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Abstract
Testing of space-bound microelectronics plays a crucial

role in ensuring the reliability of electronics exposed to
the challenging radiation environment of outer space. This
contribution describes the beam optics studies carried out
for the run held in November 2023 in the context of the
CERN High-Energy Accelerators for Radiation Testing and
Shielding (HEARTS) experiment. It also delves into an in-
vestigation of the initial conditions at the start of the transfer
line from the CERN Proton Synchrotron (PS) to the CERN
High Energy Accelerator Mixed-field (CHARM) facility.
Comprehensive optics measurement and simulation cam-
paigns were carried out for this purpose and are presented
here. Using a validated optics model of the transfer line, the
impact of air scattering on the beam size was quantified with
MAD-X and FLUKA, providing valuable insights into the
current performance and limitations for Single Event Effects
(SEE) testing at CHARM.

OPTICS MODEL
CERN High-Energy Accelerators for Radiation Testing

and Shielding (HEARTS) [1] use slow-extracted beams from
CERN’s Proton Synchrotron (PS) to irradiate electronics at
the CERN High Energy Accelerator Mixed-field (CHARM)
[2] facility. Accurate beam modeling is essential for pre-
cisely predicting beam sizes on Devices Under Test (DUTs),
ensuring the reliability of radiation effects testing. This
section discusses the detailed beam optics measurements
undertaken using a lead ion beam with a kinetic energy of
2 GeV u−1, aimed at refining the optics model.

Quadrupole Scan Measurement
During Machine Development (MD) studies, quadrupole

scans on the PS to East Dump transfer line (F61D) [3] es-
tablished initial beam conditions post-extraction, capturing
the non-linear behavior of the PS main units’ edge fields
[4–6]. The empirical modeling approach has been shown
to be more reliable than a stitched model [7]. The trans-
fer line includes three quadrupoles and a Beam Television
(BTV) equipped with a fluorescent screen for beam size
measurements. The scans were conducted at the upper en-
ergy limits provided by HEARTS to mitigate the impact of
beam-material (air, instrumentation, vacuum window) inter-
action. Py-BOBYQA [8, 9] was chosen as the optimization
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algorithm to minimize the sum of squared differences be-
tween the simulated and measured beam sizes. It was used
to determine a set of initial Twiss parameters and normalized
emittances, while keeping the dispersion constant. Addition-
ally, kick response measurements validated the beam optics
model, giving confidence in the model’s representation of
the transfer line.

Dispersion Measurement
In a second MD, the dispersion was measured in the T8

transfer line at two different BTV locations (T08.BTV020,
T08.BTV035) and at the Multi-Wire Proportional Chamber
(MWPC) located at the end of the line (T08.MWPC) [10].
The momentum of the beam was changed by modifying the
revolution frequency 𝑓rev before extraction (before the RF is
turned off and the beam debunched), followed by measuring
the centroid movement Δ𝑥 [11]. Dispersion is given by
𝐷 = Δ𝑥/(Δ𝑝/𝑝), where Δ𝑝/𝑝 is the relative change in the
beam’s momentum [12]. The change in 𝑓rev and the relative
change in beam momentum can be expressed as:

Δ 𝑓rev
𝑓rev

= −𝜂Δ𝑝
𝑝

(1)

where, 𝜂 is the slip factor, defined as:

𝜂 =

(
1
𝛾2

tr
− 1
𝛾2

)
(2)

and 𝛾 = 11.41 is the relativistic Lorentz factor, and 𝛾tr =
6.13 is the transition gamma, both determined using a MAD-
X [13] model of the PS. The dispersion is calculated from
the slopes of the measured changes in centroid position ver-
sus the relative change in momentum, corrected by the fac-
tor of 1

𝜂 𝑓rev0
where the initial revolution frequency, 𝑓rev0 ,

is 452.0 kHz and presented in Table 1. A caveat of this
measurement is that it was performed for only the nomi-
nal quadrupole settings. A more rigorous method would
have involved adjusting 𝑓rev for each change of optics as the
quadrupole strengths were scanned.

