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Abstract: Spin 1/2 quantum spin chains represent the prototypical model for coupled two-level

systems. Consequently, they offer a fertile playground for both fundamental and technological

applications ranging from the theory of thermalization to quantum computation. Recently, it has

been shown that interesting phenomena are associated to the boundary conditions imposed on the

quantum spin chains via the so-called topological frustration. In this work, we analyze the effects of

such frustration on a few-spin system, with a particular focus on the strong even–odd effects induced

in the ground-state energy. We then implement a topologically frustrated quantum spin chain on a

quantum computer to show that our predictions are visible on current quantum hardware platforms.

Keywords: spin chains; frustration; quantum computation

1. Introduction

The theoretical importance and technological potential of coupled multilevel quantum
systems are substantial. They range from fundamental issues related to thermalization [1–4]
and information or energy spreading [5] to the realization of quantum bits [6] and quantum
batteries [7] and the simulation of complex quantum systems [8]. Within this scenario, a
vast amount of interesting physical phenomena in many-body systems have been shown
to emerge in frustrated systems [9,10]. Frustration can be induced by both geometric
factors [11–13] and, as in Wigner crystals [14–18], by interactions [19–21]. Recently, a new
intriguing kind of frustration has been discovered: Topological Frustration (TF) [22,23].
Qualitatively speaking, TF amounts to the fact that some spin chains with N spins obeying
periodic boundary conditions behave very differently, even for large N, depending on the
parity of N. Crucially, up to now, topological frustration has only been observed in spin
1/2 systems, hence being a combined effect of topology and quantumness. To understand
the physical content of TF, it is useful to start with a very intuitive classical argument:
imagine an N site classical antiferromagnetic Ising model in the absence of applied fields,
compactified on a circle. If N is even, the lowest energy state is the one with neighbouring
spins antiparallel to each other. The degeneracy is twofold: flipping all the spins does not
change the energy. If N is odd, on the other hand, it is not possible, due to the boundary
conditions, to have all the spins antiparallel to their neighbours. TF is hence at play. The
lowest energy state is in this case the one where all spins except for one are antiparallel
to their neighbours. The important fact is that the degeneracy of the lowest energy state
is now 2N instead of two. At the quantum level, when, for example, a transverse field is
switched on, the even N case is characterized in the thermodynamic limit N → ∞ by a
gap between the (doubly degenerate) ground state and the excited states. On the other
hand, in the odd N case, the system becomes gapless, with the gapless modes originating
from the hybridization of the 2N states that are degenerate at the classical point, that is,
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in the absence of applied fields [24,25]. The implications of this simple observation are
complex and far-reaching [22,23,26–33]. Boundary quantum phase transitions that are
absent in the even N case show up for odd N, marking the onset of ground states with
finite global magnetization in the antiferromagnetic case or the spontaneous breaking of
translational invariance [34–36]. At the non-equilibrium level, signatures of TF are also
visible in the Loschmit echo [29]. Although the best way to take the thermodynamic limit
in systems with TF is under intense debate [30,36], what is clear is that systems with finite
N presenting TF have a very strong dependence of their properties on the parity of N.

This fact is what we theoretically and experimentally inspect in this work. In particular,
we analyze analytically the effects of topological frustration in the XY quantum spin chain
with N = 5, 6 spins. Among other effects, in particular, we show that that the ground-state
energy has a way stronger dependence on the applied magnetic field in the presence of TF
(antiferromagnetic coupling, odd N) than in the non-frustrated cases. To extend, for the
first time, beyond the theoretical description of TF, we then implement a special case of the
model discussed theoretically on an IBM quantum computer where the role of the spins is
taken by trasmon qubits. Remarkably, we confirm the peculiarity of the system with TF
in terms of ground-state energy, with particular reference to the strong even–odd effects
it induces.

On one hand, our results confirm the robustness of the physics related to TF in real
life contexts, where thermal fluctuations are unavoidable and exact symmetries in the
coupling parameters essentially do not exist. On the other hand, they might inspire the
conception of nanodevices based on TF, where by only changing N by one, the properties
of the system change dramatically. Finally, our work opens the way to experimentally
consider topological frustration in quasi one-dimensional setups, where analytical results
are hardly achievable [37,38].

The rest of the article is structured as follows. In Section 2, we present and recap the
solution of the model. We also discuss the features of topological frustration, resuming
some of the most relevant results in the literature so far. In Section 3, we discuss the effects
of topological frustration on finite size systems, focusing in particular on the N = 5, 6 cases.
In Section 4 we present our experimental results, and finally in Section 5 we illustrate
our conclusions.

