photo-
production and diffractive jet production. The photoproduction regime is characterised by
beam-spectrum photons with a small virtuality, and gives significant contributions to the total
cross section in lepton-lepton [149–151] and lepton-hadron [152–154] collisions, and has also
been studied in ion-ion collisions in the context of Ultra Peripheral Collisions [155–158]. In
contrast to regular NLO-matched calculations, photoproduction features a second convolution
with a beam spectrum for the incident photons, see section 2.1.1. In particular, while the flux
of quasi-real photons is typically computed in the Equivalent Photon Approximation, these
quasi-real photons are then resolved by means of parton-in-photon PDFs [30, 159]. These
PDFs encode both non-perturbative contributions arising from the photons’ mixing with
neutral vector mesons (vector meson dominance), and perturbative contributions by means of
γ → qq̄ splittings. Both these effects have to be combined with the “direct” interaction, where
the photon remains intact. To match this computation at NLO, the varying beam energies as
well as the QED and QCD divergences have to be taken into account. The latter can be han-
dled by leveraging the combined automated QED+QCD subtraction, while for the former, the
momentum fractions that appear in the matching algorithm must be computed with respect
to the photon momentum given by the phase-space point. The implementation in Sherpa has
been validated against data from LEP and HERA experiments [160]. An example is illustrated
in the left plot in figure 7, where predictions at MC@NLO accuracy for jet production at
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Figure 7. Left: Distribution of inclusive jet transverse energy for kT -clustered jets in the pseudo-
rapidity bin −1 < η < 0 in photoproduction, comparing Sherpa MC@NLO results with ZEUS Run 2
data [153]. Right: Distribution of photon virtuality Q2 in diffractive DIS, comparing Sherpa leading
order (LO) and MC@NLO results with H1 data [162].

HERA are compared to data from the ZEUS experiment [153]. We observe large corrections
when comparing to LO, which can be associated with the phase space being filled up by the
real correction. First matched NLO predictions for the EIC have been presented in [161].

Hard-diffractive events are defined by the beam proton undergoing an elastic scattering or
dissociation into a low-mass excitation. Diffraction contributed about 10% to the total cross
section at HERA [18], and will be studied at the EIC as well [163]. Diffractive jet production,
including both diffractive DIS and diffractive photoproduction, has been implemented in
Sherpa and validated against H1 and ZEUS data [164] by implementing an interface to the
H1 DPDF fit and the corresponding flux [32]. The matching procedure is the same as for
photoproduction, and we show a comparison to H1 data [162] for diffractive DIS in the
right plot in figure 7. Again, large corrections can be seen with respect to LO, associated
with filled-up phase space. These methods have been used for predictions of diffraction at
the EIC, and are the first fully-differential hadron-level calculations of hard diffraction at
matched NLO accuracy [164]. Figure 7 shows a significant improvement compared to a
leading-order prediction. Both the photoproduction and hard-diffraction implementations
can also be applied at hadron colliders.

2.4.3 Multijet merging procedures

One of the strengths of the physics modelling with Sherpa is the control over both the
matrix-element calculation and the parton-shower simulation in one single framework. This
facilitates the implemention of techniques to systematically improve the simulation of jet
production. Such methods include multijet merging at leading-order [191–195] and at
next-to-leading order in QCD [138, 165, 169, 196–198]. Sherpa implements the leading-
order merging methods described in [192, 195], and the next-to-leading order techniques
from [165, 169, 176, 190]. They incorporate leading-order or next-to-leading order calculations
with sufficiently separated parton-level jets into parton-shower predictions, while maintaining
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Process Highest additional References Comments
jet mult. at NLO

e+e− → hadrons 4 [165, 166]
e+e− → e+e−jj — [160] in photoproduction limit
ep → e + jets 3 [74, 167] in DIS limit
ep → ejj — [160] in photoproduction limit
ep → epjj — [164] diffractive photoproduction/DIS
pp → jets 3 [168]
pp → V + jets 3 [145, 169]
pp → γ + jets 2 [170]
pp → H + jets 3 [118, 144, 146, 147] ggF in HEFT, incl. finite mt, mb

pp → V jj — [171] in VBF topologies
pp → Hjj — [144] in VBF topologies
pp → V V + jets 1 [52, 55, 172]
pp → V γ + jets 1 [173]
pp → γγ + jet 1 [174, 175]
pp → V H + jets 1 [53, 176, 177]
pp → HH — [54] full loop-induced, incl. finite mt

pp → V V jj — [178] t- (VBS), s-ch. (semilep. V V V )
pp → V V V + jets 1 [176]
pp → V V γ — [179]
pp → V γγ — [180, 181]
pp → γγγ + jets 1 [182]
pp → γγγγ — [182]
pp → tj — [183] t- and s-channel
pp → tW — [183] using diagram removal (DR)
pp → tt̄ + jets 2 [184, 185]
pp → tt̄V + jets 1 [186]
pp → tt̄γ + jets 1 [186]
pp → tt̄bb̄ — [187] full mb dependence
pp → tt̄tt̄ — [186]
pp → V + HF 2 [188] in fusing scheme, see section 2.4.4
pp → tt̄ + HF 2 [189] in fusing scheme, see section 2.4.4

Table 2. Usage of Sherpa’s matching and merging capabilities in the literature. V generically
denotes the off-shell production of a W or Z boson, decaying leptonically. Maximal jet multiplicities
at NLO largely depend on the hardware available, the stated multiplicities correspond to the largest
one that was used in the cited references and not a limitation in principle. In almost all cases
additional multiplicities were merged on top of the quoted NLO multiplicities using the techniques
of [169, 176, 190].
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both the logarithmic accuracy of the parton shower resummation and the fixed-order accuracy
of the hard matrix elements.

Sherpa’s implementation of the matching and merging procedures at S-MC@NLO and
MEPS@NLO precision has been studied in great detail for a large number of processes, see
table 2 for an overview. In many cases, additional jet multiplicities are merged at LO accuracy
on top of the highest multiplicity at NLO, and approximate EW corrections can be included
for almost every process, see section 2.5 and figure 8. The availability of such corrections
is only limited by computational resources and has been accomplished, for example, for
W + {≤ 9} jets [199], H + {≤ 7} jets [200] and — in combination with VINCIA — for VBF
Higgs production + {≤ 4} jets [201]. It has also been used to compute observables in neutral-
current DIS at HERA with up to 5 jets in the final state [202]. Further, the multijet merging
technology has been extended to loop-induced processes at LO accuracy, MEPS@LOOP2,
in [52, 53, 55, 177], which is of particular relevance for diboson processes at the LHC.

