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Abstract. Quantum spin chains - the prototypical model for coupled two-level

systems - offer a fertile playground both for fundamental and technological applications,

ranging from the theory of thermalization to quantum computation. The effects of

frustration induced by the boundary conditions have recently been addressed in this

context. In this work, we analyze the effects of such frustration on a few spin system

and we comment the strong even-odd effects induced in the ground state energy. The
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purpose of this work is to show that such signatures are visible on current quantum

computer platforms.
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1. Introduction

The theoretical importance and the technological potential of coupled multilevel

quantum systems are substantial. They range from fundamental issues related to

thermalization [1, 2, 3, 4] and information or energy spreading [5], to the realization

of quantum bits [6] and quantum batteries [7], and towards the simulation of complex

quantum systems [8]. In this context, recently, a new intriguing phenomenon has

been discovered: Topological Frustration (TF) [9, 10]. Qualitatively speaking, TF

amounts to the fact that some spin chains with N spins obeying periodic boundary

conditions behave very differently, even for large N , depending on the parity of N .

To understand the physical content, it is useful to start with a very intuitive classical

argument: imagine a N site classical antiferromagnetic Ising model in the absence of

applied fields, compactified on a circle. If N is even, the lowest energy state is the

one with neighbouring spins antiparallel to each other. The degeneracy is two: the

state with all the spins flipped has the same energy. If N is odd, on the other hand,

it is not possible, due to the boundary conditions, to have all spins antiparallel to

their neighbours. TF is hence at play. The lowest energy state is in this case the

one where all spins except for one are antiparallel to their neighbours. The important

fact is now that the degeneracy of the lowest energy state is now 2N instead of 2.

At the quantum level, when for example a transverse field is switched on, the even

N case is characterized in the thermodynamic limit N → ∞ by a gap between the

(doubly degenerate) ground state and the excited states, while in the odd N case the

systems becomes gapless, with the gapless modes originating from the hybridization of

the 2N states that are degenerate at the classical point, that is in the absence of applied

fields [11]. The implications of this simple observation are complex and far reaching

[12, 13, 14, 9, 15, 10, 16, 17, 18, 19]. Boundary quantum phase transitions that are

absent in the even N case show up for odd N , marking the onset of ground states with

finite global magnetization in the antiferromagnetic case, or the spontaneous breaking of

translational invariance [20, 21, 22]. At the non-equilibrium level, signatures of TF are

also visible in the Loschmit echo [15]. Although the best way to take the thermodynamic

limit in systems with TF is under intense debate [16, 22], what is clear is that systems

with finite N presenting TF have a very strong dependence of their properties on the

parity of N . This fact is what we theoretically and experimentally inspect in this

work. In particular, we analyze analytically the effects of topological frustration in the

XY quantum spin chain with N = 5, 6 spins. Among other effects, in particular, we

show that that the ground state energy has a way stronger dependence on the applied

magnetic field in the presence of TF (antiferromagnetic coupling, odd N), than in the

non-frustrated cases, as first observed by Dong et al. in [11, 23]. To go, for the first

time, beyond the theoretical description of TF, we then implement a special case of the

model discussed theoretically on an IBM quantum computer where the role of the spins

is taken by trasmon qubits. Remarkably, we confirm the peculiarity of the system with

TF in terms of ground state energy.
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On one hand, our results confirm the robustness of the physics related to TF in real

life contexts, where thermal fluctuations are unavoidable and exact symmetries in the

coupling parameters essentially do not exist. On the other hand, they open the way

to the conception of nanodevices based on TF, where by only changing N by one, the

properties of the system change dramatically.

The rest of the article is structured as follows. In Sec.2, we present and recap the

solution of the model. We also discuss the features of topological frustration, resuming

some the most relevant results in the literature so far. In Sec.3 we discuss the effects

of topological frustration on finite size systems, focusing in particular on the N = 5, 6

cases. In Sec. 4 we present our experimental results, and finally in Sec. 5 we illustrate

our conclusions.

2. The XY model and its topological frustration

2.1. Model

The model under investigation is the so called XY quantum chain in a transverse field

[24, 25, 26, 27, 28]. The Hamiltonian H is given by

H =
J

2

N∑
j=1

[(
1 + γ

2

)
σx
j σ

x
j+1 +

(
1− γ

2

)
σy
jσ

y
j+1 + hσz

j

]
, (1)

where N is the number of sites, J is the energy scale, γ is a parameter quantifying the

anisotropic way in which nearest neighbour spins interact, h is an external magnetic field

along z direction and σα
j (with α = x, y, z) are Pauli matrices in the usual representation.

