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Abstract

Differential two-particle normalized cumulants (R2) and transverse momentum correlations (P2)
are measured as a function of the relative pseudorapidity and azimuthal angle difference (∆η ,∆ϕ)
of charged particle pairs in minimum bias pp collisions at

√
s = 13 TeV. The measurements use

charged hadrons in the pseudorapidity region of |η | < 0.8 and the transverse momentum range
0.2 < pT < 2.0 GeV/c in order to focus on soft multiparticle interactions and to complement prior
measurements of these correlation functions in p–Pb and Pb–Pb collisions. The correlation func-
tions are reported for both unlike-sign and like-sign pairs and their charge-independent and charge-
dependent combinations. Both the R2 and P2 measured in pp collisions exhibit features qualitatively
similar to those observed in p–Pb and Pb–Pb collisions. The ∆η and ∆ϕ root mean square widths
of the near-side peak of the correlation functions are evaluated and compared with those observed in
p–Pb and Pb–Pb collisions and show smooth evolution with the multiplicity of charged particles pro-
duced in the collision. The comparison of the measured correlation functions with predictions from
PYTHIA8 shows that this model qualitatively captures their basic structure and characteristics but
feature important differences. In addition, the RCD

2 is used to determine the charge balance function
of hadrons produced within the detector acceptance of the measurements. The integral of the balance
function is found to be compatible with those reported by a previous measurement in Pb–Pb colli-
sions. These results, which are sensitive to the interplay between the underlying event and mini-jets
in pp collisions, establish a baseline for heavy-ion collisions.

*See Appendix A for the list of collaboration members
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1 Introduction

Understanding the mechanisms involved in the production of particles in collisions of heavy nuclei and
their subsequent interactions in the medium created in the collision is an important aspect of the physics
programs of the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Mea-
surements carried out in the last two decades indicate that a new form of matter, consisting of deconfined
quarks and gluons and known as quark–gluon plasma (QGP), is produced in collisions of large nuclei
(e.g., Au and Pb) at the very high energies available at these facilities. Evidence for this new form of
matter arises in part from measurements of nuclear modification factors which indicate that the matter
produced in these collisions is rather opaque to the propagation of high momentum partons [1–10]. Also,
observations of collective behavior suggest that the matter formed is strongly interacting and features a
nearly vanishing specific shear viscosity [11–17].

Recently, there has been great interest in investigating whether such opaque matter can be produced in
small collision systems, such as pp and p–Pb collisions. There are a variety of techniques used for such
investigations, which include attempts to identify jet quenching relative to the system geometry and ef-
forts to identify collective flow based on multiparticle correlations [18, 19]. In parallel with these investi-
gations, it is also of interest to determine how the particle production evolves from small to large collision
systems [20]. Transverse momentum spectra of produced particles are evidently a prime source of such
information. However, it is also found that measurements of differential particle correlations bring ad-
ditional information for the understanding of the production of hadrons and their interactions in small
and large collision systems. Among these, measurements of number (R2) and transverse momentum
(P2) two-particle correlation functions have been already explored in p–A and A–A collisions [21–23].
Furthermore, the measured balance function in pp, p–A, and A–A collisions as a function of multiplic-
ity presents considerable challenges to the leading models used in heavy-ion physics [23]. It is thus of
interest to find out whether measurements of these correlation functions in pp collisions can similarly
challenge the leading models used towards the description of particle production in small systems.

Recent measurements of R2 and P2 have played an important role in independent verification of the col-
lective nature of azimuthal correlations observed in Pb–Pb collisions [24, 25]. Both the R2 and P2 corre-
lation functions are indeed sensitive to the presence of collectivity and may contribute to further elucida-
tion of this phenomenon in small systems relative to that observed in larger systems [20, 26]. Moreover,
prior measurements have also revealed distinct differences in the dependence on ∆η (≡ η1 −η2) and
∆ϕ (≡ ϕ1 −ϕ2), where η and ϕ are pseudorapidity and azimuthal angle of particles 1 and 2, for R2 and
P2 correlation functions. The findings indicate that the near-side peak of both charge-independent (CI)
and charge-dependent (CD) correlations in P2 is notably narrower than in R2, regardless of the centrality
(collision impact parameter) [27] of Pb–Pb collisions [21]. This further supports the idea put forth in
Ref. [28] that a comparative analysis of R2 and P2 correlation functions can offer increased sensitivity to
the underlying mechanisms governing particle production in small as well as large collision systems.

The new measurements reported in this work are also designed to enable a better understanding of par-
ticle production processes underpinning the underlying event of pp collisions, and more specifically the
particle production mechanisms involved in soft multiparticle production and the low transverse momen-
tum components of jets [29]. Measurements in pp are also of interest to study the evolution of these
correlation functions with the system size and their compatibility among the different collision systems
at similar charged particle multiplicities. Thus, one of the main goals of this work is to provide additional
information about the shape and magnitude of the correlation functions in the smallest hadronic collision
systems. Consequently, this study is an important extension of recent measurements of these correlation
functions in p–Pb and Pb–Pb collisions by the ALICE Collaboration [21]. The results involve measure-
ments of the R2 and P2 correlation functions, and their characteristics, for CI and CD combinations of
charged particles. These are compared with PYTHIA8 predictions to verify whether this model is ca-
pable of providing a reasonable description of correlated particle production in small collision systems.
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Furthermore, inclusive charge balance function in pp collisions was measured. Charge balance functions
have been exploited primarily in collisions of heavy nuclei to identify the presence of an extended pe-
riod of isentropic expansion in these systems [23], but recent theoretical works also indicate that they
enable the estimation of the diffusivity of light quarks and may also serve in the determination of QGP
susceptibilities [30, 31].

This paper presents a comparative analysis of R2 and P2 correlation functions measured in pp collisions at
a center-of-mass energy

√
s = 13 TeV. As in prior analyses of p–Pb and Pb–Pb collisions [21, 24], the two

correlation functions are first measured for like-sign (LS) and unlike-sign (US) charged particle pairs.
These are then combined to CI and CD correlation functions, as described in Sec. 2. These correlations
are characterized by their azimuthal and longitudinal widths and compared with characteristics of R2 and
P2 correlation functions measured in larger collision systems.

