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Intro

• Top quark decay products can be used to learn about top spin or top pair spin correlations
→ use these correlations to study the fundamental features of quantum mechanics              
    (entanglement, Bell’s theorem) at the LHC
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tt spin correlations
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tt spin correlations
• The angular differential cross-section (for dilepton decay):

– q+(q-) - direction of positive (negative) lepton in its parent top (antitop) quark rest frame

→ Overall, 15 coefficients fully characterising the spin information in tt production

• Orthonormal helicity basis typically used → axes k,n,r

C – spin correlation matrix (3x3)B+- - top/antitop spin polarization vectors
       (2 x 3 components)   

• Coefficients can be determined by measuring cos(Q)a+/- angles (angle between q+/- and 

quantized axis ‘a’): 
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Measurements of tt spin correlations at 8 TeV

Full spin density matrix measured at 8 TeV:
• All 3 dilepton channels
• Neutrino-weighting kinem. reconstruction
• Various unfolded cos(Q)a

+/- distributions used 
to obtain the correlation coefficients

• Results provided for both parton/particle level 

JHEP 03 (2017) 113

3-5%

9-19%6-14%

https://link.springer.com/article/10.1007/JHEP03(2017)113
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Measurements of tt spin correlations at 13 TeV

• Just partial Run 2 dataset used

• only Df(l+,l-) distribution measured

• Template fit to determine amount of correlations             
 compared to SM (SM: fSM = 1.0)

– Also as a function of m(tt)

• A bit higher correlations than expected by Powheg
– The difference smaller for NNLO prediction

EPJ C 80 (2020) 754

https://link.springer.com/article/10.1140/epjc/s10052-020-8181-6
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Quantum entanglement
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Quantum entanglement in top quark pairs

• Entanglement: quantum state of one particle cannot be described independently from 
another particle→ there are stronger correlations than classical system would exhibit

– A typical example:  a system of two fermions in a spin-singlet state

• at the LHC we cannot control the initial state (no pure state)→ mixed state
– described in general by density matrix (r)

• e.g. for two top quarks → spin density matrix  
– entanglement can be characterized by their spin correlations magnitude

observed 
“here”

affected 
“over there”
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Quantum entanglement conditions
• A quantitative measure of the entanglement: concurrence C[r] of the spin density matrix r:

– Sufficient and necessary condition for entanglement: C[r] > 0
EPJ Plus (2021) 136:907

high m(tt) and Q ~p/2 
→ high pT

low m(tt): 

• Dominant contribution: gg fusion with tops in spin singlet state 

• The sufficient condition obtained with spin correlation matrix:  Tr[C] < -1

m
(tt

) [
G

eV
] 

https://epjplus.epj.org/articles/epjplus/abs/2021/09/13360_2021_Article_1902/13360_2021_Article_1902.html
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Entanglement observable (D)
• Entanglement can be observed using D observable

– can be obtained from the differential distribution:

j: angle between the two lepton directions measured in their parent top quark and 
antiquark rest frames

• Entanglement condition: Tr[C] < -1  → translates to D < -1/3

• Crucial to measure D at low invariant mass m(tt)

entangled state

non-entangled state

D=−3 ⟨cosφ⟩

EPJ Plus (2021) 136:907

Upper cut on m(tt) [GeV] 

https://epjplus.epj.org/articles/epjplus/abs/2021/09/13360_2021_Article_1902/13360_2021_Article_1902.html
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The event selection: dilepton channel
As minimum cuts as possible:
• Require 1 electron and 1 muon:   pT > 25 – 28 GeV  (|eta| < ~2.5)
• Opposite-sign electric charge of leptons
• No cut on missing transverse momentum 
• ≥ 2 jets with pT > 25 GeV

– ≥ 1 b-tagged jet (85% efficiency)

→ About 1.1M events after full event selection
• ~90% purity of top-quark pair signal 
• Dominant backgrounds: single top (60%), fakes (30%)

– All but ‘fakes’ (data-driven) estimated by simulation
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Top quark pair reconstruction

• A combination of various methods used:
– Main method: ‘Ellipse’ method (85% effic.)