Clearly one has

[σα
j , σ

β
k ] = 2iϵαβγσγ

j δjk. (2)

Crucially for the following, we impose periodic boundary conditions

σα
N+1 ≡ σα

1 . (3)

We now proceed with the diagonalization of the Hamiltonian, which is known in

literature. Indeed, the model defined in (1) is one of the most famous integrable models

and was first introduced and solved in the h = 0 case by Lieb, Schultz and Mattis in

[26] and, successively, in [25] with a finite external field. Since however the TF regime

requires some care, we find it worthy to report here the explicit solution.

First of all, thanks to the symmetry properties of (1), we restrict our analysis, without

loss of generality, only to the first quarter of the parameters space (h, γ), i.e. h, γ ≥ 0.

We then introduce the Wigner-Jordan transformation [29], in which the spin operators

are non-locally mapped onto spinless fermions. One has

σ+
j ≡ exp

{
iπ

j−1∑
l=1

ψ†
lψl

}
ψj j = 1, ..., N, (4)
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with σ+
j = (σx

j + iσy
j ), and the other operators obtainable from the commutation

relations. Here, we have the anticommutation relations

ψ†
lψm + ψmψ

†
l = δl,m, (5)

with l, m running over the sites of the chain and δi,j the Kronecker symbol, while all

other anticommutation relations are zero.

With respect to the new basis of operators, the Hamiltonian H reads

H =
J

2

N−1∑
j=1

(ψ†
j+1ψj + ψ†

jψj+1 + γψj+1ψj + γψ†
jψ

†
j+1) +

JhN

2
− Jh

N∑
j=1

ψ†
jψj+

− J

2
Πz(ψ†

1ψN + ψ†
Nψ1 + γψ1ψN + γψ†

Nψ
†
1), (6)

with

Πα ≡
N⊗
l=1

σα
l , (7)

the parity operator. We note that the Hamiltonian when written in terms of the fermions

is highly non-local and non-linear. However, since

[H,Πz] = 0, (8)

one can decompose the Hamiltonian as

H =
1 + Πz

2
H+1 + Πz

2
+

1− Πz

2
H−1− Πz

2
, (9)

where

H± =
J

2

N−1∑
j=1

(ψ†
j+1ψj + ψ†

jψj+1 + γψj+1ψj + γψ†
jψ

†
j+1) +

JhN

2
− Jh

N∑
j=1

ψ†
jψj+

∓ J

2
(ψ†

1ψN + ψ†
Nψ1 + γψ1ψN + γψ†

Nψ
†
1) (10)

≡J
2

N∑
j=1

(ψ
(±)†
j+1 ψ

(±)
j + ψ

(±)†
j ψ

(±)
j+1 + γψ

(±)
j+1ψ

(±)
j + γψ

(±)†
j ψ

(±)†
j+1 − 2hψ

(±)†
j ψ

(±)
j ) +

JhN

2
.

(11)

In the last equality we definedψ
(±)
j ≡ ψj

ψ
(±)
j+N ≡ ∓ψ(±)

j

j = 1, ..., N. (12)

We are now in the position of solving the Hamiltonian. To do so, we now switch to

Fourier space, with the convention

ψ
(±)
j ≡ 1√

N
ei

π
4

∑
q∈Γ±

eiqjψq, (13)
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where

Γ+ ≡
{
2π

N

(
k +

1

2

)}
Γ− ≡

{
2π

N
k

}
k = 0, ..., N − 1. (14)

These two sets will play a crucial role in the mathematical derivation of even-odd effects

in this model.