2. The XY Model and Its Topological Frustration

2.1. Model

The model under investigation is the so-called XY quantum chain in a transverse
field [39–47]. The Hamiltonian H is given by

H =
J

2

N

∑
j=1

[(

1 + γ

2

)

σx
j σx

j+1 +

(

1 − γ

2

)

σ
y
j σ

y
j+1 + hσz

j

]

, (1)

where N is the number of sites, J is the energy scale, γ is a parameter quantifying the
anisotropic way in which nearest neighbour spins interact, h is an external magnetic field
along the z direction and σα

j (with α = x, y, z) are Pauli matrices in the usual representation.

Clearly, we have [σα
j , σ

β
k ] = 2iϵαβγσ

γ
j δjk where δjk is the Kronecker symbol. Crucially for

the following, we impose periodic boundary conditions σα
N+1 ≡ σα

1 .
We now proceed with the diagonalization of the Hamiltonian. Such diagonalization is

well known in the literature [40,41]. Since, however, the TF regime requires some care, we
find it worthy to report here the explicit solution.

First of all, thanks to the symmetry properties of (1), we restrict our analysis, without
loss of generality, to the first quarter of the parameter space (h, γ), i.e., h, γ ≥ 0. We
then introduce the Wigner–Jordan transformation [48], in which the spin operators are
non-locally mapped onto spinless fermions. We have
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σ+
j ≡ exp

{

iπ
j−1

∑
l=1

ψ†
l ψl

}

ψj j = 1, . . . , N, (2)

with σ+
j = σx

j + iσ
y
j . The other spin operators are obtained from the commutation relations.

Clearly, we have the anticommutation relations ψ†
l ψm + ψmψ†

l = δlm , with l, m running
over the sites of the chain, while all other anticommutation relations between the fermions
are zero.

After the transformation, the Hamiltonian H reads

H =
J

2

N−1

∑
j=1

(ψ†
j+1ψj + ψ†

j ψj+1 + γψj+1ψj + γψ†
j ψ†

j+1) +
JhN

2
− Jh

N

∑
j=1

ψ†
j ψj+

− J

2
Πz(ψ†

1ψN + ψ†
Nψ1 + γψ1ψN + γψ†

Nψ†
1), (3)

with

Πα ≡
N
⊗

l=1

σα
l (4)

the parity operator. We note that the Hamiltonian when written in terms of the fermions
is highly non-local and non-linear due to the presence of the operator Πz. Indeed, when
expressed in terms of the fermionic operators, such operator reads as Πz = ∏

N
l=1(1− 2ψ†

l ψl).
However, since [H, Πz] = 0, we can decompose the Hamiltonian as

H =
1 + Πz

2
H+ 1 + Πz

2
+

1 − Πz

2
H− 1 − Πz

2
, (5)

where

H± =
J

2

N−1

∑
j=1

(ψ†
j+1ψj + ψ†

j ψj+1 + γψj+1ψj + γψ†
j ψ†

j+1) +
JhN

2
− Jh

N

∑
j=1

ψ†
j ψj+

∓ J

2
(ψ†

1 ψN + ψ†
Nψ1 + γψ1ψN + γψ†

Nψ†
1) (6)

≡ J

2

N

∑
j=1

(ψ
(±)†
j+1 ψ

(±)
j + ψ

(±)†
j ψ

(±)
j+1 + γψ

(±)
j+1ψ

(±)
j + γψ

(±)†
j ψ

(±)†
j+1 − 2hψ

(±)†
j ψ

(±)
j ) +

JhN

2
. (7)

In the last equality, we defined










ψ
(±)
j ≡ ψj

ψ
(±)
j+N ≡ ∓ψ

(±)
j

j = 1, . . . , N. (8)

We are now in the position of solving the Hamiltonian. To achieve this, we now switch to
Fourier space, with the convention

ψ
(±)
j ≡ 1√

N
ei π

4 ∑
q∈Γ±

eiqjψq, (9)

where

Γ+ ≡
{

2π

N

(

k +
1
2

)}

Γ− ≡
{

2π

N
k

}

k = 0, . . . , N − 1. (10)

These two sets play a crucial role in the mathematical derivation of even–odd effects in
this model.

In Fourier space, we find
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H± = −J ∑
q∈Γ±

(h − cos q)ψ†
q ψq −

Jγ

2 ∑
q∈Γ±

sin q(ψqψ2π−q + ψ†
2π−qψ†

q ) +
JhN

2

=
J

2 ∑
q∈Γ±

(

ψ†
q ψ2π−q

)

(

−h + cos q γ sin q
γ sin q h − cos q

)

(

ψq

ψ†
2π−q

)

. (11)

Here, we define
(

ψq

ψ†
2π−q

)

≡
(

cos θq sin θq

− sin θq cos θq

)(

χq

χ†
2π−q

)