• Analytically calculate two ellipses for pT(n)        
and find intersections 

– If ‘Ellipse’ fails→‘Neutrino Weighting’ method (5%)
• Scans h(n), h(n) phase-space
• Solutions weighted based on compatibility 

between pT of neutrinos and missing pT

– If both methods fail: simple pairing of leptons with 
the closest b-jets (10%)

• Use highest-pT jet if only 1 b-tagged jet

• Reconstruction of top quarks momenta complicated due to 2 neutrinos
– Several methods were developed before, using m(top) and m(W) as constraints 

NIM A 736 (2014) 169-178

https://www.sciencedirect.com/science/article/abs/pii/S0168900213014204?via%3Dihub
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Reconstructed cos j: validation regions

• Data agree with predictions

380 < m(tt) < 500 GeV: m(tt) > 500 GeV:

• Sample divided into 3 regions based on m(tt):
– Signal region: 340 GeV < m(tt) < 380 GeV
– 2 validation regions: 
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Reconstructed cos j: signal region

• The reconstructed value of observable D is below predictions
– More details in backup 

340 < m(tt) < 380 GeV:



15

Correction to particle level: calibration curve

• The measured data (reconstructed level) are corrected to the truth (particle) level 
– The particle level cuts are similar to reconstructed level

• Calibration curve created by reweighting simulation based on truth D value

No entanglement
Entanglement
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Systematic uncertainties
• For each systematic uncertainty: create a new calibration curve
• 3 main categories:

– Signal modelling → dominant
• main component: top quark decay (1.6%)

– Background modelling: Z → tt dominant (0.8%)
– Object reconstruction
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Observable ‘D’ in validation regions

• measured ‘D’ in validation regions:
380 < m(tt) < 500 GeV:

m(tt) > 500 GeV:
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‘D’ in signal region

• Measured ‘D’ in signal region:

• Measured value significantly (>> 5 standard deviations) below entanglement limit    
   (−0.322 ± 0.009 for Powheg+Pythia 8) → observation of entanglement

Nature 633 (2024) 542

https://www.nature.com/articles/s41586-024-07824-z
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Conclusion

• ATLAS experiment observed quantum entanglement using top-quark pairs
– tt modelling limiting factor in a few areas  
– hopefully such measurements stimulate a progress 

• Up to ~20 times more data expected with full LHC program 
→ just a beginning of era of quantum information measurements at LHC

• e.g. can study systems of different particles, test Bell inequalities



Roman Lysák
lysak@fzu.cz

Thank you 

This work was supported by EU and MEYS Project: 

    FORTE: CZ.02.01.01/00/22_008/0004632



21

BACKUP



22

tt spin correlations
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Spin-correlations at 8 TeV
• Examples of reconstruction level plots and unfolded plot JHEP 03 (2017) 113

https://link.springer.com/article/10.1007/JHEP03(2017)113
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Spin-correlations predictions at 8 TeV
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Df(l+,l-) at 13 TeV
• Comparison of data to various (fixed-order) predictions: 

EPJ C 80 (2020) 754

https://link.springer.com/article/10.1140/epjc/s10052-020-8181-6


26

Df(l+,l-): NNLO comparisons
Phys. Rev. Lett. 123, 082001 (2019)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.082001
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Quantum entanglement
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Monte-Carlo simulated samples
• tt signal modelling: 

– Nominal sample: PowhegBox (v2,hvq), hdamp=1.5*m(top)
– Alternative: PowhegBox-RES (bb4l)

• Includes off-shell and non-resonant effects
– Alternative parton-shower sample: Powheg(v2) + Herwig 7.21 (default tune)

• Background processes modelling:
– Single-top quark, tW-channel: PowhegBox(v2); 5FS,DR schemes
– tt+X(X=W,Z): MadGraph5_aMC@NLO 2.3.3
– tt+H: PowhegBox(v2), 5FS 
– W/Z + jets: Sherpa 2.2.11, including off-shell effects, NNPDF3.0NNLO

• @NLO in QCD for ≤ 2 additional partons and @LO for ≤ 5 partons
– VV(V=W,Z): Sherpa 2.2.2, NNPDF3.0NNLO

• @NLO in QCD for ≤ 1 parton and @LO for ≤ 3 partons
– Fakes: data driven

• Typically:
– precision of the modelling: NLO in QCD
– for ME generations: NNPDF3.0NLO PDF
– for parton shower: Pythia 8.230, A14 tune, NNPDF2.3LO 
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Reweighting of cos(phi) distribution
• The effects of quantum entanglement are fundamental to the calculations in the MC 

generators and cannot be easily changed

• However, the effects of entanglement can be directly accessed via the observable D in the 
event

• Each events is reweighted according to its parton level value of cos  in order to change         𝜑
    = −3· cos 𝐷 ⟨ 𝜑⟩