2.4.4 Combining four- and five-flavour calculations: fusing

The merging method described in section 2.4.3 is a well established algorithm to describe
multijet observables with NLO accuracy within an inclusive calculation. Originally, the
algorithm was limited to the case of massless quarks in the hard scattering matrix element.
Although this is a useful approximation in cases where the quark mass is small compared to
the typical scales of the observables in question, quark masses often play an important role.
Using a scheme with five active quark flavours (5FS) does not allow the use of fixed-order
matrix elements to correct the parton-shower resummation in the regions of collinear g → bb̄

splittings. Conversely a scheme with 4 active flavours, (4FS) and massive b-quarks can
provide consistent fixed-order predictions in this region, but lacks the resummation of b-jet
production at high energies.

A four-flavour scheme simulation of processes involving b-quarks creates additional
complications. Experimental analyses involving heavy flavour final states rely on precise
simulations involving light jets since these may fake b-quark-initiated jets in detectors.
Consequently, both the 4FS and 5FS simulations have to be used simultaneously and their
overlap needs to be removed. To overcome this problem, the “fusing” approach [188] has
been developed. It rigorously incorporates matrix elements with massive b-quarks into the
existing merged predictions while keeping all resummation features and avoiding double
counting. In this approach, the hardest heavy-flavour emissions stem from 4FS matrix-element
calculations supplemented by Sudakov form factors (“direct” component), whereas softer
b-quarks and light jets are still produced by the 5FS multijet matrix elements and the parton
shower (“fragmentation” component).

Similar to the FONLL method [203], we need appropriate counter-terms to treat the
4FS matrix elements within a prediction using 5FS PDFs and a 5FS running αs. In fusing
calculations with Sherpa, these are provided as event weights, such as to make the massless
multijet event generation usable both inclusively or as a fragmentation component. Applica-
tions of Sherpa’s fusing implementation have been published for Z + heavy flavour [188]
and tt̄ + heavy flavour [189] final states.
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2.5 Approximate electroweak corrections

Full NLO EW calculations are available with Sherpa for fixed-order calculations only.
Nonetheless, approximate higher-order electroweak corrections can be included in particle-
level event generation, including parton showering and hadronisation, using the EW virtual
(EWvirt) scheme, or alternatively through EW Sudakov (EWsud) logarithms. Formally, both
correction schemes evaluate the same logarithms, up to NLL, that dominate the electroweak
corrections in the high-energy regime, but they differ in the inclusion of finite terms. Both
schemes offer the possibility to exponentiate the corrections, resulting in an approximate
resummation that estimates the electroweak corrections beyond O(α) [204].

In practical terms, the two schemes differ in their availability and computational overhead.
To fully benefit from their respective advantages, samples with EWvirt and EWsud corrections
can be combined a posteriori [55]. The effect of the corrections is usually given via alternative
event weights in the output event sample, see section 2.10.2, which allows to compare the
corrected predictions with the baseline (QCD only) result. In the following, we discuss the
details of the two approximation schemes.

2.5.1 EW virtual approximation

The electroweak virtual approximation (EWvirt), introduced in [185, 205], calculates approxi-
mate electroweak and subleading mixed QCD-EW corrections which can be incorporated in
MC@NLO-matched simulations, including MEPS@NLO multijet merged ones. It supplements
the MC@NLO B-function with an EW correction built by using exact NLO EW renormalised
virtual corrections as well as approximated NLO EW real-emission corrections integrated
over their real-emission phase space, either in an additive, multiplicative, or exponentiated
manner [55, 172]. The correct electroweak input-parameter and renormalisation scheme
dependence is preserved by construction [55, 185].

This approximation reproduces the exact NLO EW corrections in regions with large
momentum transfers that are dominated by virtual weak-boson exchanges and renormalisation
corrections. The integrated real-photon emission part of the electroweak correction, of
particular importance for leptons in the final state, can reliably be recovered by including
a soft-photon resummation [206], see section 2.6.

2.5.2 EW Sudakov approximation

The electroweak Sudakov approximation (EWsud) comprises the leading-logarithmic correc-
tions induced by EW higher orders in the strict high-energy limit. At one-loop, these have
been derived by Denner and Pozzorini [207, 208], and implemented in a fully automated and
process independent way for the first time in Sherpa [55, 209]. Similar implementations are
also available in aMC@NLO [210, 211] and OPENLOOPS [212]. In the high energy limit, the
leading higher-order corrections factorise and can be computed by taking ratios of tree-level
diagrams, which, in turn, can be evaluated using Sherpa’s internal ME generator COMIX.
The strength of this approach is twofold: not only does it reproduce the leading and next-to-
leading behaviour of higher-order EW corrections, but it also allows the user to combine this
prediction with the existing QCD technology, such as parton showering and multijet merging.
For details on how to enable Sherpa’s EW Sudakov calculations, see appendix A.
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Figure 8. Effects of higher-order EW corrections and their approximations for four-lepton production
in the setup of [55]. Left: We show a comparison between exact NLO EW corrections, the EWvirt and
the EWsud approximations at fixed order in QCD. Both approximations reproduce the EW corrections
in the high-energy limit well. Centre and right: We show a MEPS@NLO QCD multijet-merged
calculation including either the EWvirt or EWsud approximations for higher-order EW corrections. It
is important to note that, as seen in the right panel, as the implementation of both approximations
differs in the treatment of the lower-multiplicity MC@NLO H- and higher-multiplicity LO-events, the
two results may differ when these event types have a sizable contribution.

In practical terms, which energy range corresponds to the high-energy regime depends on
the process and the observable, and can be controlled by the user. Intermediate resonances,
such as Z → ℓ+ℓ− within pp → ℓ+ℓ− + jets processes, formally spoil the high-energy limit,
as they are associated with moderate scales of the order of the resonant particle’s mass. The
implementation in Sherpa disentangles resonant (associated with scales of the order of the
resonant mass) and non-resonant (potentially associated with resonance-independent large
scales) topologies using the algorithm described in section 2.6.2. If a resonant decay has been
identified and clustered, EW Sudakov corrections are computed for the clustered process.

In addition, various subleading contributions can be included to extend the range of
validity of the approximation. To be precise, we allow for both the inclusion of logarithms of
ratios of invariants which are not formally large, as well as the inclusion of purely imaginary
phases appearing when considering 2 → n processes with n > 2. These two types of terms
were shown to be non-negligible in some cases [210]. While logarithms of ratios of intermediate
invariants are not strictly controlled by the EWsud approximation, they can be used as either a
way to estimate the uncertainty of the approximation or as a way to extend it to lower energies.
It is thus advised to include them when comparing to the full NLO EW corrections. On the
other hand, the purely imaginary phases should always be included, which is the default.

In the left panel of figure 8 we compare the fixed-order exact NLO EW to both the
EWvirt and EWsud approximations, including final-state QED radiation corrections in the
YFS soft-photon resummation of section 2.6.1 in the setup described in [55]. We find excellent
agreement that extends well beyond the strict high-energy limit. The naïvely exponentiated
Sudakov logarithms can be used to estimate the size of the O(α2) corrections. Unlike the
fixed-order NLO EW calculation, both approximations allow their direct incorporation in
the QCD parton-shower-matched and multijet-merged machinery of Sherpa. We show
their impact in the centre and right panels of figure 8, and find that both approximations
agree well with each other, indicating a robust prediction. The right panel, however, also
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exhibits a limitation of the computationally intensive EWvirt approximation — it is often
not available for the higher multiplicities. Here, the EWsud approximation, being entirely
based on tree-level diagrams, can provide support to all relevant multiplicities and calculate
the corresponding EW corrections.