The article is organized as follows. The correlation functions, R2 and P2, and their LS, US, CI, and CD
components are defined in Sec. 2. Section 3 presents a summary of the data taking conditions as well as
the various technical details of the analysis, including event and track selection criteria, efficiency correc-
tion, quality tests, etc. The basic configuration of the Monte Carlo (MC) model used for quality control
and towards the interpretation of the measured data is briefly described in Sec. 4. Section 5 presents a
discussion of the techniques used for the estimation of the statistical and systematic uncertainties. The
experimental results are presented in Sec. 6 where they are compared with PYTHIA8 predictions. A
summary is provided in Sec. 7.

2 Definitions of observables

Particle number and transverse momentum correlations are reported based on R2 and P2 [28, 29] defined
in terms of single- (ρ1) and two-particle (ρ2) densities

ρ1(ηj,ϕj) =
d2N

dηjdϕj
, (1)

ρ2(η1,ϕ1,η2,ϕ2) =
d4N

dη1dϕ1dη2dϕ2
, (2)

where η j, ϕ j ( j = 1,2) are the pseudorapidities and azimuthal angles of particles 1 and 2, respectively.

The number correlation function, R2, is formulated as a two-particle cumulant normalized by the product
of single-particle densities according to

R2(η1,ϕ1,η2,ϕ2) =
ρ2(η1,ϕ1,η2,ϕ2)

ρ1(η1,ϕ1)ρ1(η2,ϕ2)
−1, (3)

whereas the dimensionless transverse momentum correlation function, P2, is defined as the ratio between
⟨∆pT∆pT⟩ and the square of the mean transverse momentum, ⟨pT⟩. This can be expressed as follows

P2(η1,ϕ1,η2,ϕ2) =
⟨∆pT∆pT⟩(η1,ϕ1,η2,ϕ2)

⟨pT⟩2 . (4)

The ⟨∆pT∆pT⟩ differential correlation function is defined as

⟨∆pT∆pT⟩(η1,ϕ1,η2,ϕ2) =

∫ pT,max
pT,min

∆pT,1∆pT,2 ρ
′
2(p⃗1, p⃗2) dpT,1dpT,2∫ pT,max

pT,min
ρ

′
2(p⃗1, p⃗2) dpT,1dpT,2

, (5)

in which ρ
′
2(p⃗1, p⃗2) is analogous for ρ2, but is expressed as a function of the momenta p⃗1 and p⃗2 of the

particles constituting the pair instead of their η and ϕ . Here, pT,min and pT,max specify the transverse
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momentum range of the measurement. The quantities ∆pT,i = pT,i −⟨pT⟩, where i = 1,2, are deviations
from the average transverse momentum calculated as follows

⟨pT⟩=
∫ pT,max

pT,min

ρ1pTdpT/
∫ pT,max

pT,min

ρ1dpT. (6)

By construction, both R2 and P2 are robust observables to first order. Their magnitude remains insensitive
to particle losses (i.e., detection inefficiencies) provided that these inefficiencies exhibit only modest
dependence on kinematic variables, assuming the efficiency is uniform across the pT acceptance of the
measurement. Furthermore, both observables are dimensionless and their magnitude can be used as
reliable measure of the degree of correlation between the produced particles. However, P2 explicitly
incorporates deviations of particle momenta to the mean and is therefore sensitive to the “hardness" of
the correlations. This means it can distinguish whether correlated particle pairs involve soft–soft or hard–
hard interactions, i.e., both particles below ⟨pT⟩ or both above ⟨pT⟩. It can also identify soft–hard pairs,
where one particle has a pT below the mean and the other above. Additionally, it is important to note
that the relative magnitudes of contributions from soft–soft, hard–hard, and soft–hard combinations may
change as a function of the (∆η ,∆ϕ) pair separation. One expects, for instance, that particle correlations
within jets should yield a preponderance of hard–hard correlations near the core (thrust axis) of a jet.
However, soft–hard dominance is expected for pairs involving one particle near the thrust axis and one
emitted at a large angle relative to that axis. This implies that P2 features an added sensitivity to the
angular ordering of particle production in jets as well as in resonance decays [29]. The scaling properties
of R2 and P2 with system size have been described in Ref. [28].

In this work, the correlation functions R2 and P2 are reported as functions of ∆η and ∆ϕ by averaging
their magnitude across the pair average pseudorapidity η̄ ≡ 1

2(η1 + η2) and average azimuthal angle
ϕ̄ ≡ 1

2(ϕ1 +ϕ2) acceptance, according to

O(∆η ,∆ϕ) =
1

Ω(∆η)

∫
Ω

O(∆η , η̄ ,∆ϕ, ϕ̄)dη̄dϕ̄. (7)

Here, O(∆η ,∆ϕ) is either R2(∆η ,∆ϕ) or P2(∆η ,∆ϕ). The variable Ω(∆η), which depends solely on the
∆η , represents the width of the acceptance in η̄ at a given value of ∆η and ∆ϕ [32]. Furthermore, R2
and P2 are determined for ∆ϕ modulo 2π and shifted by −π/2 for convenience of representation in the
figures.