In Fourier space one finds

H± = −J
∑
q∈Γ±

(h− cos q)ψ†
qψq −

Jγ

2

∑
q∈Γ±

sin q(ψqψ2π−q + ψ†
2π−qψ

†
q) +

JhN

2

=
J

2

∑
q∈Γ±

(
ψ†
q ψ2π−q

)(−h+ cos q γ sin q

γ sin q h− cos q

)(
ψq

ψ†
2π−q

)
(15)

Here we define (
ψq

ψ†
2π−q

)
≡

(
cos θq sin θq

− sin θq cos θq

)(
χq

χ†
2π−q

)
(16)

where the angle θq obeys the constraints

θ0,π ≡ 0, (17){
sin θ2π−q = − sin θq

cos θ2π−q = cos θq.
(18)

The Hamiltonian now reads

H± =
J

2

∑
q∈Γ±

(
χ†
q χ2π−q

)
H̃

(
χq

χ†
2π−q

)
(19)

with

H̃ =

(
(−h+ cos q) cos(2θq)− γ sin q sin(2θq) γ cos(2θq) sin q + (−h+ cos q) sin(2θq)

γ cos(2θq) sin q + (−h+ cos q) sin(2θq) (h− cos q) cos(2θq) + γ sin q sin(2θq)

)
.

(20)

This form brings us to the final step of the diagonalization. One has here to distinguish

the ferromagnetic case J < 0, the most studied on, and the antiferromagnetic case

J > 0, the one that shows frustration.

2.1.1. Ferromagnetic case In the ferromagnetic case (J < 0), which has been

extensively studied [24], it is convenient to chose θq such that

ei2θq =
h− cos q + iγ sin q√
(h− cos q)2 + γ2 sin2 q

q ̸= 0, π. (21)

Furthermore, we introduce the dispersion relation

ϵ(q) ≡
√

(h− cos q)2 + γ2 sin2 q. (22)
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Note that

ϵ(π) = h+ 1 if h ≥ 0 (23)

ϵ(0) =

{
h− 1 if h > 1

−h+ 1 if 0 ≤ h < 1 .
(24)

From the choice 21 it follows that, independently from the parity of N , we have

H+ =J
∑
q∈Γ+

ϵ(q)

(
χ†
qχq −

1

2

)
(25)

H− =

−J
∑

q∈Γ− ϵ(q)
(
χ†
qχq − 1

2

)
if h > 1

−J
∑

q∈Γ−\{0} ϵ(q)
(
χ†
qχq − 1

2

)
+ Jϵ(0)

(
χ†
0χ0 − 1

2

)
if 0 ≤ h < 1.

(26)

2.1.2. Antiferromagnetic case In the antiferromagnetic case (J > 0) it is convenient

to chose θq such that

ei2θq =
−h+ cos q − iγ sin q√
(h− cos q)2 + γ2 sin2 q

q ̸= 0, π. (27)

For N even one has

H+ =J
∑
q∈Γ+

ϵ(q)

(
χ†
qχq −

1

2

)
(28)

H− =

J
∑

q∈Γ−\{0,π} ϵ(q)
(
χ†
qχq − 1

2

)
− Jϵ(π)

(
χ†
πχπ − 1

2

)
− Jϵ(0)

(
χ†
0χ0 − 1

2

)
if h > 1

J
∑

q∈Γ−\{π} ϵ(q)
(
χ†
qχq − 1

2

)
− Jϵ(π)

(
χ†
πχπ − 1

2

)
if 0 ≤ h < 1.

(29)

For N odd, which is the frustrated case and represents the main focus of this work,

one has

H+ =J
∑

q∈Γ+\{π}

ϵ(q)

(
χ†
qχq −

1

2

)
− Jϵ(π)

(
χ†
πχπ −

1

2

)
(30)

H− =

J
∑

q∈Γ−\{0} ϵ(q)
(
χ†
qχq − 1

2

)
− Jϵ(0)

(
χ†
0χ0 − 1

2

)
if h > 1

J
∑

q∈Γ− ϵ(q)
(
χ†
qχq − 1

2

)
if 0 ≤ h < 1

. (31)

2.2. Hallmarks of topological frustration

The physical properties of the ground state and of the low energy sector in the

ferromagnetic and in the antiferromagnetic case can be rather different. Indeed, only

the odd N case in the antiferromagnetic regime is affected by TF, i.e. the geometry

of the system does not allow us to simultaneously minimize all local interactions in

our Hamiltonian (1). This incompatibility between local and global order induces
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an excitation in the ground state, which becomes gapless in the thermodynamic limit

(N → ∞) [11, 23], giving rise to the peculiar physics of this system. In this subsection,

based on the exact solution just described, we briefly comment on the features of the

frustrated XY chain which are independent from the specific (finite) number of sites.