2.6 QED radiative corrections

Sherpa calculates higher-order QED corrections using the soft-photon resummation of Yennie,
Frautschi and Suura (YFS) [213]. The YFS formalism uses the universal structure of real
and virtual soft-photon radiation, constructing an all-orders approximation that retains
all relevant mass effects. Two implementations exist within the Sherpa framework, with
PHOTONS [214], detailed in section 2.6.1, focusing on higher-order corrections to particle
decays, while YFS [38], see section 2.6.4, implements corrections to incident leptons as well.

2.6.1 Soft-photon resummation for particle decays

QED final-state radiation is implemented in the PHOTONS [214] module of Sherpa, based
on the YFS soft-photon resummation algorithm [213]. To improve its accuracy away from
the soft-photon limit, i.e. for hard photon radiation, universal spin-dependent hard collinear
emission corrections are applied by default. For dedicated decays, τ → ℓνℓντ and some
hadron decays [214–216], exact NLO QED corrections are available. NLO QED + NLO
EW and NNLO QED + NLO EW corrections are implemented for W → ℓν as well as
Z → ℓℓ and h → ℓℓ [217], respectively, where the highest precision is needed. Care has
to be taken, however, when final states contain multiple competing resonances. This is
the topic of section 2.6.2.

In order to not interfere with the QCD parton showering, YFS soft-photon resummed
higher-order QED corrections are only applied to decay processes that do not involve coloured
particles. An alternative prescription using a collinear factorisation picture exists in the
form of a QED parton shower [121] in the CSSHOWER, see section 2.3.1. While this method
allows for co-evolving QED and QCD splitting functions, this co-evolution needs only to
be considered if QED emissions off quarks are relevant. In addition, currently it lacks both
the soft-photon coherence inherent in the YFS soft-photon resummation and the dedicated
higher-order corrections.

2.6.2 Resonance identification

Complex final states often contain (multiple) internal resonances. Thus, additional care is
required when effecting higher-order QED corrections in order to preserve these structures.
To this end, Sherpa employs a universal resonance identification algorithm [61]. First, all
possible resonances occurring in the chosen model are identified by scanning the final state
of a scattering process for possible recombinations into resonant states. Second, all such
combinations are ordered in increasing distance from the nominal on-shell resonance in units of
its width, using ∆ = |minv

kin −mres|/Γres. Starting with the recombination with the smallest ∆,
resonances are identified as present in the current configuration, and recombination candidates
with ∆ > ∆thr are classified as non-resonant. Identified resonances are treated separately,
ensuring that no momentum is transferred outside a resonant-decay system through the
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Figure 9. The dressed dilepton invariant mass me+e− (left) and electron transverse momentum
pe

T (right) in Drell-Yan production as described at leading order (black), by the YFS soft-photon
resummation at YFS+NLO QED+NLO EW accuracy without photon-splitting corrections (red) or
additionally resolving the photons further into pairs of charged particles (blue and green), including
mitigating effects of adequately improved dressing strategies. For details see [218].

application of higher-order QED corrections. Finally, all non-resonantly produced final states
are corrected using the universal YFS soft-photon resummation together with the universal
hard-collinear corrections.

2.6.3 Photon-splitting corrections

A feature of higher-order QED effects absent in the YFS soft-photon resummation are photon-
splitting corrections. To account for these effects, Sherpa’s PHOTONS module has been
extended with PHOTONSPLITTER [218]. Despite being of relative O(α2) and only enhanced
by single collinear logarithms compared to the Born configuration, these corrections can play
an appreciable role when hard primary photons split into pairs of light charged particles.
The possibility for a photon to be replaced by an electron or muon pair also has important
consequences for lepton dressing. This module therefore allows photons to split into electrons,
muons and/or light charged hadrons (the relevant QCD degrees of freedom at this energy) in
a parton-shower-like collinear evolution, starting from the primary photon ensemble generated
by YFS. Figure 9 shows the impact of photon-splitting corrections on Drell-Yan electron-
pair production at the LHC, including their mitigation using a modified lepton dressing
procedure. For details see [218].

2.6.4 Soft-photon resummation for e+e− colliders

At lepton-lepton colliders, an important source of uncertainty which must be included is the
modelling of photon emissions in the initial state. Such emissions can spoil the perturbative
expansion as they lead to potentially large logarithms, which arise from the emission of soft
and/or collinear photons. To ensure the stability of theory predictions, and to reduce the
overall uncertainty, these logarithms must be resummed. Sherpa currently supports two
different approaches to the treatment of QED ISR. The first approach uses the electron
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Figure 10. Total cross section for e+e− → HX at the Born level (dashed) and with ISR (solid)
corrections included.

structure function, which is a solution of the DGLAP evolution equations [219–222] using
LO initial conditions [223], see section 2.1.2. This analytic approach can be combined
with a traditional parton shower, extended to QED [121], to generate exclusive kinematic
distributions for the collinear photons. In the second approach, we use the YFS theorem [213]
to resum the emission of soft photons to all orders in α. In this method, the photon emissions
are considered in a fully differential form where the photons are explicitly created and the
treatment of their phase space is exact.

The YFS approach was originally implemented in process-specific Monte Carlo tools [224–
227] that were predominantly used for the LEP physics programme and were crucial for its
electroweak precision measurements [228]. Despite these tools still being available and being
further developed, having a process-independent Monte Carlo event generator based on the
YFS formalism is highly desirable. Hence, while such a YFS-based implementation for QED
FSR for arbitrary final states was available for some time, see section 2.6.1, this framework
has been extended to include QED ISR for initial-state leptons in a process-independent
fashion in [38]. Therein, corrections related to hard collinear photon emissions are available in
a leading-logarithmic formulation up to O(α3L3). An automated calculation of the complete
fixed-order corrections at full NLO EW accuracy is envisioned for future Sherpa versions. As
an example application, we present a number of Higgs production cross sections in figure 10
as a function of the collider centre-of-mass energy.

2.7 Multi-parton interactions

Multi-parton interactions (MPIs) have long been established as an important physics model for
collider event simulation which ensures that particle production, and its scaling behaviour with
the hadronic centre-of-mass energy, are correctly described [229]. The Sherpa model for this
effect builds on the original Sjöstrand-van Zijl approach [229]. While newer versions of PYTHIA
integrate the secondary scatterings into the initial-state parton evolution [230, 231], and add
final-state parton showering as well as hadronic rescattering effects [232], Sherpa treats the
scatterings as independent, apart from momentum-conserving and colour reconnection effects.
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The perturbatively computable (regularised) parton-level cross section is normalised to the
non-diffractive hadron-level cross section and exponentiated in an expression similar to a
Sudakov factor. This expression is used to generate a sequence of secondary interactions,
which individually undergo parton-shower evolution in the initial and final states. The
production of the secondary interactions is integrated into the multijet merging algorithm
used to describe the hard scattering [233].