The measured densities ρ1 and ρ2 are directly impacted by detection inefficiencies. Given that these
differ for positively and negatively charged particles at given values of η and ϕ , benefiting from the
robustness of R2 and P2 correlation functions requires these to be measured independently for pairs of
(+,+), (−,−), (−+), and (+,−) charged particles. Correlation functions for (+−) and (−+) pairs are
then averaged to yield US correlation functions, OUS ≡ 1

2 [O
+−+O−+], and correlation functions of pairs

(++) and (−−) are averaged to yield LS correlation functions, OLS ≡ 1
2 [O

−−+O++]. In turn, OUS and
OLS correlation functions are combined into CI and CD correlation functions according to

OCI =
1
2
[
OUS +OLS] , (8)

OCD =
1
2
[
OUS −OLS] . (9)

The CI functions measure the average of correlations between all charged particles, whereas the CD
observables are sensitive to the difference of US and LS pairs and are thus largely driven by charge
conservation effects.
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The width σΩ of the near-side peak of R2 and P2 correlation functions of CI and CD pair combinations
is calculated along the ∆η and ∆ϕ axes with the procedure already used in prior ALICE studies [21]

σΩ =

(
∑i[O(Ωi)−T ]Ω2

i

∑i[O(Ωi)−T ]

)1/2

, (10)

where i iterates over the bins, and T is an offset or threshold value. Offsets are considered to prevent
width values that are determined simply by the detector acceptance. In order to calculate the width
along ∆ϕ , offsets are estimated by averaging three narrow ∆ϕ intervals near the minimum of the ∆ϕ

distribution. On the other hand, while evaluating the width along ∆η , offsets are determined close to
the edge of the acceptance, approximately at ∆η ≈ 1.6. Since the correlation vanishes for large |∆η |
values in the case of RCD

2 , a null offset is used, which results in the exclusion of contributions from the
unobserved part beyond the acceptance [21].

The balance function (B) [33] of charged particles is also measured in minimum bias pp collisions. It is
computed according to

B(∆η ,∆ϕ)≡
〈 d2Nch

dηdϕ

〉
×RCD

2 (∆η ,∆ϕ) , (11)

which applies when densities (yields) of positively and negatively charged particles are approximately
equal [34, 35]. In addition, the integral of the charge balance function, IB, is calculated according to

IB =
∫ dηmax

dηmin

∫ dϕmax

dϕmin

∫ dpT,max

dpT,min

B(∆η ,∆ϕ)dηdϕdpT. (12)

The integral of B in pp collisions is compared with previously published results in Pb–Pb collisions [36].
This comparative study provides insights into how the charges are balanced and produced in both pp and
Pb–Pb collisions.

3 Datasets and experimental method

Results reported in this work are based on an analysis of 4.4×108 minimum bias (MB) pp collisions at√
s = 13 TeV collected by the ALICE detector during the Run 2 data taking campaign in 2018. The MB

trigger selects collisions with at least one hit in both the V0A and V0C detectors, which are scintillator
arrays covering the pseudorapidity ranges 2.8 < η < 5.1 and −3.7 < η <−1.7, respectively. Moreover,
to minimize instrumental effects and maintain approximately uniform acceptance and efficiency as a
function of pseudorapidity, only events having a reconstructed primary vertex (PV) within ±8 cm from
the nominal center of the ALICE detector along the beam direction are considered in the analysis. Pile-
up events involving multiple reconstructed vertices are rejected using offline algorithms [37]. Charged
particle tracks included in this analysis were reconstructed using the Inner Tracking System (ITS) and
the Time Projection Chamber (TPC) detectors. The design and performance of the V0, ITS, and TPC
detectors are reported in Refs. [38–40].

The analysis is limited to charged-particle tracks reconstructed within the pseudorapidity range |η |< 0.8
and the transverse momentum interval 0.2 < pT < 2.0 GeV/c to emphasize particle production gov-
erned by non-perturbative soft quantum chromodynamics (QCD) processes. The analysis includes se-
lection criteria to suppress secondary charged particles (i.e., particles originating from weak decays,
γ-conversions, and secondary hadronic interactions in the detector material) and fake tracks (random as-
sociations of space points). The used track parameters are obtained by the Kalman filter at the collision
primary vertex. Tracks of particles originating from weak decays of K0

S and Λ0 and other secondaries
are suppressed based on a pT-dependent selection on the distance of closest approach (DCA) of charged
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particle trajectories to the PV [41]. Electrons and positrons are rejected based on their specific energy
loss (dE/dx) measured within the TPC. Good track quality is assured by retaining only tracks with more
than 70 reconstructed TPC space points, out of a maximum of 159 and a momentum fit with a χ2-value
per degree of freedom less than 2.0. In order to increase the track quality and further suppress tracks
produced in pile-up of collisions occurring within the long TPC readout time, the selected tracks are
required to have a combined refit in both the ITS and the TPC and at least one hit in the innermost part
of the ITS.

Equations 1– 7 are used to obtain the R2 and P2 correlation functions as discussed in the previous
section. Given that the accuracy of R2 and P2 may be impacted by pT-dependent inefficiencies, both
R2 and P2 correlation functions are explicitly corrected for such dependencies [28]. The efficiencies are
determined using Monte Carlo simulations of pp collisions based on the PYTHIA8 [42] event generator
and the GEANT4 [43] transport code, as explained in detail in Sec. 4.

4 Monte Carlo model studies

Monte Carlo (MC) simulations of pp collisions at
√

s = 13 TeV generated with PYTHIA8 [42] are used to
determine efficiency correction factors, evaluate the performance of the analysis procedure (also known
as closure test), and produce the correlation functions compared with the experimental data in Sec. 6.
The PYTHIA8 event generator is based on a QCD description of quark and gluon interactions at the
leading order (LO) and uses the Lund string fragmentation model [44] for high-pT parton hadronization.
The production of soft particles (i.e., the underlying event) is handled through fragmentation of mini-jets
from initial and final state radiation, as well as multiple parton interactions [45]. The calculations are
performed with the Monash 2013 tune of PYTHIA8 running in minimum-bias mode, with soft QCD
processes and color reconnection turned on [42].

Single particle detection efficiencies are estimated based on the ratio of detector and generator levels
single particle yields obtained with PYTHIA8. Reconstructed (REC) level yields are obtained by prop-
agating PYTHIA8 events through a model of the ALICE detector with GEANT4 and reconstructing the
simulated events with the same software used for real data. Generator (GEN) level yields are obtained
directly from the primary particles produced by PYTHIA8, without including efficiency losses or resolu-
tion smearing. Subsequently, tracking efficiency corrections are applied to both single- and two- particle
pairs; these corrections cancel to first order in the calculations of R2 and P2.

