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Particle flow in ATLAS
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® Problem: particle identification & energy calibration
® Particularly challenging when we have jets/showers
Key: exploit complementary components info:
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o tracker o
. [Nucl.Instrum.Meth.A611:25-40,2009]
o  calorimeters (calo)
® Particle flow (p-flow) algorithms reconstruct " ATLAS simulation 2010

| Pythia 6.425 "
L dijetevent *

particle’s trajectory and its energy deposit in “'* ¢ eVl

detector components
® Inputs are tracks in the inner detector and topo-

clusters in calorimeter
o topo-clusters are groups of neighbouring cells
= useful to reconstruct showers in the calorimeter

® Goal: try to associate topo-clusters to tracks

|tan 6] x sin ¢
o
o
o

o
|tan 6] x cos ¢ \

[Eur. Phys. J. C 77 (2017) 490]
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ATLAS p-flow algorithm [Eur. Phys. J. C 77 (2017) 466]

For each track in descending pT:

1.

2.
3.
4.
5.
6.

associate closest topo-cluster based on angular distance AR’

compute expected energy deposit based on the topo-cluster position and track momentum
if expected and measured energies differ significantly, associate more topo-clusters
subtract the expected energy by calo cells

if remaining energy lies within expected fluctuations, remove the remnants

otherwise, consider leftovers for the next track
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ATLAS p-flow algorithm: pros and cons

Existing ATLAS p-flow algorithm strengths:

® Calo +track information:

(3
o

;\? T T T T T T T ]

= improve energy resolution at low energy ‘8’ I

® Good energy and angular resolution Lf 151 -

® Pileup mitigation through “charged hadron subtraction” =

10— =

Main limitations: Z 3

sE Calorimeter -

® Associate track to topo-clusters, not cells directly : 3
= energy subtraction not flexible 0 e,

® No calibration, only use detector measurements [CERN-THESIS-2011-291] E [GeV]

® Tracker usage off above 100 GeV to avoid false matches
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ATLAS p-flow algorithm: pros and cons

Existing ATLAS p-flow algorithm strengths:

® Calo +track information:
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= improve energy resolution at low energy g
® Good energy and angular resolution 2
® Pileup mitigation through “charged hadron subtraction” =
10
Main limitations:
5
® Associate track to topo-clusters, not cells directly
= energy subtraction not flexible 0 e,
® No calibration, only use detector measurements [CERN-THESIS-2011-291] E [GeV]

® Tracker usage off above 100 GeV to avoid false matches
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Machine Learning alternatives

Inputs Matching Segmentation  Output Calibration

| Tracks+cells Calibrated cPFO
Match tracks to Match cells to

clusters tracks

Clusters + Cells Cell-only ~ Calibrated nPFO

—

task-based: end-to-end:
replace steps with ML one model, all steps

® Machine Learning models have already shown promising results under various settings
o  HyperGraphs for end-to-end pflow [Eur. Phys. J. C 83 (2023) 596]
o ongoing work on task-based solutions (matching, segmentation and calibration)
o image-based methods for calibration [ATL-PHYS-PUB-2020-018] (central barrel reconstruction, Inl<0.7)
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Machine Learning alternatives

Inputs Matching Segmentation Output /" Calibration
|

clusters |y  tracks
Clusters + Cells

\
1
1
| 1
‘Match tracks to i Match cells to I
1
1
1
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task-based: end-to-end:
replace steps with ML one model, all steps

® Machine Learning models have already shown promising results under various settings

o  HyperGraphs for end-to-end pflow [Eur. Phys. J. C 83 (2023) 596]

o ongoing work on task-based solutions (matching, segmentation and calibration)

o" " image-based methods for calibration [ATL-PHYS-PUB-2020-018] (central barrel reconstruction, In<0.7)"
= Outperform Local Hadronic Cell Weighting (LCW) calibration
=» Work well for both identification and energy calibration

=+ However, inefficient representation and do not include tracking data

o mm o = ——
—— - —
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Point cloud methods for p-flow [ATL-PHYS-PUB-2022-040]

® Focus on pion identification and energy calibration,

o first step towards hadronic shower reconstruction
® Leverage point cloud data

o only use actual hits, i.e. natural zero suppression

o naturally handle varying granularity

o naturally allow including tracking data

o easily extend to including more information (momentum, hit confidence, ...)
® Test4 Deep Learning methods for point cloud data:

o  Graph Neural Network (GNN)

o Deep Sets, Transformers, Merged Deep Fully Connected Network (DNN)
® Outline of extension to segmentation task
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Why point cloud data?