Table 1: Dispersion Measurements

Device 𝑫𝒙 𝑫𝒚

BTV020 −0.197 ± 0.034 0.035 ± 0.031
BTV035 0.851 ± 0.047 −0.061 ± 0.009
MWPC −0.963 ± 0.082 −0.169 ± 0.019
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Figure 1: Difference in dispersion before and after the re-
match.

A match of the dispersion at the start of the F61 line
was done using these measurements, and the optimizer was
once again run on the Twiss parameters as they collectively
influence the beam size, see Fig. 1. The new set of initial
conditions (including the new fixed dispersion) is presented
in Table 2.

Table 2: Comparison of Matched Initial Parameters

Parameter Initial & Re-matched
𝛽𝑥 (m) 53.074 → 66.748
𝛽𝑦 (m) 3.675 → 3.764
𝛼𝑥 −13.191 → −16.272
𝛼𝑦 0.859 → 0.703
𝐷𝑥 (m) 0.13 → 0.086
𝐷𝑦 (m) 0.0 → −0.003
𝐷′

𝑥 0.02 → 0.017
𝐷′

𝑦 0.0 → −0.005
𝜀𝑛𝑥 (m−5) 2.53 → 2.28
𝜀𝑛𝑦 (m−5) 6.94 → 8.63
𝜎𝐸

𝐸
0.0045

AIR SCATTERING
From the PS to the DUT, the beam travels through inter-

ceptive instrumentation and air / window regions, during
which the emittance increases and the beam energy straggles
due to matter interaction [14–17]. Primary effects, such as
an increase in beam size, required developing a custom mul-
tiple Coulomb scattering module1 to simulate these changes,
compensating for MAD-X’s lack of beam-matter interaction
modeling, see Fig. 2. The increase in divergence, 𝜃𝑟𝑚𝑠,
for an ensemble of particles undergoing multiple Coulomb
scattering as it passes through a medium is expressed as
[18]:

𝜃𝑟𝑚𝑠 =
13.6 MeV c−1

𝑝𝛽𝑝

𝑞𝑝

√︂
𝐿

𝐿𝑟𝑎𝑑

where 𝑝 is the beam’s total energy in MeV, 𝑞𝑝 the number
of charges, 𝐿 is the length of the interaction and 𝐿rad is:

1 An example is available at gitlab.cern.ch/abt-optics-and-code-repository.

𝐿rad =
𝐿rad0
𝑃Torr
760

where 𝑃 = 1.013 bar is the standard air pressure, and 𝑃Torr =
750.062 · 𝑃. The radiation length for air, 𝐿rad0 = 3012. The
Twiss parameters and emittance evolve from before (0) and
after (1) an air region of length L as [19],

𝛼1 =
𝜀0𝛼0 − 𝐿

2 𝜃
2
rms

𝜀0 + Δ𝜀

𝛽1 =
𝜀0𝛽0 + 𝐿2

3 𝜃2
rms

𝜀0 + Δ𝜀

𝜀1 = 𝜀0 +
1
2
𝜃2

rms

(
𝛽0 + 𝐿𝛼0 +

𝐿2

3
𝛾0

) (3)

The modular design of the code [20] allows for effective
handling of multiple Coulomb interactions in any MAD-X
sequence. After loading the MAD-X sequence, the user
introduces air regions along the sequence with a specified
integration length 𝐿 in meters. The process_scattering()
function calculates the impact of the MCS on the beam pa-
rameters, generating an updated Twiss output. Upon reach-
ing the "AIR_START" marker, the function records the beta
functions using "SAVEBETA" and segments the beam line
at this point. It then performs a Twiss calculation with the
saved values, updating 𝛼, 𝛽 and 𝜀 following Eq. (3). This
procedure is repeated at each "INNER_MARKER," refining
the beam optics iteratively to account for multiple Coulomb
scattering effects in air regions.

Figure 2: Semi-analytical simulation of multiple Coulomb
scattering using a sample lattice.

Semi-analytical results were compared with Monte Carlo
simulations that applied random transverse displacements to
particle trajectories, simulating scattering with a Gaussian-
distributed angle 𝜃𝑅𝑀𝑆 . This process emulated the random-
ness of actual scattering, generating a variety of particle
paths to compare statistical beam properties between both
methods. Table 3 contrasts these simulation approaches, not-
ing that while the Monte Carlo method requires 30 minutes
2 cds.cern.ch/record/941314/files/p245.pdf
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for 50,000 particles, the analytical method takes only 1-2
seconds, regardless of the particle count.