A MC closure test is also carried out based on simulated PYTHIA8 events processed with GEANT4 and
the full ALICE reconstruction of R2 and P2 correlation functions. The REC calculations are compared
with correlation functions obtained at the GEN level to identify possible biases in the experimental
determination of these measurements. Differences between reconstructed and generator level R2 and P2
correlation functions are found to be of the order or smaller than 1%. These differences, though modest,
are conservatively added in the evaluation of systematic uncertainties discussed in the next section.

Furthermore, small particle losses are caused by momentum resolution near the edges of the acceptance:
when charged particles from the generator level pass through GEANT4, a slight shift in η and pT due
to resolution effects could move these particles outside of the acceptance, leading to particle loss. This
was addressed by excluding particles from the MC model that fell outside the acceptance and comparing
the results with those obtained using the default approach, in which those particles were retained. The
resulting difference was assigned as a part of the systematic uncertainty.

5 Determination of statistical and systematic uncertainties

Given the fact that the statistical uncertainties of the correlation functions are highly correlated, the final
statistical uncertainties are estimated with the sub-sample method [46]. Overall, eleven data samples,
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Table 1: Sources of systematic uncertainties.

Parameter Default Variation
DCAxy,z(cm) 0.2 0.1

Track selection Global tracks tracks reconstructed based only on TPC information
Tracking efficiency With Without

Magnetic field polarity (T) +0.5 -0.5
No. of TPC space points >70 >90

Particle loss With Without
Track pile-up Removed Included
Event pile-up Removed Included

Table 2: Maximum systematic uncertainties of the correlation functions and their sources for projections.

Correlator Category Source Maximum systematic uncertainties (%)

RCI
2 ∆ϕ

∆η

Tracking efficiency
Tracking efficiency

0.13
0.19

PCI
2 ∆ϕ

∆η

MC closure test
MC closure test

0.03
0.04

RCD
2 ∆ϕ

∆η

MC closure test
MC closure test

0.03
0.04

PCD
2 ∆ϕ

∆η

No. of TPC spcae points
DCAxy,z

0.0013
0.0008

obtained by splitting the full data sample collected during the 2018 period, are used in the analysis
separately. Their weighted mean constitutes the final result and the standard deviations from the mean
are used to estimate the statistical uncertainties on the amplitude of the correlation functions.

Systematic uncertainties are estimated by repeating the analysis with modified event and charged-track
selection criteria for LS, US, CI, and CD pairs separately. The criteria are varied individually to assess
their impact on the measured correlation functions and their characteristics. As discussed in Sec. 4,
a correction for the tracking efficiency is applied in the default analysis procedure. To estimate the
systematic uncertainty due to possible imperfections in the description of the tracking efficiency, the
analysis was repeated without applying this correction. A similar approach is applied to estimate the
systematic uncertainty due to the correction for particle loss. As a cross check that no bias is introduced
by the pile-up rejection at the event and track selection levels, the analysis was repeated without pile-up
removal and a negligible effect on the results was found. The different selection criteria used to estimate
the systematic uncertainties are described below and listed in Tab. 1. The Barlow criterion [47] is used
to assess the statistical significance of differences observed when changing the selection criteria relative
to the nominal analysis. Total systematic uncertainties are estimated by assuming that the different
sources are independent: contributions from the various sources are summed in quadrature to obtain
the total systematic uncertainties on the amplitude of the R2 and P2 correlation functions, as well as
quantities derived from these. The maximum contributions of systematic uncertainties and their sources
are presented in Tab. 2 and 3 for the projections and widths of the correlation functions, respectively.

Tracking efficiency contributes the most to the systematic uncertainties for projections of RCI
2 along ∆η

(∆ϕ), which is roughly 0.19% (0.13%). Similarly, the highest contribution to the systematic uncertainties
of the projections of RCD

2 and PCI
2 is 0.04% (0.03%) along ∆η (∆ϕ), resulting from Monte Carlo closure

tests. The largest contribution to the systematic uncertainties for projections of PCD
2 along ∆η (∆ϕ) is

0.0008% (0.0013%), which is due to DCA (impact of the TPC sector boundaries). Contributions to the
systematic uncertainties from other sources are found to be negligible.
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Figure 1: Correlation functions (a) RUS
2 , (b) RLS

2 , (c) PUS
2 , (d) PLS

2 of charged hadrons measured in minimum
bias pp collisions at

√
s = 13 TeV. Charged hadrons are selected in the range 0.2 < pT < 2.0 GeV/c and with

pseudorapidity |η |< 0.8.

The systematic uncertainties on the widths of the correlation functions, presented in Sec. 6.5, were as-
sessed in a similar fashion by varying selection criteria individually. Contamination from secondaries not
rejected by the DCA selection criteria contribute the most to these uncertainties, approximately 0.36%
(0.59%), on the width of RCI

2 (PCI
2 ) along ∆η . The largest contribution to the systematic uncertainties in

the width of RCI
2 (PCI

2 ) as a function of ∆ϕ arises from track pile-up effects (tracking efficiency), amount-
ing to approximately 0.58% (0.27%). However, the highest contribution to the systematic uncertainties
on the width of RCD

2 along ∆η (∆ϕ) is 0.46% (2.17%) and originates from uncertainties on track recon-
struction efficiencies. Tracking efficiencies (impact of the TPC sector boundaries) give rise the biggest
contribution to the systematic uncertainties for the width of PCD

2 along ∆η (∆ϕ), which is around 0.54%
(1.77%). Contributions from other sources are insignificant in this case.

The systematic uncertainties on the single particle density, shown in Sec. 6.6, contribute the most to
the systematic uncertainties on the magnitude of the balance function and its integral. Altogether, the
systematic uncertainty on the integral amounts to 5.8%, with the contribution due to single particle
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Table 3: Maximum systematic uncertainties of the correlation functions and their sources for widths.