– m(tt)  is taken into account to preserve linearity in cos 𝜑

w=
1−D (mt t̄)⋅χ⋅cosφ
1−D (mt t̄ )⋅cosφ

χ=0.4 ,0.6 ,0.8 ,1.2
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Calibration curve in signal region
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Systematic uncertainties
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Signal modelling systematics uncertainties
• Top-quark decay: nominal vs. Madspin decay 
• Recoil scheme: different schemes where partons recoil against b-quark vs. top-quark
• FSR: change by x2 or ½  the mR for emissions from the parton shower
• Scales: change the mR and mF by factor 2 or ½ 
• pThard: Powheg parameter which regulates the definition of the region of phase-space that is vetoed 

in the showering when matched to a parton shower (nominal vs. pThard=1)
• ISR: using the Var3c up/down variants of the A14 tune
• hdamp: hdamp is a resummation damping factor that controls the matching of ME to PS and thus 

effectively regulates the high- T radiation against which the t𝑝 t system recoils (1.5*m(top) vs. 3*m(top))
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Parton shower and hadronization effects
• Large difference between Powheg+Pythia 8 and Powheg+Herwig 7 in signal region

– difference at particle and reco. level, while similar at parton level
– Two main differences in models: 

• hadronisation model (Lund-string vs. cluster model)
• shower ordering (pT-ordered vs. angular-ordered shower)

• the majority of the differences seem to originate from the different ordering in the parton shower
• The treatment of spin effects in MC generators combining the ME with PS requires special 

attention for future higher-precision quantum information studies
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Threshold effects
• Non-relativistic threshold (bound state) effects change the m(tt) dependence 

of the tt cross section
– Also EWK corrections can have an effect (e.g. virtual Higgs correction)
– These are not included in MC generators

non-relativ. QCD
non-relativ. QCD + 

NLO QCD

• missing effects were tested by introducing them with an ad hoc reweighting of the       
  Monte Carlo based on theoretical predictions →  the effect was found to be 0.5%

– Main impact: change the line shape of the m(tt) → similar systematics with larger effect
 

EPJ C 60 375-386,2009

https://arxiv.org/abs/0812.0919
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What is quantum entanglement?

• For a pure quantum state, the general form of the wave function:
– For the simplest case of two spinless particle moving along the line

• The quantum state is separable if wave function can be written as:

• If the state is not separable → entangled state

• Phenomenon when quantum state of one particle cannot be described independently 
from another particle

→ there are correlations between observed physical properties of both particles
→ measurement of one particle influence other particle entangled with it

affected 
“over there”

observed 
“here”
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Quantum entanglement for two qubits
• Basic entanglement definition can be generalized also to what are called mixed states

– Mixed states describe classical statistical mixtures of pure states
• e.g. at the LHC we cannot control the initial state → mixed state

– Mixed states described in general by ‘density matrix’ (r)

• A typical example of entanglement is provided by two qubits
– qubit = a quantum system with two possible states 
– e.g. two particles with ½ spin

• entanglement is characterized by their spin correlations
 

• The most general density matrix describing two qubits: 

– The state is described by 15 parameters Bi
±, Cij

– In case of two particles with ½ spin:
• Bi

±: individual spin polarizations
• Cij: spin correlation matrix

I4, I2: unit (4x4), (2x2) matrices
si,j: Pauli matrices 
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A measure of quantum entanglement

• The Peres-Horodecki criterion is a necessary condition for entanglement in bipartite 

systems of dimension 2 × 2

• A quantitative measure of the degree of entanglement is obtained by ‘concurrence’ C[r]:

– li: eigenvalues of the matrix 

– 0 ≤ C[r] ≤ 1 

• Quantum state is entangled if and only if C[r] > 0 
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Entanglement for different tt initial states

gg → tt qq → tt
EPJ Plus (2021) 136:907

https://epjplus.epj.org/articles/epjplus/abs/2021/09/13360_2021_Article_1902/13360_2021_Article_1902.html
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Quantum discord, steering
• Quantum discord: 

– Most basic form of quantum correlations
– more general than entanglement → stronger robustness

• Quantum Steering:
– measurements on one subsystem can be used to “steer” the other one

Phys. Rev. Lett. 130, 221801 (2023)

Diagonal elements 
of correlation matrix 
in the beam basis: 

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.221801
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Possible future measurements
• Other measurements of various quantum information concepts at colliders are possible          

in the future, e.g.

– test Bell inequalities in tt production (Quantum 6 (2022) 820)

– perform tests in other system of particles
• e.g. test Bell inequalities in Higgs boson decays H → WW (Phys. Lett. B 825 (2022) 136866) 

Quantum 6 (2022) 820
tt production, concurrence:

CHSH violation limit:

https://quantum-journal.org/papers/q-2022-09-29-820/
https://www.sciencedirect.com/science/article/pii/S0370269321008066?via%3Dihub
https://quantum-journal.org/papers/q-2022-09-29-820/
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