, (12)

where the angle θq obeys the constraints θ0,π ≡ 0 and

{

sin θ2π−q = − sin θq

cos θ2π−q = cos θq.
(13)

The Hamiltonian now reads

H± =
J

2 ∑
q∈Γ±

(

χ†
q χ2π−q

)

H̃

(

χq

χ†
2π−q

)

, (14)

with

H̃ =

(

(−h + cos q) cos
(

2θq
)

− γ sin q sin
(

2θq
)

γ cos
(

2θq
)

sin q + (−h + cos q) sin
(

2θq
)

γ cos
(

2θq
)

sin q + (−h + cos q) sin
(

2θq
)

(h − cos q) cos
(

2θq
)

+ γ sin q sin
(

2θq
)

)

. (15)

This form brings us to the final step of the diagonalization. We have here to distinguish
the ferromagnetic case J < 0, the most studied one, and the antiferromagnetic case J > 0,
the one that shows frustration. Note, however, that the Hamiltonians H± are standard and
intensively studied since they represent a topological superconductor [38,49–59].

2.1.1. Ferromagnetic Case

In the ferromagnetic case (J < 0), which has been extensively studied [39], it is
convenient to chose θq such that

ei2θq =
h − cos q + iγ sin q

√

(h − cos q)2 + γ2 sin2 q
q ̸= 0, π. (16)

Furthermore, we introduce the dispersion relation

ϵ(q) ≡
√

(h − cos q)2 + γ2 sin2 q. (17)

Note that

ϵ(π) = h + 1 if h ≥ 0 (18)

ϵ(0) =

{

h − 1 if h ≥ 1

−h + 1 if 0 ≤ h < 1 .
(19)

From the choice (16), independently from the parity of N, we have

H+ =J ∑
q∈Γ+

ϵ(q)

(

χ†
qχq −

1
2

)

(20)

H− =







−J ∑q∈Γ− ϵ(q)
(

χ†
qχq − 1

2

)

if h > 1

−J ∑q∈Γ−\{0} ϵ(q)
(

χ†
qχq − 1

2

)

+ Jϵ(0)
(

χ†
0χ0 − 1

2

)

if 0 ≤ h < 1.
(21)
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2.1.2. Antiferromagnetic Case

In the antiferromagnetic case (J > 0), it is convenient to chose θq such that

ei2θq =
−h + cos q − iγ sin q

√

(h − cos q)2 + γ2 sin2 q
q ̸= 0, π. (22)

For N even, we have

H+ =J ∑
q∈Γ+

ϵ(q)

(

χ†
qχq −

1
2

)

(23)

H− =







J ∑q∈Γ−\{0,π} ϵ(q)
(

χ†
qχq − 1

2

)

− Jϵ(π)
(

χ†
πχπ − 1

2

)

− Jϵ(0)
(

χ†
0χ0 − 1

2

)

if h > 1

J ∑q∈Γ−\{π} ϵ(q)
(

χ†
qχq − 1

2

)

− Jϵ(π)
(

χ†
πχπ − 1

2

)

if 0 ≤ h < 1.
(24)

For N odd, which is the frustrated case and represents the main focus of this work, we
have [30]

H+ =J ∑
q∈Γ+\{π}

ϵ(q)

(

χ†
qχq −

1
2

)

− Jϵ(π)

(

χ†
πχπ − 1

2

)

(25)

H− =







J ∑q∈Γ−\{0} ϵ(q)
(

χ†
qχq − 1

2

)

− Jϵ(0)
(

χ†
0χ0 − 1

2

)

if h > 1

J ∑q∈Γ− ϵ(q)
(

χ†
qχq − 1

2

)

if 0 ≤ h < 1
. (26)

2.2. Generalities about the Ground State

The physical properties of the ground state and of the low-energy sector in the ferro-
magnetic and in the antiferromagnetic case can be rather different. Indeed, only the odd N
case in the antiferromagnetic regime is affected by TF, i.e., the geometry of the system does
not allow us simultaneous minimization of all local interactions in our Hamiltonian (1).
This incompatibility between local and global order induces an excitation in the ground
state, which becomes gapless in the thermodynamic limit (N → ∞) [24,25], giving rise
to the peculiar physics of this system. In this subsection, based on the exact solution
just described, we briefly comment on the features of the frustrated XY chain which are
independent from the specific (finite) number of sites. For the non-frustrated cases, we
also refer to the vast literature [39]. To start, we address the ground state. We call |GS′±⟩,
|GS±⟩ and |GS⟩ the most general ground-state elements of, respectively, H±, 1±Πz

2 H±

and H. We use an analogous notation for the corresponding energy E. Furthermore, we
denote with |0±⟩ the vacuum of fermions χq. The strategy we adopt to obtain the ground
state is the following: identify |GS′±⟩; extract |GS±⟩ from the states found in the previous
step; find the ground-state energy E = min{E+, E−} and, as a consequence, |GS⟩. In the
thermodynamic limit, this algorithm can be realized in a fully analytical way [30,36,39], but
at finite N we have to resort to numerical methods.