As a new feature in version 3, Sherpa is now capable of modelling multiple scattering
effects in processes with resolved photons. It is also now possible to veto additional scatters
between beam particles, which is useful in measurements of large rapidity gaps and diffractive
jet production [164], for example. In this way, survival probabilities can be computed as the
probability for no further scatters to occur, akin to their estimation in [234–236].

2.8 Hadronisation

The transition from the region where QCD partons are asymptotically free to the regime
where they are bound into hadrons is the traditional domain of Monte Carlo event generators.
This region cannot be described using first-principles calculations due to the complications of
the transition from the perturbative to the non-perturbative regime of the theory. A number
of models, which are rooted in a few theoretically calculable quantities and experimental
observations, are therefore employed. The ones used in Sherpa are described in this section.

2.8.1 Beam remnant handling

In collisions involving hadronic initial states, one or more partons are typically extracted from
the incoming beam particles. This is modelled via the perturbatively described hard scattering
and the perturbatively modelled, but softer, multi-parton interactions, see sections 2.2 and 2.7.
Both types of calculations are dressed with the parton showers of section 2.3 which ultimately
terminate at low transverse-momentum scales of around 1 GeV.

The breakup of incoming hadrons (and other beam particles with substructure), and the
formation of the beam remnants, begins with a list of shower initiators from the above per-
turbative descriptions. The breakup of incoming particles is guided by flavour compensation,
colour compensation, longitudinal momentum distribution according to the PDFs, and trans-
verse momentum distribution according to a polynomially-suppressed Gaussian. In addition,
the valence structure of the beam particle is respected; in particular, baryons are considered
to constitute a valence quark-diquark pair. Details on this model can be found in appendix C.

2.8.2 Colour reconnections

The partons produced by the hard scattering and multi-parton interactions, their subsequent
parton showers, and the break-ups of the beam remnants all turn into so-called primary
hadrons. These primary hadrons have their colours assigned in the large-Nc limit. This
means that effectively, at this stage, every colour in the parton ensemble has exactly one
anti-colour and vice versa. The difference between the Nc → ∞ approximation and the
actual value Nc = 3, and the existence of potential soft non-perturbative gluon interactions
(so-called “gluers” [237]), suggests that this model can be improved by a rearrangement of
the original colour assignments of the partons. In particular, the non-perturbative nature
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of the long-range strong interactions introduces significant liberty in the modelling of such
colour reconnections (CRs).

The model in Sherpa incorporates various ideas from earlier literature [229, 230, 238–
248]. Assuming that N different colours (matched by exactly N anti-colours) emerge from
the scatters, showers, and beam remnants, the model checks N2 times for possible colour
reassignments. In each such attempt, two colours i and j are randomly chosen and the
relative distances d of the corresponding parton pairs ⟨īi⟩ and ⟨jj̄⟩ and the swapped pairs
⟨ij̄⟩ and ⟨jī⟩ is calculated. For each pair kl, the distance in momentum space is given by
dkl = log(1 + (pkpl − mkml)/Q2

0). Based on this distance, a colour reassignment happens
with a probability given by Pswap(i ↔ j) = Rc{1− exp[ηQ (dīi + djj̄ − dij̄ − djī)]}. In these
equations, Q0 is the infrared scale in the distance measure, Rc is the colour factor, and ηQ

is the weight of the distances in the exponential. The (untuned) defaults are Q0 ≈ 1GeV,
Rc ≈ 1/9, and ηQ ≈ 0.1.

2.8.3 Cluster hadronisation

Sherpa’s default hadronisation model [249, 250] is based on the twin concepts of local
parton-hadron duality (LPHD) [251] and preconfinement [252–254], which postulate that
the flow of quantum numbers, momenta, and energies at the hadron level closely follows
their counterparts at the parton level, and that the transition from partons to hadrons
proceeds through the formation of colourless clusters with a perturbatively calculable mass
spectrum. The first realisation of the LPHD paradigm in the form of the Feynman-Field
independent fragmentation model [255] suffered from a range of theoretical issues, among
them lack of Lorentz invariance. These issues were ultimately resolved by the concept of
preconfinement, which introduced the intermediate step of a non-perturbative splitting of
gluons into quark–anti-quark pairs [256, 257] and the subsequent formation of colour-neutral
clusters and their decay into hadrons [258]. The first cluster fragmentation model embedded in
a widely used event generator, HERWIG [4, 259], was introduced shortly afterwards [109, 260]
and is continuously improved [3, 261, 262].

Sherpa’s cluster model [249, 250] differs from the HERWIG model in multiple ways.
Firstly, Sherpa does not introduce non-perturbative gluon masses but rather keeps the
gluons massless, and allows not only light up and down quarks, but also strange quarks
and diquarks as decay products of their forced splitting at the onset of hadronisation. This
results in the presence of baryonic clusters throughout the hadronisation process. Secondly,
the fission of relatively heavy clusters into two lighter ones is not parametrised by selecting
masses of the latter in (typically) isotropic decays; instead, Sherpa distributes light-cone
momentum fractions of the new clusters with respect to the constituents of the decaying
cluster according to “fragmentation functions”, and applies a Gaussian transverse momentum
distribution to the decay kinematics. Finally, there are also differences in the treatment of
binary cluster decays into primary hadrons, including kinematics and the way the hadron
species are selected. Overall, despite the footing of both models in the same underlying
physics assumptions, these differences result in a manifestly different hadronisation model
with different sets of critical parameters that need to be tuned to data.
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2.8.4 Alternative hadronisation model via interface to Pythia 8

An alternative approach to hadronisation is provided by the string picture of QCD [263–
265] which builds on the observation of a potential between colour charges that increases
linearly with their position-space distance.2 The potential is represented by one-dimensional
strings, which carry a finite energy density per unit length. As the strings are “stretched”
with the partons moving away from each other, their stored energy allows the dynamic
creation of quark–anti-quark pairs, akin to the Schwinger mechanism in QED [268, 269],
essentially breaking the string into smaller, lighter fragments. Successive refinements, including
symmetrising the string fragmentation function whilst respecting Lorentz-invariance and
causality [270], extending the model beyond the simple case of strings spanned by quark–-
anti-quark pairs and including the effect of gluons [271, 272], and the modelling of baryon
production [273], have contributed to establishing the Lund model [274, 275] as probably
the most phenomenologically successful hadronisation model.

Sherpa provides an interface to the Lund model implemented in PYTHIA 8 [6, 276]. See
appendix A for instructions to enable it. The support for both cluster hadronisation and string
fragmentation available in Sherpa allows for direct comparisons of hadronisation models and
their observable effects, due to the identical treatment of the perturbative phase of the event.

