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Abstract
We present the first quantum computation of a total decay rate in high-energy physics at second
order in perturbative quantum field theory. This work underscores the confluence of two recent
cutting-edge advances. On the one hand, the quantum integration algorithm quantum Fourier
iterative amplitude estimation, which efficiently decomposes the target function into its Fourier
series through a quantum neural network before quantumly integrating the corresponding Fourier
components. On the other hand, causal unitary in the loop-tree duality (LTD), which exploits the
causal properties of vacuum amplitudes in LTD to coherently generate all contributions with
different numbers of final-state particles to a scattering or decay process, leading to singularity-free
integrands that are well suited for Fourier decomposition. We test the performance of the quantum
algorithm with benchmark decay rates in a quantum simulator and in quantum hardware, and find
accurate theoretical predictions in both settings.

1. Introduction

The interplay between high-energy physics and quantum computing represents a promising frontier for
advancing our understanding of fundamental concepts and improving computational techniques.
High-energy physics requires complex theoretical calculations to predict with high accuracy cross sections
and decay rates, which are essential for understanding the behavior of elementary particles at quantum scales
and for validating theoretical models in quantum field theory [1]. These complex calculations often
challenge classical computational methods. Quantum computing, with its inherent ability to leverage the
principles of quantum mechanics, offers a novel approach to successfully addressing these challenges [2–4].
The applications of quantum computing in this field include jet identification and clustering [5–9], parton
density determination and integration [10, 11], parton shower simulation [12], anomaly detection [13–16],
integration of elementary particle process [17], data classification [18–24] and the analysis of the causal
structure of multiloop Feynman diagrams [25, 26].

In particle physics, Feynman diagrams and scattering amplitudes from perturbative quantum field theory
are essential tools for predicting the transition probabilities between particle states at high-energy colliders,
such as the CERN’s Large Hadron Collider. Loop Feynman diagrams represent interactions between particles
that involve virtual quantum fluctuations, making them inherently complex. On the other hand, tree-level
Feynman diagrams represent direct interactions between particles, and although they are apparently easier to
evaluate, they are not exempt from difficulties. Traditional methods for evaluating Feynman diagrams and
scattering amplitudes, and combining them to extract accurate theoretical predictions, while effective, are
limited by their computational complexity and the resources required to perform, for example, numerical
integrations over the loop momenta and the phase space of the final states.

The loop-tree duality (LTD) framework [27–32] facilitates the evaluation of multiloop Feynman
diagrams by decomposing them into tree-like objects, providing a structured approach to these
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computations where the fundamental physical principle of causality is manifest in the integrand
representation [33–40]. We have recently proposed a novel approach based on LTD to efficiently recast
perturbative theoretical predictions at high-energy colliders, the LTD causal unitary [41, 42], where
differential observables, cross sections and decay rates are assembled from the LTD representation of vacuum
amplitudes, i.e. scattering amplitudes without external particles.

In [43], we have also proposed a quantum integration algorithm, dubbed quantum Fourier iterative
amplitude estimation (QFIAE), and in [44] we have applied this quantum integrator to the evaluation of
infrared-safe scalar one-loop Feynman integrals.

By integrating quantum computing techniques into the LTD framework and harnessing the power of
quantum integration, we expect a transformative approach that could lead to new insights and more efficient
methodologies. Therefore, the aim of this work is going one step further and test the performance of QFIAE
with physical decay rates at second order in perturbation theory or next-to-leading order (NLO). This
requires the combination of one-loop with tree-level contributions, where each of the contributions is
individually singular and therefore numerically challenging, although the final prediction is finite. We base
our approach on the LTD causal unitary framework because the unified treatment of loop and tree-level
contributions leads to rather flat integrands, and therefore integrands that are more suitable for numerical
integration, in particular, by Fourier decomposition.

2. QFIAE

QFIAE [43, 44] is a quantum algorithm designed to efficiently integrate multidimensional functions. Its
workflow is depicted in figure 1. QFIAE first decomposes the target function into its Fourier series using a
quantum neural network (QNN) via a data re-uploading approach [45–47]. Previous studies [45, 48] have
demonstrated that an exponential data encoding results in the quantum model representing a truncated
Fourier series. Following this first step, each trigonometric term of the Fourier series undergoes quantum
integration using iterative quantum amplitude estimation (IQAE) [49], which is an efficient variant of
QAE [50].