From Equations (20) and (21), we can see that in the ferromagnetic chain, we have

∣

∣GS+
〉

=
∣

∣0+
〉

, (27)
∣

∣GS−〉 = χ†
0

∣

∣0−
〉

. (28)

In the same way, from Equations (23) and (24) in the non-frustrated antiferromagnetic,
chain we have

∣

∣GS+
〉

=
∣

∣0+
〉

, (29)
∣

∣GS−〉 = χ†
π

∣

∣0−
〉

. (30)
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Hence, without frustration, we always have

E+ = −1
2 ∑

q∈Γ+

ϵ(q), (31)

E− =

{

− 1
2 ∑q∈Γ− ϵ(q) + ϵ(0) if h ≥ 1

− 1
2 ∑q∈Γ− ϵ(q) if 0 ≤ h < 1.

(32)

In other words, when N is even, the ferromagnetic and antiferromagnetic cases are, from
the energetic point of view, completely equivalent, with energies given by (31) and (32).
It is important to underline that in the absence of frustration, only two states alternate as
ground state, with ⌊N/2⌋ different crossing lines in the first quarter of the parameter space
(as we see in the next Section). Furthermore, we can observe from (17) that h2 + γ2 = 1 is
an exact degeneracy line for all N. To determine precisely which is the ground state once
fixed (h, γ), we have to compare the energies (31) and (32) [60].

By increasing the number of sites in the frustrated case, we expect that there exists
a critical value γ∗(N, h) such that when 0 < γ < γ∗(N, h), the number of regions in the
parameter space alternating in z-parity increases [30]. Such expectation is justified by the
fact that when 0 < γ < γ∗(N, h) (and 0 < h < 1), the dispersion relation (17) has the shape
in Figure 1, where the minima are at p(h, γ) = ± arccos h

1−γ2 [25]. By increasing N, the

cardinality of Γ+ and Γ− increases linearly; as a consequence, by moving in this subregion
of the parameter space, we have a more and more frequent change in the elements of Γ+

and Γ− which are closest to p(h, γ) [30,36].

Figure 1. Plot of the dispersion relation ϵ(q) as a function of q ∈ [−π, π] for h = 0.5 and different
values of γ: γ = 0 (blue), γ = 0.25 (orange), γ = 0.5 (green), γ =

√
2/2 (red) and γ = 0.9 (purple).

To conclude this introductory section, we observe that at the point (h, γ) = (0, 1), the
Hamiltonian (1) reduces to that of the classical Ising chain. As consequence, the ground
space in the frustrated case is 2N-fold degenerate and spanned by the “kink states”, which
have a single pair of nearest neighbor spins (the kink) that are ferromagnetically aligned in
the x direction and the other N − 1 pairs of nearest neighbor spins antiferromagnetically
aligned. Without frustration, the ground space at the classical point is always two times
degenerate and spanned by the two Neél states in the antiferromagnetic case and by the
two completely x-ferromagnetic states in the ferromagnetic case.

In the next section, we analyze how to address the properties of topological frustration
in few-spin systems.
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3. Finite Size Effects

In this section, we analyze the finite-size low-energy states of both the frustrated and
the the unfrustrated case for N = 5 and N = 6. The aim is to provide testable consequences
of topological frustration in finite-size chains. Although we only focus on a few particular
values of N, the analysis can be straightforwardly extended to the general values of the
number of sites. The analysis we carry out focuses on two main points: the ground-state
energy dependence on parameters h, γ and the energy gap between the ground state and
the excited states, again as a function of h, γ close to the classical point. We find that
in the frustrated case, the dependence of the ground-state energy on h, γ is much more
pronounced than in the unfrustrated case. Similarly, the energy gap increases much faster
in the frustrated case.

3.1. N = 6

The results, which (as already pointed out in the previous Ssction) do not depend on
the sign of J, are reported in Figure 2, where we draw in blue the curves of exact double
degeneracy of the ground state (where GS = span{|GS+⟩, |GS−⟩}) and we specify the
z-parity of the ground-state vector in the non-degeneracy regions.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
h

0.0

0.2

0.4

0.6

0.8

1.0

1.2

+-+

-

N=6

Figure 2. Double degeneracy curves (in blue) in N = 6 case for J = ±1. This plot is independent
from the sign of J. The signs + and − specify the z-parity of the (unique) ground state in that region.