Correlator Category Source Maximum systematic uncertainties (%)

RCI
2 ∆ϕ

∆η

Track pile-up
DCAxy,z

0.58
0.36

PCI
2 ∆ϕ

∆η

Tracking efficiency
DCAxy,z

0.27
0.59

RCD
2 ∆ϕ

∆η

Tracking efficiency
Tracking efficiency

2.17
0.46

PCD
2 ∆ϕ

∆η

No. of TPC spcae points
Tracking efficiency

1.77
0.54

density accounting for about 5.7%.

6 Results

The R2 and P2 correlation functions were first determined in two dimensions, i.e., as functions of particle
pair pseudorapidity difference (∆η) and azimuthal angle difference (∆ϕ). These were then projected
onto ∆η and ∆ϕ axes to further examine the dependence of the correlation functions on these kinematic
variables.

6.1 Charge combinations of correlation functions

The R2 and P2 correlation functions for US and LS charged-particle pairs forming the basis of the mea-
surements are displayed in Fig. 1. These correlation functions share common features, but also exhibit
significant differences. All four correlation functions are dominated by the presence of a strong and
relatively narrow peak centered at (∆η ,∆ϕ) = (0,0), hereafter called the near-side peak because it cor-
responds to the emission of two particles near one another in ∆ϕ . The correlation functions also feature
extended structures, of a smaller amplitude, hereafter called away-side, because they correspond to par-
ticle emission in two different hemispheres, at ∆ϕ ≈ 180◦. However, it is important to note also that US
correlation functions feature a wider peak on the near-side as shown in Figs. 1 (a) and (c), whereas the LS
ones exhibit a relatively narrower near-side peak, as shown in Figs. 1 (b) and (d). The narrower shape of
the near-side peak of the LS correlation functions arises, in part, from Bose–Einstein quantum statistics
(also known as Hanbury Brown–Twiss (HBT) effect): two identical mesons (e.g., π+π+) are likely to be
emitted in nearly the same direction with similar transverse momenta. The longitudinal and azimuthal
widths of the LS near-side peak shall thus be partially driven by the inverse of the system size (in spatial
coordinates) [48]. Moreover, it can be observed that away-side structures have slightly different shapes
and dependence on ∆η . These near- and away-side shapes have formerly been observed in measure-
ments of C2 correlation functions (involving a particle with higher pT, known as trigger particle and a
second particle considered as associate) measured in several collision systems and a variety of beam en-
ergies [21, 24, 49–52]. Several different mechanisms, including dijet, resonance decays, Bose–Einstein
correlations, collective flow, and conservation of energy and momentum, are thought to be responsible
for the near- and away-side shapes [53–55]. Furthermore, it can be observed that the US and LS combi-
nations of P2 correlation functions exhibit similar behaviors, but significantly narrower near-side peaks
as compared to R2, as seen in Figs. 1 (c) and (d). The R2 and P2 US and LS correlation functions, shown
in Fig. 1, are combined using Eqs. 8 and 9, respectively. This combination produces the CI and CD of
R2 and P2 correlation functions presented in Figs. 2 and 4.

6.2 Charge-Independent (CI) correlation functions

The R2 and P2 correlation functions for CI combinations, shown in the left and right panels of Fig. 2,
are obtained by averaging US and LS correlation functions. Hence, they evidently feature rather similar
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Figure 2: Correlation functions RCI
2 (left) and PCI

2 (right) of charged hadrons measured in minimum bias pp
collisions at

√
s = 13 TeV. Charged hadrons are selected in the range 0.2< pT < 2.0 GeV/c and with pseudorapidity

|η |< 0.8.

dependencies on ∆η and ∆ϕ . Indeed, both correlation functions have a strong near-side peak centered
at (∆η ,∆ϕ) = (0,0) and an away-side structure centered at ∆ϕ = π and extending over the whole |∆η |
range. It can be seen, however, that the near-side peak of PCI

2 is significantly narrower than the near-side
peak of RCI

2 . This is better visible in Fig. 3 which presents the projections of RCI
2 and PCI

2 onto ∆η and ∆ϕ

axes in the left and right panels, respectively. It is clear that the near-side peak of the PCI
2 (∆η) correlation

function is narrower than the corresponding peak of RCI
2 (∆η). It is worth stressing, however, that R2 and

P2 correlation functions have the same kernel, i.e., the same source of correlated particles. The fact that
the PCI

2 near-side peak is narrower relative to that of RCI
2 is thus associated with the ∆pT∆pT dependence

of the former: at some large relative angles and pseudorapidity differences, the factor ∆pT∆pT manifestly
suppresses the amplitude of the P2 correlation function. In the tail of the near-side peak, the contributions
of particle pairs with positive and negative values of ∆pT∆pT are similar between each other and thereby
essentially cancel one another leading to a suppression of the apparent strength of particle correlations in
that range. At small values of ∆η and ∆ϕ , pairs with ∆pT∆pT > 0 clearly dominate and yield the narrow
peak observed. This behavior is consistent with the angular ordering expected in jets as confirmed
by model calculations based on PYTHIA8 [29]. The effect is, however, also expected from hadronic
resonance decays. It should be additionally noted that a similar pattern was observed for RCI

2 and PCI
2

correlation functions measured in p–Pb and Pb–Pb collisions [21].

6.3 Charge-Dependent (CD) correlation functions

The RCD
2 and PCD

2 correlation functions are shown as two-dimensional plots in the left and right panels
of Fig. 4, respectively, and their projections onto ∆η and ∆ϕ axes are displayed in Fig. 5. It can be noted
that the near-side peak of both correlation functions feature a narrow dip around (∆η ,∆ϕ) = (0,0),
which stems in large part due to Bose–Einstein Quantum Statistics. In addition, the near-side peak of the
PCD

2 correlation function is substantially narrower than that of RCD
2 . This difference is expected from the

angular and transverse momentum ordering effect already mentioned [29].