For the non-frustrated cases we also refer to the vast literature [24]. To start, we

address the ground state. We call |GS ′±⟩, |GS±⟩ and |GS⟩ the most general ground

state elements of, respectively, H±, 1±Πz

2
H± and H. We use an analogous notation for

the corresponding energy E. Furthermore, we denote with |0±⟩ the vacuum of fermions

χq. The strategy we adopt to obtain the ground state is the following: identify |GS ′±⟩;
extract |GS±⟩ from the states found in the previous step; find the ground state energy

E = min{E+, E−} and, as a consequence, |GS⟩. In the thermodynamic limit, this

algorithm can be realized in a fully analytical way [24, 16, 22], but at finite N one has

to resort to numerical methods.

From Eq. (25) and (26) one can see that in the ferromagnetic chain we have∣∣GS+
〉
=
∣∣0+〉 , (32)∣∣GS−〉 = χ†
0

∣∣0−〉 . (33)

In the same way, from Eq. (28) and (29) in the non frustrated antiferromagnetic chain

we have ∣∣GS+
〉
=
∣∣0+〉 , (34)∣∣GS−〉 = χ†
π

∣∣0−〉 . (35)

Hence, without frustration we have always

E+ = −1

2

∑
q∈Γ+

ϵ(q), (36)

E− =

{
−1

2

∑
q∈Γ− ϵ(q) + ϵ(0) if h ≥ 1

−1
2

∑
q∈Γ− ϵ(q) if 0 ≤ h < 1.

(37)

In words, when N is even the ferromagnetic and antiferromagnetic cases are completely

equivalent, with energies given by (36) and (37). It’s important to underline that in the

absence of frustration only two states alternate as ground state, with ⌊N/2⌋ different

crossing lines in the first quarter of the parameter space (as we will see in the next

Section). Furthermore one can observe from (22) that h2+γ2 = 1 is an exact degeneracy

line for all N . To determine precisely which is the ground state once fixed (h, γ) one

has to compare the energies (36) and (37) [30].

It can be shown that by increasing N the energy gap between these two states closes

exponentially [31, 32], giving rise to a doubly degenerate manifold which spontaneously

breaks Z2 symmetry [24]. Note that TF, that is the impossibility (due to geometry)

to minimize simultaneously all local interactions in the Hamiltonian, is translated into

the fact that (when |h| < 1, which is the region of interest) we cannot chose |GS ′±⟩
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as ground states having them, respectively, z-parity equal to ∓1. In other words, the

lowest energy states of H+ and H− are not compatible with the z-parity constraint

(9). This fact implies that the number of states involved at zero temperature scale as

N because of the quantization of momenta (see Eq. (14)). In the doubly degenerate

regions of the parameter space the ground space is spanned by two states with non zero

equal and opposite momenta [16, 22]. This is a consequence of the mirror symmetry of

our theory, as proved by Marić et al. in [20].

Notice that in absence of external magnetic field h we have [H,Πα] = 0 (i.e. each parity

operator is a symmetry), furthermore in the odd N case the parity operators satisfy

the non-commuting algebra {Πα,Πβ} = 2δα,β. As a consequence, if we consider a state

|ψ⟩ with definite energy and z-parity, the Πx |ψ⟩ has the same energy but opposite

z-parity. Hence the absence of h and the oddity of N imply that even at finite size

each state is always degenerate an even number of times (Kramers degeneracy) and

we have no need of the thermodynamic limit to get spontaneous symmetry breaking.

Taking advantage of this extra symmetry, Marić et al. [20, 12] managed to compute

analytically the magnetization, defined by mα
j ≡

〈
σα
j

〉
, in the frustrated case. For

γ > 1, where the ground space is two times degenerate, they found that the average

magnetization is constant and is suppressed by the total system size as 1
N
. They call

it mesoscopic ferromagnetic magnetization. Instead, on the (h, γ) = (0, γ < 1) line the

ground state is four times degenerate and, as previously observed, the operators H, Πz

and the translation operator T (defined by T †σα
j T ≡ σα

j+1) form a set of compatible

operators. As a consequence, one has two possibilities: either fixing a translational

invariant state and having the mesoscopic ferromagnetic magnetization or giving up

translational invariance and flowing into a state whose magnetization looks like the

staggered one but changes incommensurably over the chain [12, 20, 13]. On the contrary,

in the absence of frustration the magnetization at zero external magnetic field is zero in

the even N cases and ferromagnetic for the even N ferromagnetic chain.