g
[ :
1 @ Image-based approaches are sub-optimal
: o different spatial granularity is difficult to render
I o only encode calorimeter information (no tracker)
| . - . .
I o irregular deposition geometries cause sparse images
: = inefficient representation
1
\
N
7
’
| @ Pointcloud representation has several advantages
|
I o represent hits as 3D points with properties
: =+ complex 3D shapes instead of series of images
1 = features like energy, hit confidence
: o including tracker is straightforward
1 o only uses actual hits
1 . .
\ »+ efficient representation
\
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[ATL-PHYS-PUB-2020-018]
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Dataset

® Hadronic showers originate primarily from pions
o 1% decay promptly to photons = EM calo
o 1 more fluctuation in energy deposit patterns [ e Asimuthal Angle istrbuton
= hadronic calorimeter

1500

® Full ATLAS simulation using Geant4

1000

® Uniform pion distributions in -
o azimuthal angle
o  pseudo-rapidity

o log true energy
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Energy Distribution
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® 10Mn% 5Mmt, 5SM .
o 3.5M training, 500k validation, 1M test S i,
after quality cuts €,
o events with exactly 1track ,
o 250 500 750 E':ml.l)[t:g!v] 1250 1500 1750 2000 0 - - pe

For illustration
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Deep Learning methods

We explored several Deep Learning methods,
only some of them shown here:

Graph Neural Networks (GNN)
Deep Sets
Transformers w ‘t > =
Convolutional Neural Networks (CNN) 3
Merged Deep Fully Connected Network
(DNN)

= image-based approaches

-----
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Learning tasks

Particle identification - classification: m° VS n*/mr

® only calorimeter information
= adding tracks makes classification obvious
® input: one topo-cluster at a time

m - ———
—— o o o = —

|
® only calorimeter information I
|
® input: one topo-cluster at a time I

P .
]
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Results

We compare ML approaches against two baselines
depending on the learning task:

classification
= Electromagnetic (=V1) scale + initial hadronic
calibration step corrections:

regression
= full Local Cell Weighting ( ) calibration,
i.e. PEM | o tadditional corrections:

13



° VS /1 classification: calo only [ATLPHYS-PUB-2022-040]
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® GNN performs best
=+ 5x background rejection
® performance increases with
higher topo-cluster energy

| Model | Rej. @ 90% Eff. for [] < 0.7 | Rej. @ 90% Eff. for [n] < 3 |

CNN 26.584

GNN 46.419 20.500
Deep Sets 24.814 7.608

PpEM 6.123 3.977

clus
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Energy regression: calo only

s T T TR TR EEEEEEEEEEEEEE N\
[ 1
: Metrics: median energy response and resolution :
| o energy response, R =E_ ./E e !
'\ o resolution, IQR = median R X 10 (16-84%)

e ML significantly better than traditional
calibrations across entire energy spectrum
=+ R closer to 1; lower IQR

e GNN is best overall

e Deep Sets better than baseline for charged
pions, especially at low-energy (<1 GeV)
=+ known weakness in conventional techniques

e ML mitigates long-standing calibration issues
o high-energy m* underestimation
o low-energy m° overestimation

[ATL-PHYS-PUB-2022-040]
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Energy regression: calo + tracker

[ATL-PHYS-PUB-2022-040]
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Next steps



Cells-to-track matching
Inputs Matching :,Segmentation‘. Output Calibration

i Tracks+cells Calibrated cPFO
Match tracks to Match cells to

- Clusters tracks
Clusters + Cells Cell-only ~ Calibrated nPFO

Truth Values - 232 activations
Truth Values - 7 activations

® Extend point cloud methods to tackle cells-to-track matching s .
o one focus track at a time ; —EEE

~— Non Focal - ID: 22
—— Non Focal - ID: 28

o8 —— NonFocal - ID:32

o  all hits within AR=0.2 (tracker + calo)
o  associate hits with track contributing the most energy (>50%)

o  PointCloud architecture [6], attempt with MaskFormers [7]
® Promising results for simple p, A decays (~1track per event)
® Trying to generalize to more challenging dijets scenarios