2.9 Hadron decays

The Sherpa framework contains a built-in module handling hadron and tau-lepton de-
cays [277, 278]. It contains decay tables with branching ratios for approximately 2500 decay
channels, many of which have their kinematics modelled according to a matrix element with
corresponding form factors. In particular, decays of the tau lepton and heavy mesons have
form-factor models similar to dedicated codes like TAUOLA [279] and EVTGEN [280].

Several additional features are implemented: spin correlations can be enabled to account
for the correlation of the helicity of an unstable particle between the production and decay
matrix elements. Neutral meson mixing can be described, including advanced features like
CP violation in the decay, in the mixing, and in the interference between them [2]. Decay
kinematics are adjusted to account for the finite-width Breit-Wigner line shape of the decaying
particle. QED radiation can be simulated from all charged particles involved in the hadron
decay cascade within the formalism and implementation described in section 2.6. Aliases
can be defined and used for a fine-tuned correlated steering of open decay channels. For
hadrons with incomplete exclusive decay tables, these can be completed by using the decays
of their partonic content, corrected for higher-order QCD effects using the parton shower of
section 2.3, and subsequent hadronisation to yield a description of the missing decay channels.

2.10 Event generation results and variations

After all stages of the simulation of a collider event have been completed, the event exists as
an internal representation of flavours, momenta, weights and weight components. We describe

2Approaches to combine the respective benefits of string and cluster hadronisation [266, 267] have not been
followed up in the past decades, arguably because they have not been provided in the form of a widely used
event generator.
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in this section how this information can be further processed and stored in standardised
output formats.

2.10.1 Weighted vs. unweighted event generation

Sherpa events are produced as tuples {Φi, wi, ntrial,i}, wherein the phase-space point Φi

encodes the flavours and momenta of all involved particles constituting this event. All such
events initially have a probabilistic Monte Carlo weight wi associated with them, which must
be taken into account when calculating expectation values for observables,

⟨O⟩ = 1
Ntrial

·
n∑

i=1
wi (Φi)O (Φi) , with Ntrial =

n∑
i=1

ntrial,i . (2.1)

Therein, O (Φi) is the value of the observable under consideration, and ntrial,i is the number
of trials needed to successfully generate event Φi, and Ntrial is their total sum. In essence,
Ntrial keeps track of all attempts that resulted in a weight wi = 0 during any stage of event
generation to retain the correct sample normalisation without the need to write out events
that will not contribute to any observable.

In applications with expensive post-processing steps of the event sample, for example a
full detector simulation, or if storage is a concern, it is favourable to minimise the number
of events in the sample without reducing its statistical power. This is achieved by an
unweighting step, which accepts or rejects events in accordance with their probabilistic weight.
The resulting sample consists of the accepted events only, and their event weights are all
normalised to a constant weight while ntrials book-keeps the rejected events. Exceptions
from such a uniformly-weighted sample exist for events with particularly large weights or
if a non-uniform bias is applied to the event generation. For further details, we refer the
user to the full user manual distributed with the Sherpa code.

Applying the unweighting step as described above is the default behaviour of Sherpa.
Since the fraction of events that survive the unweighting is typically very small, deferring
computations that do not affect the weight until after accepting an event gives rise to major
speed-ups of the overall event generation. In [23], we have introduced a pilot-run strategy
leading to an overall reduction in computing time by about a factor of forty for typical
simulation setups used by the LHC collaborations.

2.10.2 On-the-fly uncertainty estimates

During event generation, Sherpa can calculate a variety of alternative event weights for
various physical and algorithmic variations. For each alternative weight, its fraction of the
nominal weight encodes the probability of the event to happen for that variation. This
multi-weight handling removes the need to produce dedicated event samples for each variation
separately, for example to estimate an uncertainty on the nominal prediction. Furthermore,
downstream processing steps such as physics analyses or detector-response simulations only
need to process a single event sample and still retain all variations by simply propagating
through the alternative event weights. The additional spread in weights which occurs when
using this method, and the resulting reduced statistical power of the event-weight sample,
is usually far outweighed by the benefits of the method, i.e. strongly reduced computing
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and storage needs. Similar techniques are used in the VINCIA [281], PYTHIA [282] and
HERWIG [283] event generators. For PYTHIA, an extension of the approach to hadronisation
models has recently been presented [284].

For QCD uncertainty estimates, Sherpa supports factorisation and renormalisation scale
variations, as well as PDF variations [285]. To give some application examples, this allows
one to quantify 7-point scale variation uncertainties, study the spread of predictions due to
different PDF fits by different fitter groups, and/or derive the PDF uncertainty for each PDF
set individually. The strong coupling value for αs(m2

Z) is usually taken from the PDF set
(and can thus be varied by selecting PDF sets with different inputs for αs(m2

Z)), but it can
also be varied independently of the PDF. By default, all such QCD parameter variations
are applied to both the hard process and the parton shower simultaneously. Nonetheless,
Sherpa will additionally report variation results for the hard process only.

The approximate EW corrections discussed in section 2.5 are usually also given as
alternative event weights, allowing the user to compare the effect of including the corrections
with the baseline prediction [55]. The same applies to the components of the heavy-flavour
matching discussed in section 2.4.4. Finally, on the algorithmic side, as of Sherpa 3 one
can vary the merging parameter, Qcut, on the fly when generating multijet-merged event
samples, see section 2.4.3. This allows the user to study the effect of this formally higher-order
variation, e.g. to confirm that its impact is small compared to other uncertainties in the
phase space relevant for the analysis at hand.

Ultimately, Sherpa reports the total cross section not only for the nominal scale and
input parameter choices, but also for each requested variation thereof. These alternative
sample cross sections are passed to the HEPMC [286, 287] event output or directly to the
RIVET analysis framework [288, 289] via Sherpa’s internal interface. Sherpa follows the
naming conventions for event-weight variations specified in [89].

2.10.3 Storing and analysing events

As already mentioned, Sherpa provides interfaces to the HEPMC and RIVET libraries, which
can be used to facilitate the analysis of its output. Generally, HEPMC serves as a common
event-record format, allowing Sherpa to export its generated events in a standardised manner
and ensuring compatibility with likewise standard-compatible analysis tools and frameworks.
HEPMC itself supports a variety of structured formats for storing the Monte Carlo event
record to disk. Sherpa supports HEPMC version 3 onwards [287].

RIVET [288–290] is a common analysis toolkit for the validation of Monte Carlo event
generators using experimental data. It uses the Monte Carlo events in the HEPMC format
as an input, either reading the event record from file (independently of which generator
produced the events), or passed programmatically as an object when a dedicated interface is in
place. Sherpa supports both options, where its dedicated interface is supported from RIVET
version 3 onwards. Starting with RIVET version 4 [289], Sherpa supports the serialisation of
the RIVET output, allowing for efficient data reductions in memory as part of MPI-collective
communications in high-performance applications. This avoids the need for a posteriori
merging of histogram files entirely. Note that both HEPMC 3 and RIVET 3, as well as later
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versions, have native multi-weight support, which makes it very straightforward to plot
uncertainty bands via RIVET when using Sherpa multi-weight event samples as an input.