By increasing the number of sites in the frustrated case, we expect that there exists

a critical value γ∗(N, h) such that when 0 < γ < γ∗(N, h) the number of regions in

the parameter space alternating in z-parity would increase [16]. Such an expectation

is justified by the fact that when 0 < γ < γ∗ (and 0 < h < 1) the dispersion relation

(22) has the shape in Figure 1, where the minima are at p(h, γ) = ± arccos h
1−γ2 [23].

By increasing N , the cardinality of Γ+ and Γ− increases linearly, as a consequence by

moving in this subregion of the parameter space we have a more and more frequent

change of the elements of Γ+ and Γ− which are closest to p(h, γ) [16, 22].

To conclude this introductory Section, observe that at the point (h, γ) = (0, 1)

the Hamiltonian (1) reduces to that of the classical Ising chain. As consequence,

the ground space in the frustrated case is 2N -fold degenerate and spanned by the

“kink states”, which have a single pair of nearest neighbor spins (the kink) that are

ferromagnetically aligned in the x direction and the other N − 1 pairs of nearest-

neighbor spins antiferromagnetically aligned. Without frustration, the ground space

at the classical point is always two times degenerate and spanned by the two Neél states
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Figure 1. Plot of the dispersion relation ϵ(q) as a function of q ∈ [−π, π] for

h = 0.5 and different values of γ: γ = 0 (black), γ = 0.25 (blue), γ = 0.5 (green),

γ = γ∗(0.5) =
√
2/2 (red) and γ = 0.9 (orange).

in the antiferromagnetic case and by the two completely x-ferromagnetic states in the

ferromagnetic case. The signature of the different value of the degeneracy can be found

in the Taylor expansions around the classical point in the two cases.

3. Finite size effects

In this Section we compare the finite size low energy states of the frustrated case with

that of the unfrustrated counterparts. Although we only focus on few particular values

of N , the analysis can be straightforwardly extended to general values of the number of

sites [16].

3.1. N = 6

The results, which (as already underlined in the previous Section) do not depend on

the sign of J , are reported in Figure 2, where we have drawn in blue the curves of

exact double degeneracy of the ground-state (where GS = span{|GS+⟩ , |GS−⟩}) and

we specified the z-parity of the ground state vector in the non-degeneracy regions.

From Figure 2 we can see that the neighbourhood of the classical point (h, γ) = (0, 1)

(where the model reduces to the classical Ising ring) with h > 0 is divided in four regions

with alternated z-parities (remember that when Πz = +1 or Πz = −1 the ground state is

given, respectively, by (34) or (35)), so we expect that the first order Taylor expansions

of E+ and E− around the classical point are equal. Our expectations are confirmed by
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Figure 2. Double degeneracy curves (in blue) in N = 6 case. This plot is independent

from the sign of J . The signs + and − specify the z-parity of the (unique) ground

state in that region.

numerical results, telling us that

E−
6 − E+

6 =
3

32
(γ − 1)3 +O

(
(γ − 1)4, h2(γ − 1)2

)
, (38)

whose plot up to sixth order in the parameters is in figure 3.

Figure 3. Difference between E−
6 and E+

6 at sixth order in Taylor series around the

classical point (in orange) compared with the plane E−
6 − E+

6 = 0 (in blue).
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We also observed that

E−
6 (h, γ = 1)− E+

6 (h, γ = 1) ≈ 63

256
h6. (39)

3.2. N = 5 ferro

The results are reported in Figure 4, where we have drawn in blue the curves of exact

double degeneracy of the ground-state (where GS = span{|GS+⟩ , |GS−⟩}) and we

specified the z-parity of the ground state vector in the non-degeneracy regions. From

Figure 4. Double degeneracy curves (in blue) in N = 5 ferromagnetic case for h ̸= 0.

The signs + and − specify the z-parity of the (unique) ground state in that region.

Figure 4 we can see that the neighbourhood of the classical point (h, γ) = (0, 1) with

h > 0 is divided in three regions with alternated z-parities, so we expect that the first

order Taylor expansions of E+ and E− around the classical point are equal (exactly as

in the N = 6 case). Our expectations are confirmed by numerical results, telling us that

E−
5 − E+

5 =
15

32
h(γ − 1)2 +O

(
h(γ − 1)3, h3(γ − 1)

)
, (40)

whose sixth order plot is in Figure 5, which is similar to Figure 3 except for the fact that,

as already stressed in Section 2.2, the oddness of N implies the exact double degeneracy

at h = 0.