At LHC energies, positively and negatively charged particles are produced in nearly equal multiplicities
and feature similar pT spectra [56]. In large collision systems, negatively and positively charged parti-
cles are found to have nearly equal momentum anisotropy distributions. It entails that in large systems,
the RCD

2 and PCD
2 correlation functions feature an essentially flat and featureless away-side across a wide

interval of collision centrality spanning from the most central collisions down to peripheral collisions.
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Figure 3: Projections onto ∆η (left column) and ∆ϕ (right column) of RCI
2 (top row) and PCI

2 (bottom row) cor-
relation functions of charged hadrons calculated in the selected pT range in pp collisions at

√
s = 13 TeV. The

∆η and ∆ϕ projections are calculated as averages of the two-dimensional correlations in the range |∆ϕ| ≤ π and
|∆η | ≤ 1.6, respectively. Vertical bars and boxes represent statistical and systematic uncertainties, respectively.
Simulations using PYTHIA8 with the Monash 2013 tune and color reconnection (CR) enabled, as described in the
text, are shown as green dashed lines.

While particle momentum anisotropies, possibly originating from a collectively expanding system, have
been observed in high-multiplicity pp collisions, it is expected that non-flow correlations, such as those
resulting from energy–momentum conservation (causing back-to-back particle emission in the transverse
plane), should impact LS and US charged particle pairs similarly and thus lead to a flat away-side dis-
tribution. It can be observed, however, that the away-side of the RCD

2 correlation function is not flat and
shows a dependence on both ∆η and ∆ϕ which reflects a small difference in the away-side emission
of LS and US pairs. This likely results from the rather broad nature of the near-side peak, which ex-
tends beyond ∆ϕ = π/2 towards the away-side. In contrast, however, the PCD

2 near-side peak is narrower
and does not extend on the away-side. This correlation function thus has a rather flat away-side. This
behavior was also observed in p–Pb and Pb–Pb collisions [21].

6.4 R2 and P2 correlation functions with PYTHIA8

The PYTHIA8 [42] event generator has had great successes in modeling recent measurements of single
particle and jet production in high-energy pp collisions. It is thus of interest to investigate whether it can
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Figure 4: Correlation functions RCD
2 (left ) and PCD

2 (right) of charged hadrons in minimum bias pp collisions at√
s = 13 TeV. Charged hadrons are selected in the range 0.2 < pT < 2.0 GeV/c and with pseudorapidity |η |< 0.8.

also reproduce the measured R2 and P2 correlation functions. Comparisons with PYTHIA8 calculations
of CI and CD components of these correlation functions are presented in Figs. 3 and 5, respectively.
Focusing on the ∆η (left) and ∆ϕ (right) projections of CI correlation functions, shown in Fig. 3, it can
be noted that PYTHIA8 essentially captures the basic features of the RCI

2 and PCI
2 correlation functions.

The projections indeed show near-side peaks and away-side structures that approximately match those
observed experimentally. The small differences between the calculations and the measurements may
originate from various phenomena, the detailed analysis of which is beyond the scope of this work.

Switching the discussion to the projections of the CD correlations, shown in Fig. 5, it can be observed
that also in this case, PYTHIA8 captures the salient features of the measured correlation functions, with
one notable exception: the dip structures found at ∆η = 0 and ∆ϕ = 0 in experimental data. By con-
struction, CD correlations are sensitive to the presence of HBT, manifested in LS, and known to exist in
all colliding systems. The HBT correlations, typically measured in terms of invariant momentum differ-
ences, are expected to be relevant at small ∆η , ∆ϕ separation [57]. As such the width of the dip in the CD
correlations reflects in part the width of the peak in LS correlations due to Bose–Einstein condensation
and thus serve as an indicator of the system size. Such effects are not seen in the PYTHIA8 predictions
shown in the figures because no HBT afterburner was used in the calculations [58]. It is also possible that
the dip observed at small pair separation may arise from other causes related to particle production from
hadronic resonance decays or other sources of charge conserving production mechanisms. Furthermore,
PYTHIA8 also predicts the presence of a small bump structure centered at ∆ϕ = π in ∆ϕ projections
of RCD

2 which is not observed in the data. Such small away-side peak is likely caused by momentum
conservation effects which manifest themselves by back-to-back particle emission at low multiplicity.
Similarly, PYTHIA8 reproduces the PCD

2 (∆η) with some deviations near ∆η = 0 and towards the edge.
Moreover, it can be observed that in contrast to the RCD

2 , where PYTHIA8 approximately matches the
overall magnitude of the correlation function, the near-side peak of the PCD

2 is overestimated by a factor
of two while the away-side magnitude is underestimated by the same factor. These results show that
while PYTHIA8 qualitatively reproduces the measured correlation functions, additional tuning of its
parameters is required to fully match the data.

6.5 Evolution of the near-side peak width with multiplicity in different collision systems

The widths of the near-side peak of the measured correlation functions along the ∆η and ∆ϕ axes are
commonly used to characterize the many processes that contribute to the strength and shape of particle
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Figure 5: Projections onto the ∆η (left) and ∆ϕ (right) axes of the RCD
2 (top) and PCD

2 (bottom) correlation func-
tions shown in Fig. 4. The ∆η and ∆ϕ projections are calculated as averages of the two-dimensional correlations
in the range |∆ϕ| ≤ π and |∆η | ≤ 1.6, respectively. Vertical bars and boxes represent statistical and systematic
uncertainties, respectively. Simulations using PYTHIA8 with the Monash 2013 tune and color reconnection (CR)
enabled, as described in the text, are shown as green dashed lines.

correlations. It is interesting, in particular, to consider how these widths evolve with the produced particle
multiplicity quantified by the charged-particle pseudorapidity density at midrapidity (⟨dNch/dη⟩|η |<0.5),
the collision system size, as well as the collision energy.