RIVET can also be used to fill cross-section interpolation grids from Sherpa’s fixed-
order calculations. This can be achieved using a RIVET plugin called MCGRID [291, 292] that
projects individual events on differential observables and produces corresponding interpolation
grids in the APPLGRID [293] or FASTNLO [294] format. These grids can be used for the fast
and flexible evaluation of scale, αs, and PDF variations in leading- and next-to-leading-order
QCD calculations. The required event information is provided by Sherpa via auxiliary
event weights.

For instructions on enabling Sherpa’s HEPMC and RIVET interfaces and its MPI support,
see appendix A.

3 Development pipeline

In this section we briefly describe software and physics projects that have been developed
in the Sherpa framework, but are not yet publicly released with Sherpa 3.0 or 3.1. They
represent feature candidates to be included in near-future versions of the package.

3.1 CAESAR resummation with SHERPA

The Sherpa framework can be used to perform semi-analytic QCD resummation calcula-
tions in the CAESAR formalism [295, 296], allowing for the all-orders inclusion of leading
and next-to-leading logarithms in the observable value for suitable variables. The original
implementation of the CAESAR plugin to Sherpa was presented in [297]. It utilises the
event generation framework, with Sherpa facilitating all the process management, provid-
ing access to matrix-element generators, performing phase-space integration, and providing
event-analysis functionality. In the context of matching the resummation to fixed-order calcu-
lations, aiming for NLO+NLL’ accuracy, the Sherpa implementation of the Catani-Seymour
dipole subtraction and the interfaces to the one-loop providers RECOLA and OPENLOOPS
are employed. To correct the resummed predictions for non-perturbative corrections from
the underlying event and hadronisation, multi-differential transfer matrices, derived from
corresponding Sherpa simulations, can be employed, capturing the kinematical migration
of parton-level to particle-level events [298–300].

The CAESAR implementation of Sherpa has been used to derive resummed predictions
for soft-drop thrust [298] in the context of extractions of the strong coupling constant [301]
and multijet resolution scales [166] in electron-positron annihilation, as well as NLO+NLL’
accurate predictions for soft-drop groomed hadronic event shapes [168], and jet angularities in
proton-proton collisions at the LHC [299, 302, 303] and RHIC [300]. Recently, it was applied to
plain and groomed event shapes in neutral-current deep inelastic scattering [167, 304–306], as
well as event-shape observables in hadronic Higgs-boson decays at a future lepton collider [307].

3.2 Precision resummation with SCET in SHERPA

In addition to the CAESAR resummation calculations described above, a number of targeted
highest-accuracy resummation calculations were performed in the SCET formalism [308, 309]
using the Sherpa framework. These calculations make use of a purpose-built resummation
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routine which is interfaced to Sherpa. In this setup, Sherpa supplies the exact fixed-order
matrix elements, using the interfaces to one-loop providers (see section 2.2.2) and the inbuilt
Catani-Seymour dipole subtraction, and carries out the matching to the resummation away
from the infrared limits. Sherpa also handles the phase-space integration.

This has allowed the calculation of a number of selected observables at high fixed-order
and resummed precision. For example, the double-differential qT–∆ϕ spectrum in both
charged- and neutral-current Drell-Yan production, as well as the ratio thereof, were cal-
culated at N3LL′+N2LO accuracy, including the non-negligible top-mass-dependent singlet
contributions [310]. Further, these developments have been used to calculate various ob-
servables in tt̄ production. Away from the tt̄ production threshold, the projected transverse
momentum distributions were calculated at approximate N2LL′+N2LO accuracy [311]. In
the entire tt̄ production region, including the threshold region, the qT and ∆ϕ spectra were
calculated at N2LL+N2LO [312]. The qT spectrum of Higgs production in gluon fusion
was calculated at subleading power (up to N2LP) at NLO in [313]. This high-precision
resummation interface will be provided in future versions.

3.3 High-performance and heterogeneous computing

Sherpa is one of the workhorses of the modern experimental simulation toolchain, in
particular for the LHC experiments. While the code provides enhanced physics modelling
capabilities based on high-multiplicity multijet merged simulations, the required matrix
element calculations often strain the experimental computing budgets [314–316]. To reduce
the computing footprint and still facilitate cutting-edge physics simulations, Sherpa has
undergone extensive performance improvements in the past years [23, 71, 148]. These have
been described in sections 2.1.2, 2.2 and 2.10.1, and have also been backported to the Sherpa
v2.2 series, resulting in significant event generation speed gains for the traditional compute
model of running Sherpa on a single CPU core.

The current trend towards very large (exascale) HPC clusters, and towards an increasing
reliance on off-loading computations to GPU-like accelerator hardware, brings about new
challenges. Large HPC clusters usually rely on parallel file systems (e.g. Lustre). To take
full advantage of such a file system, one also needs to parallelise input/output operations.
On the other hand, using a GPU usually requires reorganisation of the data in memory,
copying data to and from the GPU, and compiling the compute kernel code for the given
GPU architecture, thus requiring extensive changes to existing codebases like Sherpa.

To improve performance on parallel file systems, future versions of Sherpa will include
the LHEH5 interface described in [199, 200]. When Sherpa is run in parallel mode via MPI, the
LHEH5 technology enables efficient parallel I/O operations across many nodes. This technology
also provides the means to store parton-level events at leading and next-to-leading order,
which can be used for multijet merged simulations within Sherpa or PYTHIA. This provides
new options to cross-check simulations with different parton showers or hadronisation modules,
in order to derive systematic uncertainty estimates. In addition, Sherpa now employs more
efficient computing strategies, including the recycling of particularly intensive parts of the
simulation, where possible.
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The LHEH5 interface will also ease the use of GPU resources, as it allows Sherpa to read
in parton-level events from different matrix element generators, such as the GPU-enabled
simulation program Pepper [317–320]. The excellent MPI performance of Sherpa is further
enhanced by the introduction of a RIVET 4 [289] and Yoda 2 [321] interface, allowing for
an efficient in-memory merging of results across MPI nodes (see section 2.10).

3.4 Machine learning for phase-space sampling and event unweighting

Within the Sherpa framework, several applications of modern machine learning techniques
are being explored with the aim of further improving the generator performance. The
focus is currently on the hard event component; in particular, on achieving the efficient
sampling of high-dimensional phase spaces. This involves the generation of momentum
configurations distributed according to the desired squared matrix element, and the efficient
unweighting of events.