We also observed that

E−
5 (h, γ = 1)− E+

5 (h, γ = 1) ≈ 35

128
h5. (41)
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Figure 5. Difference between E−
5 and E+

5 at sixth order in Taylor series around the

classical point (in orange) compared with the plane E−
5 − E+

5 = 0 (in blue).

3.3. N = 5 antiferro

We find numerically that when N = 5 the ground state is

GS =



span
{
χ†
0 |0−⟩ , |0+⟩

}
h = 0, γ > 1

span
{
χ†
2π/5 |0−⟩ , χ

†
−2π/5 |0−⟩ , χ

†
3π/5χ

†
π |0+⟩ , χ

†
−3π/5χ

†
π |0+⟩

}
h = 0, 0 < γ < 1

span
{
χ†
2π/5 |0−⟩ , χ

†
−2π/5 |0−⟩

}
(h, γ) ∈ A

span
{
χ†
π/5χ

†
π |0+⟩ , χ

†
−π/5χ

†
π |0+⟩

}
(h, γ) ∈ B

χ†
0 |0−⟩ (h, γ) ∈ C,

(42)

where the regions A, B and C refer to Figure 6.

The ground state energy is

E =


−1

2

∑
q∈Γ− ϵ(q) + ϵ

(
2
5
π
)

h = 0, 0 < γ < 1 ∪ (h, γ) ∈ A

−1
2

∑
q∈Γ+ ϵ(q) + ϵ

(
π
5

)
(h, γ) ∈ B

−1
2

∑
q∈Γ− ϵ(q) + θ(1− h)ϵ(0) h = 0, γ > 1 ∪ (h, γ) ∈ C

(43)

where θ(x) is the Heaviside step function. It’s easy to observe that (43) is non analytical

at (h, γ) = (0, γ ≥ 1), having a discontinuity in its first derivative with respect to h

(see Figure 7), which survives in the thermodynamic limit, giving birth to a first order
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Figure 6. Degeneracy lines (in blue) in N = 5 case. The letters A, B and C label

the three regions with three different ground state vectors in which the first quarter of

the parameter space is divided. As in the even N case, the signs + and − specify the

z-parity of the (unique) ground state in that region.

boundary quantum phase transition [21]. On the contrary, this doesn’t happen in the

even N case and in the odd ferromagnetic case, where the ground state energy (36) is

always analytic at (h, γ) = (0, γ ≥ 1), as shown, respectively, in Figures 8 and 9.

Figure 7. Ground state energy E in N = 5 case as a function of h ∈ (−0.5, 0.5) for γ

equal to 1 (blue), 1.5 (orange) and 2 (green).
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Figure 8. Ground state energy E in the absence of frustration as a function of

h ∈ (−0.5, 0.5) for γ equal to 1 (blue), 1.5 (orange) and 2 (green). Moreover, N = 6.

The picture applies to both the ferromagnetic and the antiferromagnetic case

Figure 9. Ground state energy E in the absence of frustration as a function of

h ∈ (−0.5, 0.5) for γ equal to 1 (blue), 1.5 (orange) and 2 (green). Moreover, N = 5

and the coupling is ferrmoagnetic.

For 0 < γ < 1 and γ > 1 the ground state’s degeneracy is, respectively, 4 and 2

[20, 12]. Notice also that at the boundary between regions A and B and regions B and

C the ground state is degenerate, respectively, four and three times.

In the neighbourhood of the classical point (h, γ) = (0, 1) with h > 0 the different

alternating quantum states in the N = 5 case are three (and given, explicitly, by (42)).

The energies of these states which, for the sake of simplicity, we will call |A⟩, |B⟩ and
|C⟩ (with reference to the subregions of Figure (6)) have the following first order Taylor
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expansions around the classical point

EA = − 3

2
+

1−
√
5

4
h+

5−
√
5

8
(γ − 1) +O

(
h2, (γ − 1)2, h(γ − 1)

)
(44)

EB = − 3

2
− 1 +

√
5

4
h− 5 +

√
5

8
(γ − 1) +O

(
h2, (γ − 1)2, h(γ − 1)

)
(45)

EC = − 3

2
− h− 5

4
(γ − 1) +O

(
h2, (γ − 1)2, h(γ − 1)

)
, (46)

where h > 0. The situation is depicted in Figure 10 where, to simplify the visualization,

we reported the first order of the Taylor expansions of −EA, −EB and −EC .