06

04

02

00

04
X “c«a..,,we 06
(mpy, 08 00

10

For illustration
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Conclusion

® Significant improvement in %/m* classification and energy regression
® Key findings from calorimeter-only regression:
o GNN and Deep Sets outperform traditional calibrations across all energies
o They mitigate long-standing calibration issues at the boundaries of energy values
o point cloud methods outperform image-based approaches
= and more efficient!
® Combined calorimeter and tracker regression:
o ML models surpass EM/LCW scales
o Dramatic improvement in energy resolution (IQR/median < 0.1)
o Pointcloud advantage increases at high energies (> 30 GeV)
o Granular cell-level data further enhances results
® Outlook: Promising step towards ML-optimized Particle Flow in ATLAS
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Global MLP

ydeary pajepdpy

Graph Neural Network o G B
[Stovats ]
Architecture B
§| Fumml]
: . E N\
® 4 GNN blocks with Multi-Layer Perceptrons (MLP) _\ —
® Message passing to learn hidden representation
o update edges: X )= feageXs X -,
o update nodes: X' = FroogeXi ZjeniX )
® Graph-level features as function of node embeddings:
g’/‘ = fgloba/(g: Z/ENXy
@ Global features concatenated with input for classification
® Simultaneous classification and regression tasks -

Components .
(

® Cells are nodes, neighboring cells connected by edges
® Node features: energy sampling layer n, An, ¢, Ag, r; C
® Edge features: type of connection
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[ATL-PHYS-PUB-2022-040]

(b) GNN Model
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Deep Sets

Clusters Observable
of cells
Per-particle Event
ReDresentation Representation
Latent Space

/@
\ |

Particle Flow Network

Set of M cells per cluster

Cell 1 CellM

Dense100 Dense100

Dense100 Dense100

Dense 128 Dense 128

Latent Space Operation
Dense100

Dense100

Dense100
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Convolutional Neural Networks (CNN)

(rebinned to EMB2)

@ pixels are bidimensional projections of cell

baricenters Conv2D x2 Conv2D x2 Conv2D x2
® pixel intensity reflects energy deposit MaxPool2D MaxReolel WexE aoizp
@ considers calo layers separately to account for Conv2D x2 Conv2D x2 Conv2D x2
different granu| arity MaxPool2D MaxPool2D MaxPool2D
o EMB1alone Conv2D x2 Conv2D x2 Conv2D x2
o EMB2, EMB3 together MaxPool2D MaxPool2D MaxPool2D
o Tilel, Tile2 and Tile3 together Flatten Flatten
. . Dense 128 Dense 128 Dense 128
Calorimeter Layer | (An, A¢) Granularity .
EMBI1 128 x 4
EMB2 16 x 16 Concatenate
EMB3 8 x 16
Tilel 4 x4 Dense 64
Tile2 4 x4
Tile3 2x4
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Merged Deep Fully Connected Neural Networks (DNN)

calo image
e image-based approach
o EMB1alone
o EMB2, EMB3 together
o Tilel, Tile2 and Tile3 together

tracker info

AAA
AA

e 3 fully connected hidden layers
® 50 nodes in each hidden layer
® outputs calibrated energy values

50 nodes

50 nodes

50 nodes
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PointNet model

l— PointNet
v

;}' mug? ™ N ‘
TNl table? et
) & :
car?
Classification Part Segmentation ~ Semantic Segmentation

i Several learning tasks: classification, part
segmentation, semantic segmentation

1 permutation invariant

ifr transformation equivariance

1@ both shape classification & segmentation

i robust to data corruption = critical points

Classification Network

inpu{ m]p(64,64) R feature — m]p(64,128,1024) SO max s e

“input points

nx3

mlp

transform transform pool ;54 (512,256,k)
< <
—{ % Shated E — — E shared nx1024

T-Net

|."2‘"5'b"“ :

global feature

k

3x3

n|x 1088

nx128

shared shared

—

nxm

. mlp (512,256,128) mlp (128,m)
Segmentation Network

I® no local context — global feature learning
I@ generalization to unseen scenes — global features
depend on absolute coordinates

I® no rotation/shape equivariance
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Calo + track results using cell-level information

® Severall GNN Conﬁgurations attempted % === GNN, no edges (Leading cluster, no cells) 1

ge] 0.1 4- == == GNN (Leading cluster, no cells) -

é} F ==== GNN, no edges (Leading cluster, with cells) 1

) Leadining cluster onIy VS all clusters < 0 12_ === GNN (Leading cluster, with cells) ]

(S r === GNN, no edges (All clusters, no cells) 1

—~ === GNN (All clusters, no cells)

O With VS w/o edges % 0.10F"""" GNN, no edges (All clusters, with cells) -

I) ’ r === GNN (All clusters, with cells) k

1] L .

o  With VS w/o cell info § 0.08F |

® GNN with cell-level data (red, light 2 - 1

o L .

blue) improves resolution compared to 0.06;  ATLAS Simulation Preliminary ’

versions trained without this [ Single m* — .

. . 0.04- Regression Comparison P T ]

information under several [ ]

configurations 0.02- ]
0.00 100 107 102 103

Truth Particle Energy [GeV]
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