From Figure 2, we can see that the neighbourhood of the classical point (h, γ) = (0, 1)
(where the model reduces to the classical Ising ring) is divided into four regions with
alternated z-parities (remember that when Πz = +1 or Πz = −1, the ground state is given,
respectively, by (29) or (30)), so we expect that the first-order Taylor expansions of E+ and
E− around the classical point are equal. We have

E−
6 − E+

6 =
3

32
(γ − 1)3 +O

(

(γ − 1)4, h2(γ − 1)2
)

, (33)

confirmed by the numerical plot shown in Figure 3.



Symmetry 2024, 16, 1078 8 of 19

Figure 3. Numerical plot of E−
6 −E+

6
J around the classical point (h = 0, γ = 1) compared with the plane

E−
6 − E+

6 = 0 (in blue). The plot is independent from the value of J.

We also observe that

E−
6 (h, γ = 1)− E+

6 (h, γ = 1) ≈ 63
256

h6. (34)

3.2. N = 5 Ferromagnetic

The results are reported in Figure 4, where we drawnin blue the curves of exact double
degeneracy of the ground state (where GS = span{|GS+⟩, |GS−⟩}) and we specify the
z-parity of the ground-state vector in the non-degeneracy regions.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
h

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-+

+

N=5 ferro

Figure 4. Double degeneracy curves (in blue) in N = 5 ferromagnetic case for J = −1 and h ̸= 0. The
signs + and − specify the z-parity of the (unique) ground state in that region.
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From Figure 4, we can see that the neighbourhood of the classical point (h, γ) = (0, 1)
is divided in three regions with alternated z-parities, so we expect that the first-order Taylor
expansions of E+ and E− around the classical point are equal (exactly as in the N = 6 case).
The analytic expansion is

E−
5 − E+

5 =
15
32

h(γ − 1)2 +O
(

h(γ − 1)3, h3(γ − 1)
)

, (35)

confirmed by the numerical plot in Figure 5. We also observe that

E−
5 (h, γ = 1)− E+

5 (h, γ = 1) ≈ 35
128

h5. (36)

As we can see, the behavior is similar to thart in Figure 3 except for the fact that, as already
stressed in Section 2.2, the oddness of N implies the exact double degeneracy at h = 0.

Figure 5. Numerical plot of E−
5 −E+

5
J in the ferromagnetic case (J < 0) around the classical point

(h = 0, γ = 1) compared with the plane E−
5 − E+

5 = 0 (in blue). The plot is independent from the
value of J < 0.

3.3. N = 5 Antiferromagnetic

We find numerically that when N = 5, the ground state is

GS =



















































span
{

χ†
0|0−⟩, |0+⟩

}

h = 0, γ > 1

span
{

χ†
2π/5|0−⟩, χ†

−2π/5|0−⟩, χ†
3π/5χ†

π |0+⟩, χ†
−3π/5χ†

π |0+⟩
}

h = 0, 0 < γ < 1

span
{

χ†
2π/5|0−⟩, χ†

−2π/5|0−⟩
}

(h, γ) ∈ A

span
{

χ†
π/5χ†

π |0+⟩, χ†
−π/5χ†

π |0+⟩
}

(h, γ) ∈ B

χ†
0|0−⟩ (h, γ) ∈ C,

(37)

where the regions A, B and C refer to Figure 6.
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Figure 6. Degeneracy lines (in blue) in N = 5 antiferromagnetic case (with J = 1). The letters A, B

and C label the three regions with three different ground-state vectors in which the first quarter of
the parameter space is divided. As in the even N case, the signs + and − specify the z-parity of the
(unique) ground state in that region.

The ground-state energy is

E =























− 1
2 ∑q∈Γ− ϵ(q) + ϵ

( 2
5 π
)

h = 0, 0 < γ < 1 ∪ (h, γ) ∈ A

− 1
2 ∑q∈Γ+ ϵ(q) + ϵ

(

π
5

)

(h, γ) ∈ B

− 1
2 ∑q∈Γ− ϵ(q) + θ(1 − h)ϵ(0) h = 0, γ > 1 ∪ (h, γ) ∈ C

(38)

where θ(x) is the Heaviside step function. Notice that (38) is non-analytical at
(h, γ) = (0, γ ≥ 1), having a discontinuity in its first derivative with respect to h (see
Figure 7), which survives in the thermodynamic limit, giving birth to a first-order bound-
ary quantum phase transition [35]. On the contrary, this does not happen in the even N
antiferromagnetic case and in the even and odd ferromagnetic case, where the ground-
state energy (31) is always analytic at (h, γ) = (0, γ ≥ 1), as shown, respectively, in
Figures 8 and 9.

Figure 7. Ground-state energy E in N = 5 antiferromagnetic case (with J = 1) as a function of
h ∈ (−0.5, 0.5) for γ equal to 1 (blue), 1.5 (orange) and 2 (green).
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Figure 8. Ground-state energy E for N = 6 (with |J| = 1) as a function of h ∈ (−0.5, 0.5) for γ

equal to 1 (blue), 1.5 (orange) and 2 (green). The picture applies to both the ferromagnetic and the
antiferromagnetic case.