This section reports the near-side peak root mean square (RMS) widths of correlation functions computed
using Eq. (10) and shown in Figs. 6 and 7. Given some ambiguities existing in the identification of a
baseline for broad peaks measured in a narrow acceptance, as in the case of the ∆η projections of RCI

2
and PCI

2 , the RMS widths are computed using two methods: the first involves accounting for the presence
of a baseline (or correlation plateau) underneath the peak and the second characterizes the width of the
peak in a fixed ∆η or ∆ϕ range. In the case of the first method, since a plateau is not evident based on
the shape of the projected correlation functions (reported in Fig. 3), the correlation strength at the edges
of the acceptance is used as baseline and thus constitutes a somewhat arbitrary definition of the baseline,
which ignores the correlation strength at ∆η values beyond the experimental acceptance. It nonetheless
provides an estimator of the width of interest albeit with a bias. The second method has merits and
limitations as well. It evidently does not suffer from the somewhat arbitrary requirement of a baseline
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Figure 6: Width of (a) RCI
2 (∆η) (blue markers) and PCI

2 (∆η) (red markers) and (b) RCD
2 (∆η) (blue markers) and

PCD
2 (∆η) (red markers) correlation functions along ∆η measured within |∆ϕ| < π in pp collisions and compared

with results from p–Pb and Pb–Pb collisions [21] as a function of ⟨dNch/dη⟩|η |<0.5. Vertical bars and boxes
represent statistical and systematic uncertainties, respectively.

determination, but its magnitude is largely defined by the experimental acceptance itself. For instance,
the offset for PCI

2 (∆ϕ), illustrated in Fig. 3, is determined by averaging three consecutive bins at the
turning points near the edges of the near-side peak. Indeed, for a shallow peak or no peak whatsoever,
the RMS width would be equal to the accepted range divided by

√
12.

The RMS widths of the R2 and P2 correlation functions computed with and without offsets (offset = 0) are
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Table 4: Comparison of the widths calculated with and without the offset (T = 0) in Eq. 10.

Correlator Category With Offset Without Offset

RCI
2 ∆ϕ

∆η

0.54±0.0002(stat.)±0.0086(syst.)
0.57±0.0003(stat.)±0.0052(syst.)

0.93±< 0.0001(stat.)±0.0148(syst.)
0.90±< 0.0001(stat.)±0.0079(syst.)

PCI
2 ∆ϕ

∆η

0.33±0.0007(stat.)±0.004(syst.)
0.31±0.0007(stat.)±0.041(syst.)

0.51±0.0002(stat.)±0.006(syst.)
0.51±0.0001(stat.)±0.079(syst.)

RCD
2 ∆ϕ

∆η

0.99±0.0025(stat.)±0.023(syst.)
0.65±0.001(stat.)±0.0058(syst.)

1.27±0.001(stat.)±0.0298(syst.)
0.77±0.0004(stat.)±0.0069(syst.)

PCD
2 ∆ϕ

∆η

0.37±0.0031(stat.)±0.02(syst.)
0.37±0.0039(stat.)±0.0062(syst.)

0.41±0.0025(stat.)±0.0215(syst.)
0.51±0.0024(stat.)±0.0084(syst.)

reported in Tab. 4. Despite the fact that both methods mentioned above use an offset, the table enables a
direct comparison between calculations performed with and without this offset. To maintain consistency
with previous results in p–Pb and Pb–Pb, the widths for RCD

2 are considered without applying any offset.
The computed RMS widths feature a strong dependence on the method chosen for their evaluation.
Comparisons with the results of prior measurements and/or with model predictions must then be carried
out in a consistent manner. Figures 6 and 7 compare the widths along ∆η and ∆ϕ obtained in pp
collisions at

√
s = 13 TeV, with those reported by the ALICE Collaboration in p–Pb collisions at √sNN

= 5.02 TeV, and Pb–Pb collisions at √sNN = 2.76 TeV [21]. In the case of RCD
2 (∆η), the RMS widths

computed without offset are shown in Fig. 6, considering the fact that the correlation vanishes at large
|∆η | values, whereas finite offsets were used for other projections, consistent with the previous results in
p–Pb and Pb–Pb collisions [21].

Figure 6 contrasts the longitudinal near-side widths of CI and CD correlation functions measured in pp
collisions with those observed in p–Pb, and Pb–Pb collisions [21] as a function of the density of charged
particles in the transverse momentum interval 0.15 < pT < 20 GeV/c and within the pseudorapidity

15



R2 (∆η ,∆ϕ) and P2 (∆η ,∆ϕ) in pp @ 13 TeV ALICE Collaboration

range, |η |< 0.5 [59]. In the top panel of Fig. 6, it can be observed that the longitudinal RMS widths of
RCI

2 (∆η) and PCI
2 (∆η) tend to rise with increasing particle density in p–Pb and Pb–Pb collisions, a feature

that may be indicative of the finite shear viscosity of the medium created in these collisions, especially
in Pb–Pb collisions [60, 61]. The longitudinal widths of RCD

2 measured in pp collisions are in a good
agreement with those obtained in low multiplicity p–Pb collisions. In sharp contrast to that is a large
deviation of the width of PCD

2 near-side peak from the value measured in p–Pb collisions with similar
charged particle multiplicity. While the origin of this discrepancy is not entirely clear, it may in part arise
from the difference in collision energy as well as mean-pT [62] between pp and p–Pb collisions.

The evolution of the near-side peak width of RCD
2 (∆ϕ) correlation functions with produced particle mul-

tiplicity measured in pp, p–Pb, and Pb–Pb collisions is shown in Fig. 7. The observed decrease of the
width from low to high multiplicity is likely due to the rise of the (transverse) radial flow in these col-
lisions although it is also expected that the diffusivity of the matter produced in Pb–Pb collisions might
induce a small broadening of the correlation function [30, 31]. The multiplicity dependence of the PCD

2
correlation function exhibits a more complicated behavior. The azimuthal width of PCD

2 displays a small
rise from the multiplicity observed in minimum bias pp collisions to the largest multiplicities observed in
p–Pb collisions. This rise continues up to ⟨dNch/dη⟩|η |<0.5 ≈ 100 in Pb–Pb, but is followed by a modest
decrease at higher multiplicities. Again, it can be noted that the near-side peak of PCD

2 is considerably
narrower than the one of RCD

2 . Overall, it is visible that the azimuthal width of the PCD
2 near-side peak is

smaller in pp and p–Pb than in Pb–Pb collisions. This suggests that the impact of the pT angular ordering
effect is weaker at high multiplicity perhaps owing to a greater probability of multiple scattering in such
larger systems.