We have pioneered the development of novel sampling algorithms which work by remap-
ping the integration variables using trainable Normalising Flows [319, 322, 323]. The task
of optimising the performance of the process-specific multi-channel importance sampler is
traditionally accomplished with the Vegas algorithm [324]. However, Vegas assumes a
factorisable target distribution, which is typically not found in multi-particle transition matrix
elements and the phase-space parametrisations which are employed, limiting the potential for
further optimisations. Normalising-flow maps are more flexible and facilitate a better optimi-
sation of the sampling distribution to the true target functions. As a result, the statistical
variance of cross-section predictions can be significantly reduced for many processes.

In general, event unweighting (the generation of events with unit weight) is a rather
inefficient process, especially for high-multiplicity processes, due to the large spread in event
weights. Unweighting efficiencies for these processes often fall below the permille level [199].
At the same time, the required matrix element evaluations are computationally costly. To
improve the efficiency of this process, we have developed a novel two-stage unweighting
algorithm. It relies on a fast neural network surrogate for the event weight in an initial
unweighting phase, followed by a second rejection sampling against the true event weight [325].
The resulting event sample is unbiased and follows the desired distribution, though statistically
somewhat diluted due to the possible appearance of overweights. However, the effective
gain factors turn out to be significant for complex final states. To improve the algorithm’s
performance, physics knowledge about the target function can be incorporated into the
surrogate construction. To this end, we have studied network architectures that reflect the
dipole factorisation property of QCD real-emission matrix elements [326], resulting in a
performance boost for the new unweighting algorithm [327].

3.5 Neutrino physics interface

The current and next-generation neutrino experiments are entering a precision era, in which
the dominant uncertainty will shift from statistical in nature to systematic [328–330], enabling
a multitude of analyses that will probe physics beyond the Standard Model. In particular,
there has been a push to expand the searches for BSM physics at accelerator neutrino
experiments, such as the SBN program [331] and DUNE [328]. Sherpa has proven to be
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a versatile tool for the corresponding event simulations. To expedite the inclusion of novel
models into the experimental pipeline, an interface to the UFO module (see section 2.2.8 for
details) has been developed to return only the leptonic current involved [332].

DUNE is expected to measure an unprecedented number of tau neutrino events in the
far detector [329]. In the past, neutrino generators have simply assumed that the produced
tau lepton is purely left-handed. This has been shown to be a poor assumption [333]. To
facilitate the needed precision for DUNE, Sherpa now provides an interface to enable neutrino
generators to appropriately include spin-correlations for tau decays [334]. Further, within
the neutrino community, only PYTHIA is currently used for estimating the hadronisation of
particles in the DIS region [335–340]. Extending the above interface to allow for neutrino
generators to use Sherpa for hadronisation will enable a more robust estimate of the
uncertainties in this energy region.

4 Conclusions

In this paper, we have described the new major release of the general-purpose Monte Carlo
event generator Sherpa, a numerical simulation program designed specifically to cope with
the high centre-of-mass energies at CERN’s Large Hadron Collider and the associated physics
challenges. Over the last few years, Sherpa has been extended to the simulation of a wider
range of physics processes, such as polarised cross sections, photoproduction and diffractive
jet production. The physics capabilities of the generator have been further enhanced through
improved models for soft physics and a universal framework for NLO calculations in the
complete Standard Model. In addition to these and the other developments described here,
Sherpa also provides a platform for various other precision physics simulations, such as a
generic NLL resummation framework and a neutrino event generator. Together with a number
of technical improvements, the above developments are released publicly and supported as
Sherpa version 3, which will form the basis for further refinement of the physics models
in the eras of the High-Luminosity LHC and the EIC, and for the preparation of other
potential future collider experiments.
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A Installing SHERPA

Sherpa is distributed as a tarred and gzipped file named sherpa-<VERSION>.tar.gz available
from the Downloads section of the project’s webpage.3 The file can be unpacked in the
current working directory with the shell command

$ tar -xzf sherpa-<VERSION>.tar.gz

Alternatively, Sherpa can be accessed via Git, through

$ git clone --single-branch -b rel-<VERSION> https://gitlab.com/sherpa-team/sherpa.git

In either case, to guarantee successful installation, the following tools should be available
on the system:

• a recent C/C++ compiler toolchain,

• a recent version of CMake to configure a build directory,

• and Make or Ninja to build and install Sherpa.

A Fortran compiler is recommended. For the use of UFO models, an installation of Python
version 3.5 or later is required. Installations of the LHAPDF and libzip libraries are also
recommended, but it is possible to let Sherpa install its own copies of both libraries, as
will be discussed below.

Compilation and installation proceed through the following standard CMake workflow:

$ cd sherpa-<VERSION>/
$ cmake -S . -B <builddir> -DCMAKE_INSTALL_PREFIX=<installdir> [+ config options]
$ cmake --build <builddir> [+ build options, e.g. -j 8]
$ cmake --install <builddir>

where <builddir> has to be replaced with the (temporary) directory in which intermediate
files are stored for the build process, and <installdir> with the installation directory into
which the build products are installed. The structure of the program within <installdir>
is as follows (if the installation procedure is not further customised):

• <installdir>/bin: the main Sherpa executable and additional auxiliary executables
and scripts,

3https://sherpa-team.gitlab.io.
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Option/package name Enable option/interface Specify package location References

MPI -DSHERPA_ENABLE_MPI=ON -DMPI_DIR=<path> —
HEPMC 3.0.0 or later -DSHERPA_ENABLE_HEPMC3=ON -DHEPMC3_DIR=<path> [286, 287]
LHAPDF -DSHERPA_ENABLE_LHAPDF=ON -DLHAPDF_DIR=<path> [19]
MCFM -DSHERPA_ENABLE_MCFM=ON -DMCFM_DIR=<path> [71]
OPENLOOPS -DSHERPA_ENABLE_OPENLOOPS=ON -DOPENLOOPS_DIR=<path> [65, 66]
PYTHIA 8.220 or later -DSHERPA_ENABLE_PYTHIA8=ON -DPYTHIA8_DIR=<path> [6]
RECOLA -DSHERPA_ENABLE_RECOLA=ON -DRECOLA_DIR=<path> [67–69]
RIVET 3.0.0 or later -DSHERPA_ENABLE_RIVET=ON -DRIVET_DIR=<path> [288, 289]
EW Sudakovs -DSHERPA_ENABLE_EWSUD=ON — [55, 209]
UFO -DSHERPA_ENABLE_UFO=ON — [45, 46]

Table 3. Configuration options to enable some of Sherpa’s optional features and interfaces to
external packages. A package location needs to be specified only if an external package is installed in
a non-standard location, or to enforce the usage of a specific installation of the package. The UFO
and EW Sudakovs options do not rely on external packages and therefore have no associated package
location option.

• <installdir>/include: headers that define the API to use Sherpa as an external
framework from third party tools, and which are used when Sherpa writes out process
libraries that must be compiled by the user,

• <installdir>/lib: basic library files,

• <installdir>/share: PDF data files, tau lepton and hadron decay data, example run
cards, command line auto-completion files and other auxiliary files.