Figure 9. Ground-state energy E for N = 5 (with J = −1) in the absence of frustration as a function
of h ∈ (−0.5, 0.5) for γ equal to 1 (blue), 1.5 (orange) and 2 (green).

For 0 < γ < 1 and γ > 1, the ground state’s degeneracy is, respectively, 4 and 2 [26,34].
Notice also that at the boundary between regions A and B and regions B and C, the ground
state is degenerate, respectively, four and three times.

In the neighbourhood of the classical point (h, γ) = (0, 1) with h > 0, the different
alternating quantum states in the N = 5 case are three (and given, explicitly, by (37)). The
energies of these states which, for the sake of simplicity, we call |A⟩, |B⟩ and |C⟩ (with
reference to the subregions of Figure 6), have the following first-order Taylor expansions
around the classical point:

EA = −3
2
+

1 −
√

5
4

h +
5 −

√
5

8
(γ − 1) +O

(

h2, (γ − 1)2, h(γ − 1)
)

(39)

EB = −3
2
− 1 +

√
5

4
h − 5 +

√
5

8
(γ − 1) +O

(

h2, (γ − 1)2, h(γ − 1)
)

(40)

EC = −3
2
− h − 5

4
(γ − 1) +O

(

h2, (γ − 1)2, h(γ − 1)
)

, (41)

where h > 0.
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From (39)–(41), we observe that

Ei − Ej = αijh + βij(γ − 1) +O
(

h2, (γ − 1)2, h(γ − 1)
)

i, j = A, B, C i ̸= j , (42)

where αij and βij are different from zero.

4. Implementation on the Quantum Computer

This section addresses the experimental investigation of the effects of topological
frustration on the XY chain, for the special choice γ = 1, which corresponds to the Ising
model. In particular, we briefly introduce the technique used to evaluate the physical
observables of interests and discuss the outcomes from both numerical simulations and
runs on a real IBM quantum device. Namely, we show how to determine the ground state
of the Hamiltonian with a variational quantum algorithm and, from there, how to extract its
derivative to catch the topological frustration. The first part of extracting the energy of the
system is actually very well known and discussed in the literature of quantum computation,
with several examples of efficient techniques and hardware-specific characterization. What
has been covered least is the possibility of extracting precise values, for small values of the
magnetic field, of discontinuities in the derivative. This requires a very precise estimation
of the ground state together with a smart choice in its the discrete difference window.

4.1. Variational Quantum Eigensolver

The Variational Quantum Eigensolver (VQE) [61] is a hybrid quantum–classical varia-
tional algorithm that produces an upper-bound estimate of the ground-state |ΨGS⟩ and its
energy EGS of a Hamiltonian H [62]. Based on the Rayleigh–Ritz variational principle, it
has found ubiquitous application in fields ranging from quantum chemistry [63] to nuclear
physics [64] and many-body physics [65]. The algorithm is actually hybrid, involving
both quantum and classical operations. More specifically, VQE proceeds according to the
following workflow:

1. An ansatz wavefunction |Ψ(θθθ)⟩ is prepared on a quantum computer through a para-
metric quantum circuit;

2. The energy for the given ansatz is evaluated E|Ψ(θθθ)⟩ =
⟨Ψ(θθθ)|H|Ψ(θθθ)⟩
⟨Ψ(θθθ)|Ψ(θθθ)⟩ ≥ EGS;

3. The set of parameters specifying the state, here generically indicated with θθθ, is updated
in order to minimize the energy through a classical optimization routine.

The choice of the ansatz is crucial for the whole algorithm to work properly. The
employed |Ψ(θθθ)⟩ must indeed meet a reasonable tradeoff between expressivity and train-
ability: a great number of parameters certainly allows representation of more diverse
wavefunctions (including the optimal one), but can significantly slow down the minimiza-
tion process. Being a Parametrized Quantum Circuit (PQC), it could be characterized
by barren plateaus where the gradient becomes exponentially small in the number of
qubits during the training. Here, not only the choice of the ansätze is important, but also
the initialization strategy of its parameters deserves a theoretical discussion for practical
applications [66].

There is a huge amount of literature for specific use cases; here, we cite two approaches
to potential design strategy: physically motivated ones [67,68], which are usually difficult
to implement on near-term quantum devices, and hardware-efficient ansätze (HEA) [69]
that are devised to limit the consequences of noise.