The Fourier decomposition enables encoding the target function with minimal quantum arithmetic
operations and also capitalizes on the quantum-friendly nature of the sine function for integration purposes.
At the core of QFIAE lies the QNN, which provides a practical approach to preserving the potential quadratic
speedup in the number of queries to the probability distribution function, which will be encoded into the
amplification operator, offered by the Amplitude Amplification algorithm underlying in QAE, compared to
other recently proposed quantum integration algorithms like Fourier QuantumMonte Carlo
Integration (FQMCI) [51]. FQMCI, also employs Fourier decomposition to approximate the integrand and
then individually estimate each component using QAE. However, FQMCI relies on assumptions about
acquiring the Fourier coefficients, which may not always hold. Failure to meet these assumptions can nullify
the potential quantum speedup. The QNN, on the other hand, ensures a reliable quantum extraction of the
Fourier coefficients. A detailed comparison of the performance of both FQMCI and QFIAE can be found in
[43].

The second critical aspect of QFIAE involves exploiting the advantages of IQAE over QAE. QAE estimates
quantum state amplitudes using amplitude amplification, an extension of Grover’s algorithm [52], to
enhance the likelihood of measuring the desired state over undesired states. However, QAE is constrained by
its dependence on the resource-intensive quantum phase estimation (QPE) subroutine [53], which entails
operations deemed computationally expensive for current Noisy Intermediate Scale Quantum devices. This
limitation threatens the anticipated quadratic advantage promised by QAE. IQAE addresses this challenge by
replacing QPE with a classically efficient post-processing method, reducing the demands on qubits and
quantum gates while preserving the asymptotic quadratic speedup.

3. LTD causal unitary and decay rates at NLO

A vacuum amplitude in LTD,A(Λ)
D , where Λ is the number of primitive loop four-momenta, is obtained

from its Feynman representation by integrating out through the Cauchy residue theorem one component of
each primitive loop momenta [27, 28], typically the energy components, which results in replacing the
Feynman propagators by causal propagators of the form [33]

1

λi1···im
=

(
m∑
s=1

q(+)
is,0

)−1

, (1)
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Figure 1.Workflow of QFIAE. The input consists of the target function f(⃗x), the probability distribution ρ(⃗x), and the integration
domain {⃗xmin, x⃗max}. The QNN fits f(⃗x) and extracts its Fourier series from the quantum circuit. Next, IQAE estimates the
integral for each trigonometric term in the Fourier series. Finally, these integrals are added with their corresponding coefficients
to obtain the final integral result.

where q(+)
is,0

=
√
q2is +m2

is
− ı0 are the on-shell energies of the internal propagators, with qis the spatial

components of the four-momenta andmis their masses. The numerator of the vacuum amplitude in LTD is
also a function of the on-shell energies and additionally of the internal masses. The factor ı0 in the on-shell
energies stems from the original infinitesimal complex prescription of the Feynman propagators. Loop
vacuum amplitudes in the customary Feynman representations are functions in the Minkowski space of the
loop four-momenta, while the integration domain of loop vacuum amplitudes in LTD is the Euclidean space
of the loop three-momenta.

Each causal propagator, equation (1), involves a set of internal particles that divide the vacuum
amplitude into two subamplitudes, with the momentum flow of all particles in the set aligned in the same
direction, and each term in the vacuum amplitude is proportional to a product of causal propagators in
which the momentum flow of the shared particles are also aligned in the same direction [34–39]. This
picture is also analogous to selecting the acyclic configurations of a directed graph in graph theory [25, 26,
54]. In the limit where a causal propagator becomes singular, all the particles involved are set on shell.
Therefore a natural procedure to generate all the interferences of scattering amplitudes with different
numbers of final-state particles and loops that are considered in the state-of-the-art approaches is to take
residues on the causal propagators. This is the central idea of LTD causal unitary [41, 42]. The vacuum
amplitude in LTD thus acts as a kernel amplitude, which generates all the final states contributing to a
scattering or decay process from all possible residues on causal propagators.

As benchmark decay rates at NLO, we consider the decay of a heavy scalar into lighter scalars, and the
decay of a Higgs boson or an off-shell photon into a pair of massive quarks and antiquarks. These processes
have been implemented for a proof of concept of LTD causal unitary in [42], where classical integration
methods were used to predict the total decay rates. We refer to [42] for a detailed presentation of the
expressions used in the numerical implementation. The vacuum diagrams that contribute to the decay
γ∗ → qq̄(g) are shown in figure 2. Similar vacuum diagrams describe the other two decay processes
considered.