Figure 10. Plot of Taylor expansion of −EA (orange), −EB (blue) and −EC (green)

truncated to first order in h and γ − 1 as a function of h and γ around the classical

point.

From (44), (45) and (46) we observe that

Ei−Ej = αijh+βij(γ− 1)+O
(
h2, (γ − 1)2, h(γ − 1)

)
i, j = A,B,C i ̸= j , (47)

where αij and βij are different from zero.

4. Implementation on the quantum computer

This section addresses the experimental investigation of the results found by Dong et al.

in [11]. In particular, we briefly introduce the technique used to evaluate the physical

observables of interests and discuss the outcomes from both numerical simulations and

runs on a real IBM quantum device.

4.1. Variational Quantum Eigensolver

The Variational Quantum Eigensolver (VQE) [33] is a hybrid quantum–classical

variational algorithm that produces an upper-bound estimate of the ground-state |ΨGS⟩
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and its energy EGS of a Hamiltonian H [34]. Based on Rayleigh-Ritz variational

principle, it has found ubiquitous application in fields ranging from quantum chemistry

[35] to nuclear physics [36] and many-body physics [37]. The algorithm is actually

hybrid, involving both quantum and classical operations. More specifically, VQE

proceeds according to the following workflow:

(i) An ansatz wavefunction |Ψ(θθθ)⟩ is prepared on a quantum computer through a

parametric quantum circuit;

(ii) The energy for the given ansatz is evaluated E|Ψ(θθθ)⟩ =
⟨Ψ(θθθ) |H|Ψ(θθθ)⟩
⟨Ψ(θθθ) |Ψ(θθθ)⟩

≥ EGS;

(iii) The set of parameters specifying the state, here generically indicated with θθθ, is

updated in order to minimize the energy through a classical optimization routine.

The choice of the ansatz is crucial for the whole algorithm to work properly. The

employed |Ψ(θθθ)⟩ must indeed meet a reasonable tradeoff between expressivity and

trainability: a great number of parameters certainly allows to represent more diverse

wavefunctions (including the optimal one), but can significantly slow down the

minimization process. Being a Parametrized Quantum Circuit (PQC), it could be

characterized by barren plateaus where the gradient becomes exponentially small in

the number of qubits during the training. Here, not only the choice of the ansätze is

important but also the initialization strategy of its parameters deserves a theoretical

discussion for practical applications [38].

There is a huge amount of literature for specific use cases, here we cite two

approaches to potential design strategy: physically motivated ones [39] [40], which are

usually difficult to implement on near term quantum devices, and hardware efficient

ansätze (HEA) [41] that are devised to limit the consequences of noise.

As for the present work, a heuristic trial wavefunction consisting of layered SU(2) and

CX gates has been employed and the optimization procedure has been carried out

through a stochastic gradient descent (SGD) method named SPSA [42].

4.2. Ideal simulations and results

We start our investigation by leveraging ideal simulations of the finite-size model,

noiseless setups serving as a perfect benchmark to explore the possible extension of

the study to real device runs. For this reason, we consider the Hamiltonian

H = J
N∑
i=1

[
σx
i σ

x
i+1 + hσz

i

]
(48)

for N = 5, 6 qubits and periodic boundary conditions. We consider the J = 1 and
J = −1 cases separately and evaluate the ground state energy for h ∈ {−0.3, 0, 0.3}.
The VQE procedure is started from a two-layers ansatz as the one showed in figure 11
with random initial parameters.
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Figure 11. Example of ansatz for the VQE algorithm. The angles of rotations are

left as free parameters to be optimized during the procedure and linear entanglement

has been chosen, with CX gates linking adjacent qubits.

The approximate values of EGS at each minimization step for every choice of J,N
and h are reported in figure 12, ensuring a good and fast convergence with respect to
the exact values in dotted line.

Figure 12. Estimated EGS during a 2000−steps optimization procedure with SPSA

for both J = −1, 1 and N = 5, 6. Dotted lines refer to the exact ground state energies.

In light of evaluating the derivative difference
∂EGS

∂h

∣∣
h=0+

− ∂EGS

∂h

∣∣
h=0−

, we consider

the output EGS (h) of the VQE algorithm as displayed in figure 13 for a small deviation

of the magnetic field from the null value.