Sherpa can be interfaced with various external packages. To enable this, the user has
to add the corresponding options to the cmake configuration command:

$ cmake -S . -B <builddir> [...] -DSHERPA_ENABLE_<PACKAGENAME>=ON

where <PACKAGENAME> is replaced by the external package name, e.g. RIVET, LHAPDF, HEPMC3
etc. If the external package is not installed in a standard location, the user might need to
specify the installation directory of the package as follows:

$ cmake -S . -B <builddir> [...] -D<PACKAGENAME>_DIR=<package_installdir>

In table 3, we list the configuration options to enable interfaces to external packages and
optional features which are referred to in this article. However, it is not a complete list of
all available interfaces and options. For this, we refer the reader to the manual distributed
with the actual code release and can also be found on the Sherpa download webpage.
Alternatively, a complete list of possible configuration options can be listed by running cmake
-LA <builddir> or ccmake <builddir>.

B Input cards

When Sherpa is run without any arguments, it scans for a configuration file called
Sherpa.yaml in the current working directory. Such a configuration file is also called a
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# set up beams for LHC run 2
BEAMS: 2212
BEAM_ENERGIES: 6500

TAGS:
NJETS: 4

# request events for pp -> W[ev] with up to four additional final-state jets
PROCESSES:
- 93 93 -> 11 -12 93{$(NJETS)}:

Order: {QCD: 0, EW: 2}
CKKW: 20
# use NLO accuracy for the lowest three multiplicities (2->2, 2->3 and 2->4)
2->2-4:

NLO_Mode: MC@NLO
NLO_Order: {QCD: 1, EW: 0}
Loop_Generator: OpenLoops

Listing 1. An example Sherpa runcard for generating pp → e−ν̄e + jets events.

runcard. It usually defines the process(es) for which events should be generated, the collider
setup, and other physics and technical settings the user wishes to customise. An example for
the production of an electron-neutrino pair with up to four additional jets is given in Listing 1.

The settings in the runcard are given in YAML syntax [341]. In the example, we set
up symmetric proton beams corresponding to a collision centre-of-mass energy of 13TeV,
by specifying the single-valued settings BEAMS: 2212 and BEAM_ENERGIES: 6500. Next, we
specify a tag using the TAGS setting. We call the tag NJETS and set it to the value 4. Any
occurrence of $(NJETS) in the runcard will now be replaced with that value. Finally, we
add a process using PROCESSES. This setting also takes a list, since Sherpa can generate
events for more than one process. Here, we only add one process, using 93 93 -> 11 -12
93{$(NJETS)}, which translates to pp → e−ν̄e + up to four jets. The process specification
itself, 93 93 -> 11 -12 93{$(NJETS)}, takes various subsettings, e.g. the orders in the
strong and electroweak couplings using the Order subsetting. For all parameter settings not
specified explicitly in the runcard (here, for example, which parton shower or hadronisation
model is to be used), their default values are assumed. Accordingly, the given runcard
would generate hadron-level events based on Sherpa’s Catani-Seymour dipole shower, see
section 2.3.1, and its cluster hadronisation model, described in section 2.8.3.

All settings can be specified on the command line, too, using the same syntax, for example:

$ Sherpa 'EVENTS: 1M'

This would set the number of events to one million, taking precedence over any Sherpa
defaults or runcard settings. Some settings have associated command-line arguments, e.g.
the following command is an equivalent way to request the generation of one million events:

$ Sherpa -e 1M
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Other arguments on the command line are interpreted as paths to runcards to be used, e.g.

$ Sherpa -e 1M path/to/runcard.yaml

will read in settings from path/to/runcard.yaml, and proceed to generate one million events
for the process(es) defined therein.

Because it is easy to introduce a typo in a setting name, or to use the wrong capitalisation
(all setting names and values are case-sensitive), Sherpa will report a short summary of
any unused settings in the output produced at the end of a run. Additionally, details of all
settings, used or unused, and the associated defaults and custom values, are written to the
Settings_Report directory within the current working directory, which can be understood
as a manifest of the run configuration.

For more details on the syntax, a complete documentation of all user settings, available
command-line arguments and the settings report, we refer the reader to the manual available
on the Sherpa webpage or distributed with the code.

C Details on beam remnant handling

In Sherpa, the breakup of incoming hadrons and the formation of the beam remnants is
modelled after all multiple-parton interactions and associated parton showering steps have
terminated and a list of shower initiators can be extracted from the incoming hadron. The
physics model is the following:

1. Flavour compensation: assuming an incoming hadron to consist of a valence quark-
diquark pair (the diquark is the carrier of the baryon number), and that di-quarks cannot
act as shower initiators, the flavours of the shower initiators have to be compensated.
One of them may be a valence quark — shower initiators are assigned as valence quarks
with a probability obtained from the PDFs at the lowest scale. All other “net” quark
flavours among the shower initiators are compensated with a corresponding anti-flavour
spectator.

2. Colour compensation: as the overall hadron must form a singlet, Sherpa assumes a
colour-ordered list of partons of the type q − g − g − · · · − (qq), where q and (qq) denote
the valence quark and diquark. The model also assumes that flavour-anti-flavour pairs,
either formed by the shower initiators of independent MPI scatters or by compensating
individual flavours with a corresponding anti-flavour spectator, emerge from a gluon
and therefore will be in a relative colour-octet state.

3. Longitudinal momenta: The longitudinal momenta of the shower initiators are already
fixed, and those for the spectators in the beam breakup are selected according to the
PDFs. The longitudinal momentum for the valence diquark is given by the residual at
the end of the process.

4. Transverse momentum: Sherpa models the finite “intrinsic” transverse momentum k⊥
inside the hadrons, akin to Fermi motion by assuming a Gaussian distribution, cut-off
at large values through a polynomial,

P(k⊥) ∝ exp(−(k⊥ − k⊥,0)2/σ2)(k⊥,max − k⊥)η . (C.1)
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The parameters of this distribution depend on the hadron forming the beam and scale
with the centre-of-mass energy of the collision. Sherpa allows different parameter
values for parton-shower initiators and the spectator.

5. Overall momentum conservation: To ensure overall momentum conservation after as-
signing individual intrinsic transverse momenta for the partons, Sherpa allows two
recoil strategies, which slightly modify both transverse and longitudinal momenta. In
a “democratic approach” the overall excess transverse momentum is compensated by
subtracting it from the partons in proportion to their longitudinal momenta. Alter-
natively, Sherpa compensates in a similar fashion, the recoil of the shower initiators
with the spectators and vice versa. This leaves the question of overall momentum
conservation within the beam break-up, as in most cases the combined invariant mass
of partons coming from a hadron differs from its mass. In hadron-hadron collisions this
is achieved by shuffling momenta between the two hadrons, while in collisions involving
only one incident hadron, this compensation happens between the initial state and
strongly-interacting final states.
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