The vacuum diagrams in figure 2 contribute to a vacuum amplitude that in LTD depends on three loop
three-momenta, {ℓ1,ℓ2,ℓ3}. The three-momenta of the internal propagators read

q1 = ℓ1 + ℓ2 , q2 = ℓ1 + ℓ3 , q3 = ℓ1 ,

q4 = ℓ2 , q5 = ℓ2 − ℓ3 , q6 = ℓ3 , (2)

and the corresponding on-shell energies are given by q(+)
i,0 =

√
q2i +m2

i − ı0. We work in the rest frame of
the decaying particle, where ℓ3 = 0. Therefore, the unintegrated decay rate is a function of the remaining
three-momenta, ℓ1 and ℓ2, through the on-shell energies.
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Figure 2. Three-loop vacuum diagrams contributing to the decay γ∗ → qq̄(g) at NLO. The gray dashed lines represent
phase-space residues, i.e. different final states. Similar diagrams contribute to the decays H→ qq̄(g) andΦ→ ϕϕ(ϕ) by
substituting the photon labeled 6 by a Higgs boson or a heavy scalarΦ; for the heavy scalar decay particles 1 to 5 are substituted by
light scalars.

The differential decay rate of a particle a at NLO takes the form

dΓ(1)
a =

dΦℓ1ℓ2

2
√
s

[(
A(3,a)

D (456) ∆̃456̄ +A(3,a)
D (1356) ∆̃1356̄

)
+(5↔ 2,4↔ 3)

]
, (3)

whereA(3,a)
D (456) andA(3,a)

D (1356) are the phase-space residues of the vacuum amplitude in LTD, i.e. they
are obtained from the residue on the corresponding causal propagators, at λ456 → 0 and λ1356 → 0,
respectively. They represent the perturbative quantum fluctuations at one-loop with two final-state particles,
and at tree-level with three final-state particles, respectively. For example, for the decay of a heavy scalar Φ
into lighter scalars, the phase-space residues are

A(3,Φ)
D (456) =

g(1)Φ m2
Φ

x12345

(
L134̄234̄5̄,125 + L125̄234̄5̄,134 + L2345134,125

)
,

A(3,Φ)
D (1356) =

g(1)Φ m2
Φ

x135

(
1

λ134̄λ134λ12̄5λ125

)
, (4)

where g(1)Φ encodes the interaction couplings, the factor xi1···in =
∏n

s=1 2q
(+)
is,0

is the product of the

corresponding on-shell energies and Lij,k = λ−1
i

(
λ−1
j +λ−1

k

)
, with

λi1···ir̄ir+1···̄in = λi1···ir −λir+1···in . (5)

The integration measure is written in terms of two loop three-momenta

dΦℓ1ℓ2 =
2∏

j=1

d3ℓj

(2π)3
, (6)

i.e. six integration variables. However, each term in equation (3) must satisfy energy conservation, which is
encoded in

∆̃i1···inā = 2π δ (λi1···inā) , (7)

and the decay is isotropic in the rest frame of the decaying particle. As a result, the decay rate depends on two
independent integration variables, given the constraints imposed by the Dirac delta functions in
equation (7); a polar angle, which is the angle between the two loop three-momenta, usually parametrized as
cosθ = 1− 2v, with v ∈ [0,1], and the modulus of one of the loop three-momenta, mapped from [0,∞) to
the finite interval [0,1) in the numerical implementation. Explicitly,

dΦℓ1ℓ2 →
1

4π4

ˆ ∞

0
ℓ21d|ℓ1|

ˆ ∞

0
ℓ22d|ℓ2|

ˆ 1

0
dv , (8)

with

∆̃456̄ = 2π δ

(√
ℓ22 +m2 −

√
s

)
, (9)
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Figure 3. Architecture of the QNN employed to fit a 2-dimensional function.

and

∆̃1356̄ = 2π δ

(
|ℓ1 + ℓ2|+

√
ℓ21 +m2 +

√
ℓ22 +m2 −

√
s

)
, (10)

where |ℓ1 + ℓ2|=
√
ℓ21 + ℓ22 + 2(1− 2v)|ℓ1||ℓ2| and |ℓi|=

√
ℓ2i . The two Dirac delta functions in

equations (9) and (10) allow to express one of the integration variables in equation (8) in terms of the other
two, which we solve analytically in the numerical implementation.