As for the present work, a heuristic trial wavefunction consisting of layered SU(2), i.e.,
rotation, and CX gates is employed and the optimization procedure is carried out through
a stochastic gradient descent (SGD) method named SPSA [70]. The whole implementation
is performed within Qiskit [71] framework.
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4.2. Ideal Simulations and Results

We start our investigation by leveraging ideal simulations of the finite-size model,
noiseless setups serving as a perfect benchmark to explore the possible extension of the
study to real device runs. For this reason, we consider the Hamiltonian

H = J
N

∑
i=1

[

σx
i σx

i+1 + hσz
i

]

(43)

for N = 5, 6 qubits and periodic boundary conditions. We consider the J = 1 and J = −1
cases separately and evaluate the ground-state energy for h ∈ {−0.3, 0, 0.3}. The VQE
procedure is started from a two-layers ansatz as the one shown in Figure 10 with random
initial parameters.

Figure 10. Example of ansatz for the VQE algorithm. Single-qubit rotation gates are intertwined
with entangling CX gates in a sequence of circuit layers. The angles of the rotations represent the
free parameters to be optimized during the minimization procedure. Linear entanglement, with
CX gates acting on adjacent qubits, is preferred to a fully entangled ansatz in order to speed up the
computation time.

The approximate values of EGS at each minimization step for every choice of J, N and
h are reported in Figure 11. The VQE algorithm in the absence of decoherence is found
to display a good and fast convergence to the exact ground-state energies, represented by
dotted lines and obtained through an exact diagonalization of the full Hamiltonian.

Figure 11. Estimated EGS during a 2000-step optimization procedure with SPSA for both J = −1, 1
and N = 5, 6. Dotted lines refer to the exact ground-state energies.
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In light of evaluating the derivative difference
∂EGS

∂h

∣

∣

h=0+ − ∂EGS

∂h

∣

∣

h=0− , we consider

the output EGS(h) of the VQE algorithm as displayed in Figure 12 for a small deviation of the
magnetic field from the null value both for the ferromagnetic and the antiferromagnetic case.

Figure 12. EGS obtained through VQE as a function of the magnetic field h for each realization of J

and N.

Using forward difference to compute numerical derivatives (Table 1), we find satisfac-
tory agreement with analytical predictions regarding both numerical values and the role of
J in determining the behavior of EGS for even and odd values of N.

Table 1. Derivative differences obtained from noiseless simulations.

N = 5 N = 6

J = 1 −3.96 −0.904

J = −1 −0.786 −0.888

4.3. Superconducting Quantum Device Results

In the following, we show and discuss results obtained from a superconducting
transmon IBM Quantum chip. Starting from encouraging preliminary results, in terms
of performance and evaluation of EGS in the previously described noiseless scenario, we
extend our analysis further by analyzing stability and reproducibility in a real context,
where a real, noisy quantum computer is used, and where state-of-the-art error suppres-
sion techniques are exploited. The quantum device used in this work, namely ibm-cairo
(Falcon r5.11) consists of 27 fixed-frequency transmons qubits, with fundamental transition
frequencies of approximately 5 GHz and anharmonicities of −340 MHz. Microwave pulses
are used for single-qubit gates and cross-resonance interaction for two-qubit gates. The
experiments take place without intermediate calibration using IBM Qiskit Primitive Esti-
mator. This way, the quantum platform computes the expectation values of the observable
(the energy in this case) with respect to the states prepared by the PQC and which can be
optimized using the same classical gradient descent-based algorithm as for the noiseless
scenario. The topology of the deployed device is displayed in Figure 13. According to the
Hamiltonian we study, consisting of 5, 6 qubits, respectively, we map every site of it to a
physical qubit, without further recompilation. The connectivity of the physical model is
enough to match the requirement of the spin model under evaluation, since the IBM device
provides a square topology that is repeated and forms the final 27-qubit layout. In the case
of a fully connected model, these kinds of chips require more care in the final mapping,
sometimes suggesting the possibility of working with a different quantum technology.
However, state-of-the-art superconducting chips displays very good performance to allow
execution of the quantum circuit up to dozens of qubits and circuit depths.
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Figure 13. Schematic representation of the topology of the 27-qubit ibm-cairo device on which
computations are performed. Calibration data at the time of running are: Median T1: 89.55 µs,
Median T2: 98.7 µs, Median CNOT error: 9.668 × 10−3 and Median readout error: 1.470 × 10−2.

In the case of computation on a quantum hardware, it is essential to consider the
adverse effects of noise and devise methods to reduce them. For this reason, the previ-
ous VQE routine is supplemented with error mitigation techniques (EM) that are readily
provided in the Qiskit environment. In particular, we employ Twisted Readout Error eX-
tinction (TREX) [72] and Dynamical Decoupling (DD) [73]. TREX is a model-free approach
to readout errors that result in biases in quantum expectation values as the ones we are
interested in. By randomizing the output channel of a circuit through the application of
random bit flips prior to measurements, the estimation bias is turned into a multiplicative
factor that can be readily divided out. In addition, DD exploits properly tuned control
pulses to average environment-induced decoherence to zero, thus contributing to the clean
out of the final result. Similarly to the noiseless case, the approximate values of EGS as the
function of the minimization steps for each choice of J, N and h are shown in Figure 14.