Table 3: Simulated beam sizes (in mm) for analytical, Monte
Carlo, FLUKA and XSuite methods under non-scattered
and scattered conditions using multiple Coulomb interaction
only.

𝝈 Ana. M.C. FLUKA XSuite
H Non-Scat 7.41 7.43 - -
H Scat 10.50 10.30 10.76 10.05
V Non-Scat 4.53 4.55 - -
V Scat 8.67 8.45 8.70 8.73

The current HEARTS installation is limited due to exten-
sive air regions along the beam path as it passes through the
IRRAD zone to CHARM. One straightforward improvement
would be to shift the irradiation from CHARM to IRRAD,
which is located just a few meters upstream, minimizing the
air seen by the beam before arriving at the DUT.

ENERGY CONTROL
Variation of the ion beam’s energy is essential for explor-

ing large parameter space of Linear Energy Transfer (LET)
and penetration depth and were developed by CHIMERA at
CERN [21–23]. This involves adjusting the magnetic field
at the PS’s flat top to change beam rigidity. A makerule algo-
rithm recalculates the magnetic field necessary for transfer
line magnets. Removing Pole Face Windings (PFW), which
are used to control the tune in the PS and do not scale lin-
early with rigidity [24], ensures smooth energy variations. In
2023, the use of distinct cycles for each energy was replaced
by a single cycle managed by a Python script [25] that can
be quickly trimmed to seamlessly transition between 650
and 2000 MeV u−1 executing changes every 15 −30 s. The
cycle also supports energy scans that determine the beam’s
kinetic energy using penetration tests in materials like Poly-
Methyl Methacrylate (PMMA) and speeds up Single Event
Effects (SEE) testing of components. Additionally, Python
scripting provides control over fluence [26], which is vital
for accurate radiation effect testing. A script ensures that the
beam is disabled once the target total ion count impacting the
DUT is achieved, with fluence measured by the calibrated
XSEC070.

Straggling Effects
Energy straggling affects the beam’s rigidity as it traverses

air regions in F61 and T08. This effect, which was simu-
lated by FLUKA including vacuum windows, air and beam
instrumentation [27] was measured by observing the moving
transverse position in a dispersive region in the transfer line.
As shown in Fig. 3, at T08.BTV35, the lower kinetic energy
at extraction leads to a more significant beam displacement,
confirming FLUKA’s predictions. Installing vacuum cham-
bers, particularly in key areas such as the F61.MBXHD025

switching dipole of F61, is recommended to reduce air-
induced straggling. This would optimize VHE ion irradia-
tion at IRRAD/CHARM by improving beam transport.

Figure 3: Measurement of the straggling effects in the T8
line at BTV035 compared to FLUKA simulation.

COMPARISON OF MEASUREMENT TO
SIMULATION

Figure 4 compares measured and simulated beam sizes
at the MWPC, highlighting increased vertical errors due to
vacuum pipe aperture interactions distorting the Gaussian
shape. These discrepancies occur because the beam isn’t
centered in the quadrupoles, leading to a varying dipolar mo-
ment. Optimized on the shorter East Dump line (27 m) and
not the longer T8 line (140 m), the model requires FLUKA
validation to address missing interactions like elastic and
inelastic air effects and instrumentation influences, particu-
larly at lower energies (600 MeV). Efforts are underway to
improve accuracy by adding another MWPC at IRRAD.

Figure 4: Comparison of beam size measurements and sim-
ulation at the MWPC.

CONCLUSION
This study has advanced the beam optics modeling for

radiation effects testing with slow-extracted VHE heavy ions
from the PS. Key advancements include the refined measure-
ment of initial conditions, the characterization of the disper-
sion, and the modeling of air scattering through multiple
Coulomb scattering. The validated beam model significantly
improves the precision and reliability of radiation testing se-
tups. Future improvements will focus on moving HEARTS
from CHARM to IRRAD, adding an additional vacuum sec-
tion to minimize air interactions, and further refine beam
control and homogeneity [28]. These contributions not only
enhance the robustness of radiation testing at CERN, but
also provide valuable insights for similar facilities globally.
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