The most important feature of equation (3) is that loop and tree-level contributions, i.e. contributions
with different numbers of final-state particles, are treated simultaneously under the same integration
measure. This property guarantees the local cancellation of singularities arising in the state-of-the-art
approach, and thus avoids having to perform intermediate calculations in arbitrary spacetime
dimensions [55, 56]. In addition, the resulting integrand is flatter than in other approaches, allowing for a
much faster and more efficient numerical implementation.

4. Quantum integration of NLO decay rates

In this section, we apply the quantum integration algorithm QFIAE to estimate the total decay rate at NLO of
the decay processes presented in section 3. The main challenge of this quantum implementation is in making
the QNN to fit well the differential decay rate function. To address this problem we present a QNN with a
general-purpose Ansatz, see figure 3, which contains enough entanglement and free parameters to permit a
high expressibility that enables the correct solution of the regression problem.

We utilize Pennylane [57] to construct and train the QNN. The QNN architecture, which is displayed in
figure 3, consists of a 6-qubit quantum circuit with a specific Ansatz repeated nlayers times within the circuit.
This Ansatz comprises two key components: a variational part with trainable parameters built using
qml.StronglyEntanglingLayers, and an encoding block for two variables. Each variable is encoded
three times in parallel across the 6 qubits using qml.AngleEmbedding. Building on previous studies of
regression with variational quantum circuits [43, 44], the encoding has been performed using rotations Rx,
and the measurements are performed on the Pauli-Z basis, as depicted in figure 3. Regarding the complexity
of the QNN, each layer presents a quantum depth of 7, including one step of encoding, one of variational
gates and five of entangling two-qubit gates. For the integrated decay rates shown in figures 4 and 5, 20 layers
of the QNN architecture have been employed, which means that the total quantum depth of the variational
quantum circuit is 140. To assess the feasibility of such variational circuit in current devices, we refer to two
recent IonQ studies [58, 59], where various quantum algorithms were evaluated using QED-C benchmarks.
The findings show that our algorithm, which requires a quantum depth of 140 and a low qubit count (⩽ 6),
would achieve a high success probability on IonQ and Quantinuum devices.

After making our QNN to accurately mimic the target function, we extract the Fourier series and feed the
IQAE subroutine with it. For the IQAE module, we design a quantum circuit with a relatively low quantum
depth and low number of qubits that opens up the possibility to be executed on current quantum computers.
The IQAE module is implemented with Qibo [60] on quantum simulators, figure 4, and with Qiskit [61]
on a real hardware, figure 5. In particular, the IQAE module is executed on the 27-qubit IBMQ
superconducting device ibmq_mumbai. Only 5 qubits are needed for the implementation of the IQAE
algorithm, which integrates the Fourier terms in sequential order.

We also implement error mitigation techniques to obtain the desirable results. In particular, to mitigate
quantum noise during execution, we utilize a pulse-efficient transpilation technique [62], which effectively
reduces the number of two-qubit gates by leveraging the hardware-native cross-resonance interaction.
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Figure 4. Quantum-integrated decay rates in a quantum simulator for the three decay processes H→ qq̄(g), γ∗ → qq̄(g) and
Φ→ ϕϕ(ϕ) at NLO as a function of the final state mass, using QFIAE and LTD causal unitary. The dashed lines are the
theoretical predictions in dimensional regularization. The parameters used in the quantum implementation are:
max_steps= 15000, step_size= 0.001, layers= nFourier = 20, nqubits = 6 for the QNN and nqubits = 5, nshots = 103,ϵ= 0.01,
α= 0.05 for the IQAE module.

Figure 5. Quantum-integrated decay rates in quantum simulator (hardware) for the QNN (IQAE) module of the QFIAE, for the
three decay processes H→ qq̄(g), γ∗ → qq̄(g) andΦ→ ϕϕ(ϕ) at NLO as a function of the final state mass, using QFIAE and
LTD causal unitary. The dashed lines are the theoretical predictions in dimensional regularization. The parameters used in the
quantum implementation are:max_steps= 15000, step_size= 0.001, layers= nFourier = 20, nqubits = 6 for the QNN and
nqubits = 5, nshots = 103,ϵ= 0.01, α= 0.05 for the IQAE module.