6.6 Balance function and its integral

Charge conservation dictates that the production of a positively charged particle must be accompanied
by the creation of a charge balancing particle, i.e., a negatively charged particle. However, both pro-
duction and transport mechanisms of charged particle pairs may impact the shape and strength of the
RCD

2 correlation function. A focus on the particle production itself can be brought about by considering
a measurement of charge balance function (B), which in the context of collisions at the LHC energies
can be written: B = ρBRCD

2 , where ρB represents the charged particle density calculated in the kinematic
range of |η | < 0.8 and 0.2 < pT < 2 GeV/c. This single particle density is obtained by integration of
prior ALICE measurements of the differential invariant yield of charged particles [59] according to

ρ
B =

〈 d2Nch

dϕdη

〉
=

∫ pT,max

pT,min

d2Nch

2π pTdpTdη
× pTdpT. (13)

The balance function as a function of ∆η and ∆ϕ is shown in the left panel of Fig. 8, and it has the same
shape of the RCD

2 correlation function reported in Fig. 4(a) modulo a rescaling factor. The integral of the
charge balance function, computed according to Eq. 12, amounts to 0.55± 0.0039(stat.)± 0.06(syst.)
and it is shown in the right panel of Fig. 8. This means that given a positive hadron is measured in the
acceptance |η |< 0.8, 0.2 < pT < 2.0 GeV/c, the chance of finding a charge balancing negative hadron
in that same particle acceptance amounts to 55%. The probability is evidently smaller than unity because
the charge balancing hadron may be emitted (“leak") outside the acceptance, i.e., either at pseudorapidity
|η | > 0.8 or outside the 0.2 < pT < 2.0 GeV/c range of the measurement. It is worth noting, however,
that this probability is compatible to the sum of the probabilities (in essentially identical acceptances) of
observing π−, K−, and p as balancing partners of a π+ in Pb–Pb collisions at √sNN = 2.76 TeV [36]. In
this context, ππ pairs are predominantly observed, while contributions from other pairs are negligible.
Nevertheless, the transverse momentum ranges for identified particles are different, and may account for
the small modification. More detailed measurements of balance functions of identified hadrons in small
and large collision systems and their evolution with produced particle multiplicity are forthcoming.
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Figure 8: Balance function (left panel) of charged hadrons, in the selected pT range, obtained using ALICE data
in pp collisions at

√
s = 13 TeV. Integral of B (right panel) results for charged hadrons in pp collisions at

√
s = 13

TeV compared with the B integral of identified hadron (ππ , πK, and πp) pairs in Pb–Pb collisions at √sNN = 2.76
TeV [36]. Vertical bars and boxes represent statistical and systematic uncertainties, respectively.

7 Summary

Two-particle differential number correlation function, R2 (∆η ,∆ϕ), and transverse momentum correla-
tion function, P2 (∆η ,∆ϕ), of charged particles in the transverse momentum range 0.2 < pT < 2.0 GeV/c
and pseudorapidity range |η |< 0.8 are measured in minimum-bias pp collisions at a center-of-mass en-
ergy of

√
s = 13 TeV. Correlation functions are studied individually for LS and US particle pairs and

combined to obtain CI and CD. These correlation functions exhibit features similar to those observed in
larger collision systems, including, in particular, a somewhat narrow, but prominent peak at small particle
pair separation ∆η , ∆ϕ . As well as in prior measurements in p–Pb and Pb–Pb collisions, the near-side
peak of both CI and CD P2 correlations is found to be significantly narrower than those of R2 correla-
tions, a feature expected from momentum versus angular ordering in jets and hadronic resonance decays.
The RCD

2 and PCD
2 exhibit a narrow dip at the center of their respective near-side peaks. This feature

is understood to result in part from Bose–Einstein correlations of LS particles and the relatively small
source size of pp collisions. The projections of measured R2 (∆η ,∆ϕ) and P2 (∆η ,∆ϕ) onto ∆η and ∆ϕ

are compared with PYTHIA8 calculations. It is found that PYTHIA8 qualitatively reproduces measure-
ments in pp collisions, but cannot catch all the observed features suggesting that further improvement of
the model is needed.

The RMS widths of the near-side peak of RCI
2 along the longitudinal and RCD

2 along the longitudinal and
azimuthal directions are found to be in good agreement with the widths of correlation functions observed
at low charged particle multiplicity in p–Pb collisions. This agreement indicates the breadth of these
correlation functions likely primarily depends on the produced multiplicity. However, the widths of PCI

2
and PCD

2 in the longitudinal direction observed in pp are significantly smaller than those measured in p–Pb
collisions. The azimuthal width of PCD

2 observed in pp approximately matches the width measured in p–
Pb at similar charged particle density. The widths of the near-side peaks of R2 and P2 correlation functions
are studied in detail and compared with the measurements performed in larger colliding systems. The
widths of the near-side peak of R2 for CI and CD combinations follow a consistent trend despite of
differences in the center-of-mass energy for the three systems. However, the widths of the near-side peak
of P2(∆η) for CI and CD show some deviations in the three systems. These deviations may in part come
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from differences in collision energy [62].

Furthermore, the integral of the balance function (IB) is measured in pp collisions based on the RCD
2

correlation function. The magnitude of the integral is found to be compatible to the sum of balance
function integrals measured for individual charged hadron pairs, ππ , πK, and πp, in Pb–Pb collisions by
the ALICE Collaboration. This suggests that balance functions and their integrals evolve rather slowly
with system size and collision energy.
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