Using forward difference to compute numerical derivatives (table 1), we find

satisfactory agreement with analytical predictions as regards both numerical values and

the role of J in determining the behaviour of EGS for even and odd values of N .
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Figure 13. EGS obtained through VQE as a function of the magnetic field h for each

realization of J and N .

N = 5 N = 6

J = 1 −3.96 −0.904

J = −1 −0.786 −0.888

Table 1. Derivative differences obtained from noiseless simulations.

4.3. Superconducting quantum device results

In the following we show and discuss results obtained from a superconducting transmon

IBM Quantum chip. Starting from encouraging preliminary results, in terms of

performance and evaluation of EGS in the previously described noiseless scenario, we

extend our analysis further by analysing stability and reproducibility in a real context,

where a real, noisy quantum computer is used, and where state of art error suppression

techniques are exploited. The quantum device used in this work, namely ibm-cairo

(Falcon r5.11) consists of 27 fixed-frequency transmons qubits, with fundamental

transition frequencies of approximately 5 GHz and anharmonicities of −340 MHz.

Microwave pulses are used for single-qubit gates and cross-resonance interaction for

two-qubit gates. The experiments took place without intermediate calibration using

IBM Qiskit Primitive where the quantum platform computes the expectation values of

the observable (the energy in this case) with respect to the states prepared by the PQC.

The topology of the deployed device is displayed in figure 14.

In case of computation on a quantum hardware it is essential to consider the adverse

effects of noise and devise methods to reduce them. For this reason the previous VQE

routine is supplemented with error mitigation techniques (EM). In particular, we employ

Twisted Readout Error eXtinction (TREX) [43] and Dynamical Decoupling (DD) [44].

TREX is a model-free approach to readout errors, that result in biases in quantum

expectation values as the ones we are interested in. By randomizing the output channel

of a circuit through the application of random bit flips prior to measurements, the

estimation bias is turned into a multiplicative factor that can be readily divided out.
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Figure 14. Schematic representation of the topology of the 27−qubits ibm-cairo

device, on which computations were performed. Calibration data, at the time of

running were: Median T1: 89.55us, Median T2: 98.7us, Median CNOT error:

9.668e− 3 and Median readout error: 1.470e− 2.

In addition, DD exploits properly tuned control pulses to average environment induced

decoherence to zero, thus contributing to clean out the final result. Similarly to the

noiseless case, the approximate values of EGS as function of the minimization steps for

each choice of J,N and h are shown in figure 15.

Figure 15. Estimated EGS in a 1000−steps optimization process for both J = −1, 1

and N = 5, 6. Dashed lines refer to the exact ground state energies. The number of

steps of each optimization procedure is varied in each case.

As one could expect from the very beginning, the optimization procedure on the

quantum platform yields less favorable outcomes than the ideal case, with convergence

being achieved at values slightly distant from the exact ones. Nonetheless, repeating

the protocol used for the ideal simulations, we get what is showed in figure 16, where
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the noiseless results are displayed for completeness.

Figure 16. EGS obtained through VQE as a function of the magnetic field h for each

realization of J and N . Circles and squares respectively refer to noiseless simulations

and real hardware runs.

In analogy to the ideal case, the derivative difference is evaluated using the finite

difference method.

N = 5 N = 6

J = 1 −2.66 −0.314

J = −1 −1.65 −0.838

Table 2. Derivative differences obtained from runs on the real IBM hardware.

Although decoherence affects the VQE algorithm leading to evaluations of EGS

which significantly differs from the exact ones especially for N = 6 qubits (figure 16),

the results reported in table 2 align satisfactorily with the ones obtained in the noiseless

setup, allowing to capture the emergence of the quantum phase transition even on the

real hardware.

5. Conclusion

After a detailed presentation of the solution of the XY model with and without frustrated

boundary conditions, we compared the low energy states in the two cases resuming some

the most relevant results in the literature so far. We have then commented in detail

the N = 5 and N = 6 cases both in the antiferromagnetic and ferromagnetic cases.

Finally we have studied experimentally the Ising chain, implementing the hamiltonian

fir different values of the magnetic field with and without frustration for N = 5, 6 on

a IBM Quantum computer and our results confirm the theoretical ones found by Dong

et al. in [11]. The experimental results are comforting and confirm the possibility of

actually studying physical systems of interest on quantum technologies.
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