Additionally, we apply the error suppression technique dynamical decoupling within the circuit execution
and the error mitigation technique zero noise extrapolation to the output, using the Qiskit Runtime
Estimator primitive [63].

The hyperparameters used to train the QNN aremax_steps, which sets the number of iterations for the
ADAM optimizer [64], step_size, which represents the optimizer’s learning rate, layers, which specifies the
number of circuit layers, nFourier, indicating the number of Fourier coefficients we are truncating the Fourier
representation of the circuit, and nqubits, which defines the number of qubits used in the variational circuit.
The IQAE parameters include nqubits, specifying the qubits for the IQAE circuit, nshots, for the number of
measurement samples per circuit run, ϵ, which controls the error tolerance of each individual integral, and α,
which defines the confidence interval for the integral results.

The results presented in figures 4 and 5 show a relatively small deviation with respect to their
corresponding analytical values in the standard dimensional regularization (DREG). In particular, in
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Table 1. Quantum-integrated decay rates for the three decay processes H→ qq̄(g), γ∗ → qq̄(g) andΦ→ ϕϕ(ϕ) at NLO as a function
of the final state mass, using QFIAE and LTD causal unitary. The column ‘HARDWARE’ contains the results obtained with the QNN on
a quantum simulator and the IQAE on quantum hardware, whereas the column ‘SIMULATOR’ contains the results obtained when both
the QNN and the IQAE are executed on quantum simulators. The DREG column contains the exact analytic results at NLO accuracy.

Decay 2m/
√
s Hardware Simulator DREG

Φ→ ϕϕ(ϕ) 0.0 −0.0061(28) 0.0023(5) 0.0000
0.1 −0.0055(31) 0.0040(6) 0.0018
0.2 −0.0016(30) 0.0011(6) 0.0065
0.3 0.0101(56) 0.0205(11) 0.0167
0.4 0.0333(85) 0.0439(15) 0.0459

H→ qq̄(g) 0.0 0.0911(61) 0.1034(13) 0.1077
0.1 0.1009(83) 0.1169(14) 0.1204
0.2 0.1288(85) 0.1455(14) 0.1486
0.3 0.1847(135) 0.1941(20) 0.1928
0.4 0.2431(104) 0.2513(30) 0.2730

γ∗ → qq̄(g) 0.0 0.0029(96) 0.0161(14) 0.0190
0.1 0.0068(74) 0.0205(13) 0.0215
0.2 0.0191(50) 0.0293(13) 0.0313
0.3 0.0535(103) 0.0609(20) 0.0547
0.4 0.0971(171) 0.0979(30) 0.1140

figure 5, one can notice that in comparison to figure 4 there is a systematic deviation in the value of the
integrals introduced by the hardware noise that is still not alleviated by the currently available error
mitigation techniques applied. In table 1, we provide the explicit numerical results and uncertainties
corresponding to figures 4 and 5.

Table 1 shows that the uncertainties from executing IQAE on quantum hardware are approximately an
order of magnitude higher than those obtained on a quantum simulator. This difference is expected, as the
inherent quantum noise on physical hardware adds to the statistical uncertainty in the IQAE method.
Nevertheless, most of the values are in agreement within the uncertainty bands with the expected values, so
we consider that the results are quite satisfactory, taking into account the current limitations of real quantum
hardware.

5. Conclusions

We have presented the first quantum computation of a total decay rate at second order in perturbative
quantum field theory. Leveraging the LTD framework, we have successfully combined loop and tree-level
Feynman diagrams with a quantum algorithm on a quantum computer. This methodological advancement is
significant from the high-energy physics perspective, as it allows us to integrate a real process with potential
for quantum speedup. While we do not claim to have achieved quantum advantage in this work, our results
lay the groundwork for future explorations in this direction. From the perspective of quantum computing,
our study marks a noteworthy achievement. By solving a relatively complicated regression problem using a
QNN on a realistic dataset, we found a good compromise between trainability and expressibility, a common
challenge in QNNs. Most of the results presented are in agreement with the expected values within the
uncertainty bands. This demonstrates the potential of quantum computing to address complex, real-world
problems and highlights the importance of continuing to push the boundaries of what quantum technology
can achieve.
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