Figure 14. Estimated EGS in a 1000-step optimization process for both J = −1, 1 and N = 5, 6. Dashed
lines refer to the exact ground-state energies. The number of steps of each optimization procedure is
varied in each case.

As one could expect from the very beginning, the optimization procedure on the
quantum platform yields less favorable outcomes than the ideal case, with convergence
being achieved at values slightly distant from the exact ones. Nonetheless, repeating the
protocol used for the ideal simulations, we obtain what is shown in Figure 15, where the
noiseless results are displayed for completeness.
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Figure 15. EGS obtained through VQE as a function of the magnetic field h for each realization of J

and N. Circles and squares, respectively, refer to noiseless simulations and real hardware runs.

In an analogy to the ideal case, the derivative difference is evaluated using the finite
difference method.

Although decoherence affects the VQE algorithm leading to evaluations of EGS, which
significantly differs from the exact ones, especially for N = 6 qubits (Figure 15), the
results reported in Table 2 align satisfactorily with the ones obtained in the noiseless
setup, allowing the capture of the emergence of the quantum phase transition even on
real hardware.

Table 2. Derivative differences obtained from runs on the real IBM hardware.

N = 5 N = 6

J = 1 −2.66 −0.314

J = −1 −1.65 −0.838

5. Conclusions

After a detailed presentation of the solution of the XY model, we compared its low-
energy states with and without frustrated boundary conditions. We found that the ground-
state energy and the gap to the lowest lying excited states exhibit a stronger dependence on
the parameters of the Hamiltonian when the system is frustrated. We then studied experi-
mentally the Ising chain, a special case of the XY model, implementing the Hamiltonian for
different values of the magnetic field with and without frustration for N = 5, 6 on an IBM
Quantum computer. Our results confirmed the theoretical ones, hence demonstrating the
possibility of actually implementing topological frustration on quantum computers.
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31. Odavić, J.; Haug, T.; Torre, G.; Hamma, A.; Franchini, F.; Giampaolo, S.M. Complexity of frustration: A new source of non-local

non-stabilizerness. SciPost Phys. 2023, 15, 131. [CrossRef]

http://doi.org/10.1088/1742-5468/2016/06/064007
http://dx.doi.org/10.1103/RevModPhys.91.021001
http://dx.doi.org/10.1038/s41598-020-69621-8
http://dx.doi.org/10.1103/PhysRevB.97.035433
http://dx.doi.org/10.1080/00107510701342313
http://dx.doi.org/10.1103/PhysRevLett.122.097204
http://dx.doi.org/10.1103/PhysRevLett.120.117702
http://dx.doi.org/10.1038/nphys3722
http://dx.doi.org/10.1146/annurev.ms.24.080194.002321
http://dx.doi.org/10.1103/PhysRevLett.110.046803
http://dx.doi.org/10.1103/PhysRevB.94.220405
http://dx.doi.org/10.1103/PhysRevB.104.115103
http://dx.doi.org/10.1088/0953-8984/21/2/023203
http://dx.doi.org/10.1209/0295-5075/107/47010
http://dx.doi.org/10.1103/PhysRevB.95.205418
http://dx.doi.org/10.1126/science.aat0905
http://www.ncbi.nlm.nih.gov/pubmed/31147516
http://dx.doi.org/10.3390/cryst11010020
http://dx.doi.org/10.1103/PhysRevB.54.9007
http://dx.doi.org/10.1103/PhysRevLett.84.3173
http://dx.doi.org/10.1103/PhysRevLett.111.037202
http://dx.doi.org/10.1088/2399-6528/ab3ab3
http://dx.doi.org/10.1088/1742-5468/2016/11/113102
http://dx.doi.org/10.1142/S0217984917500610
http://dx.doi.org/10.1088/1367-2630/aba064
http://dx.doi.org/10.1103/PhysRevB.105.064408
http://dx.doi.org/10.1103/PhysRevB.103.014429
http://dx.doi.org/10.1103/PhysRevB.105.184424
http://dx.doi.org/10.1103/PhysRevB.106.125145
http://dx.doi.org/10.21468/SciPostPhys.15.4.131


Symmetry 2024, 16, 1078 18 of 19

32. Catalano, A.G.; Giampaolo, S.M.; Morsch, O.; Giovannetti, V.; Franchini, F. Frustrating quantum batteries. arXiv 2023,
arXiv:2307.02529.
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